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Symmetric and antisymmetric terms have been obtained in the framework of the variational
approach for two-dimensional (2𝐷) Coulomb systems of symmetric trions 𝑋𝑋𝑌 . Stability di-
agrams and certain anomalies arising in the 2𝐷 space are explained qualitatively in the frame-
work of the Born–Oppenheimer adiabatic approximation. The asymptotics of energy terms at
large distances obtained for an arbitrary space dimensionality are analyzed, and some approxi-
mation formulas for 2𝐷 terms are proposed. An anomalous dependence of multipole moments
on the space dimensionality has been found in the case of a spherically symmetric field. The
main results obtained for the 2𝐷 and 3𝐷 problems of two Coulomb centers are compared.
K e yw o r d s: energy terms, stability diagrams, Coulomb systems, variational approach, Born–
Oppenheimer approximation, space dimensionality.

1. Introduction

The two-dimensional (2𝐷) problems for Coulomb
systems arise in various physical domains: for lay-
ered and near-surface materials, in the physics of
graphene, and in connection with general problems
aimed at studying the dependences of physical ob-
servables on the space dimensionality (e.g., see works
[1,2]). Researches of conditions required for the emer-
gence of bound states in the 2𝐷 problem of three
charged particles and their comparison with those
for the same problem in the three-dimensional (3𝐷)
space [3, 4] revealed certain important anomalies
in the 2𝐷 space, especially in the molecular mode
[5]. Hence, there arises a necessity of a clearer, at the
physical level, understanding of such two-dimensional
features that are absent in the standard formula-
tion of corresponding problems in the 3𝐷 space. In
the molecular mode for a symmetric trion 𝑋𝑋𝑌 (in
this case, we actually deal with two Coulomb cen-
ters), this 3𝐷 problem has been studied rather com-
pletely (in particular, see works [6–8]). For today,
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separate results for the asymptotics of energy terms
at short and large distances have already been ob-
tained for two Coulomb centers in the 2𝐷 space as
well [1, 2]. However, the application of these terms to
studying the stability diagrams still requires a sepa-
rate consideration.

In this work, the energy terms were calculated in
the framework of a rather accurate variational ap-
proach and without separating the variables. This
technique can be extended to include more compli-
cated systems. Some approximation formulas for the
terms are proposed with regard for the asymptotic
formulas for large and short distances between the
centers, and the features of the terms specific for
various space dimensionalities are discussed. The ob-
tained terms are used to analyze the stability dia-
grams plotted in the mass–charge, (𝑚,𝑍), plane in
the Born–Oppenheimer adiabatic approximation.

2. Variational Calculation of Energy Terms

The Hamiltonian of the 2𝐷 symmetric problem of
𝑋𝑋𝑌 for three charged particles looks like

�̂� =
𝑝21 + 𝑝22
2𝑚

+
𝑝23
2

+
1

𝑟12
− 𝑍
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1

𝑟13
+

1

𝑟23

)︂
, (1)
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where the standard expression

𝑉𝐶 =
1

𝑟
(2)

is taken for the Coulomb potential in isolated
small systems with a plane geometry. Concerning the
rather delicate issues dealing with the choice of an in-
teraction potential between charged particles in low-
dimensional systems, we confine the discussion to the
remark that this problem in the case of thin films
was considered long ago in work [9], in work [10] at a
more simplified level, and in recent work [11]. The ap-
plication of potential (2) to small systems of charged
particles located on a plane (2𝐷 problem) can be jus-
tified by the fact that the system looks as if it is
confined within a thin layer, i.e. the system motion
in one of the directions is restricted by a very narrow
and deep quantum well. The thickness of this layer
does not appear in subsequent calculations, but its
allowable values can be estimated from the form of
energy terms. A finite thickness deforms the energy
terms in the 2𝐷 problem only at distances compara-
ble with this thickness, and the repulsive region at
short distances does not substantially affect the vi-
bration spectrum of the term. Therefore, the layer
thickness must be narrower than the repulsive region
of the term (see the distance𝑅0 in Table 1). Then, the
energy spectrum of the system will not differ substan-
tially in this case from that obtained in the 2𝐷 prob-
lem. Hence, we assume the motion along the direction
𝑦, i.e. perpendicularly to the plane, to be frozen, and
the distance in the plane to be determined by the
formula

𝑟2 = 𝑥2 + 𝑧2. (3)

Let us rewrite Eq. (1) in the center-of-mass system,
i.e. in the relative coordinates

R = (r1 − r2)𝑍

(︂
1 +

1

2𝑚

)︂−1

,

r =

(︂
r3 − r1 + r2

2

)︂
𝑍

(︂
1 +

1

2𝑚

)︂−1

,

(4)

where R is the radius-vector describing the relative
position of one identical particle with respect to the
other one. Then, the Schrödinger equation looks like{︂
− 1

𝑚+ 1/2
Δ𝑅 − 1

2
Δ𝑟 +

1

𝑍𝑅
− 1

|r−R/2|
−

− 1

|r+R/2|

}︂
Ψ(𝑟,𝑅) = 𝜖Ψ(𝑟,𝑅), (5)

which is a convenient form for the separate analysis of
the fast electron motion described by the vector r and
the slow (in the molecular mode, when 𝑚≫ 1) vibra-
tion motion described by the vector 𝑅. The energy 𝐸
in problem (1) is determined through the energy of
Eq. (5) as follows:

𝐸 =
2𝑚𝑍2

1 + 2𝑚
𝜖. (6)

Consider two heavy particles in the molecular mode,
when the Born–Oppenheimer (BO) adiabatic approx-
imation, which allows the fast electron and slow vi-
bration motions to be analyzed separately, is applica-
ble, so that

Ψ(r,R) ≈ Φ(r,R)𝜒(R), (7)

where Φ(r,R) is the electron wave function of the fast
coordinate r at fixed R. Then the Schrödinger equa-
tion for the electron dynamics is a two-dimensional
two-center Coulomb eigenvalue problem,{︂
−1

2
Δ𝑟 −

1

|r|
− 1

|r+R|

}︂
Φ(r,R) = 𝑈(𝑅)Φ(r,R), (8)

which must be solved to determine the terms
𝑈(𝑅). In addition, the terms 𝑈(𝑠,𝑎)(𝑅) must addition-
ally correspond to the symmetric, 𝑠, or antisymmet-
ric, 𝑎, states with respect to permutations of identi-
cal Coulomb centers. Note that the two-center prob-
lem (8) can be considered in the space of any dimen-
sionality, which is of interest for the analysis of spe-
cific features revealed by the solutions and depending
on the space dimensionality, and this sheds light on
anomalies arising in the 2𝐷 problem. While deter-
mining the energy states in the BO approximation,
the terms used as the effective interaction potentials
in the Schrödinger equation for vibration spectra are
as follows:{︂
− 1

𝑚+ 1/2
Δ𝑅 +

1/𝑍 − 1

𝑅
+ 𝑉(𝑠,𝑎)(𝑅)

}︂
𝜒𝑛(𝑠,𝑎)(𝑅) =

= 𝜀𝜒𝑛(𝑠,𝑎)(𝑅), (9)

where

𝑉(𝑠,𝑎)(𝑅) = 𝑈(𝑠,𝑎)(𝑅)− 𝑈(𝑠,𝑎)(∞) +
1

𝑅
. (10)
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In order to find the terms 𝑈(𝑅) in the two-center
problem (8), the separation of variables in the el-
lipsoid coordinates is conventionally considered (see,
e.g., work [8] for the 3𝐷 problem and work [2] for the
2𝐷 one), and the solutions of a system of two one-
dimensional equations are analyzed. In this work, in
order to find the solutions of the two-center 2𝐷 prob-
lem (8), we use an alternative variational method. We
hope to extend this approach in the future to rela-
tivistic problems, problems with a larger number of
centers, and systems with more than three particles,
for which the separation of variables is impossible. To
determine the eigenvalues of problem (8) for vari-
ous center-to-center distances 𝑅, we use the Galerkin
variational method with the basis functions (with the
violated spherical or polar symmetry, of course)

𝜑𝑖 = 𝑒−𝑎𝑖𝑥
2
(︁
𝑒−𝑏𝑖𝑧

2

+ 𝑠𝑒−𝑏𝑖(𝑧+𝑅)2
)︁
, (11)

where 𝑠 = +1 for symmetric and 𝑠 = −1 for antisym-
metric states with respect to the permutation of cen-
ters. In addition, to make the consideration more gen-
eral, we will analyze the 𝑑-dimensional problem with
an arbitrary space dimension 𝑑, although the specific
calculations will be carried out in the 2𝐷 case. Then

𝑥2 =

𝑑−1∑︁
𝑖=1

𝑥2𝑖 . (12)

The total variational function is taken in the form

Φ =

𝐾∑︁
𝑖=1

𝑁𝑖𝜑𝑖, (13)

and the corresponding spectra for the terms in the
two-center problem (8) and the eigenfunctions are
determined by solving the system of linear algebraic
equations
𝐾∑︁
𝑗=1

𝑁𝑗

{︁
⟨𝜑𝑖
⃒⃒⃒
�̂� − 𝐸

⃒⃒⃒
𝜑𝑗⟩
}︁
= 0, 𝑖 = 1,𝐾. (14)

Note that, to make further calculations more conve-
nient, the coordinate origin in Eqs. (8) and (11) is
placed at one of the centers rather than at the mid-
dle point between them, the latter seems to be nat-
ural. Then, the general energy matrix in Eq. (14) for
the 𝑑-dimensional problem calculated with the use of
the basis functions (11) reads

⟨𝜑𝑖|𝐻 − 𝐸|𝜑𝑗⟩ = (𝑑− 1)
𝑎𝑖𝑎𝑗

𝑎(𝑑+1)/2𝑏1/2
×

0.82
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Fig. 1. Symmetric electron term (𝑉𝑠(𝑅) = 𝑈𝑠(𝑅)+2.0+1/𝑅)

×
(︂
1 + 𝑠 exp
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−𝑏

𝑖𝑏𝑗

𝑏
𝑅2

}︂)︂
+

𝑏𝑖𝑏𝑗
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×

×
(︂
1 + 𝑠

(︂
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𝑅2

)︂
exp
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−𝑏

𝑖𝑏𝑗

𝑏
𝑅2

}︂)︂
−

−𝐼 − 𝐸

(︂
1 + 𝑠 exp

{︂
−𝑏

𝑖𝑏𝑗

𝑏
𝑅2

}︂)︂
𝑎(𝑑−1)/2𝑏1/2

, (15)

where the integral 𝐼 for the potential energy of two
centers is determined as follows:

𝐼 =
4√
𝜋

1∫︁
0

𝑑𝑥
𝑥𝑑−2(2− 𝑥2)(𝑑−3)/2√︀
(𝑎+ (𝑏− 𝑎)(1− 𝑥2)2)

×

×
{︂
1 + exp

{︀
−𝑏(1− 𝑥2)2𝑅2

}︀
+ 𝑠×

×
(︂
exp

{︂
−𝑏

𝑗(𝑏𝑖 + 𝑏𝑗(1− 𝑥2)2)

𝑏
𝑅2

}︂
+

+exp

{︂
−𝑏

𝑖(𝑏𝑗 + 𝑏𝑖(1− 𝑥2)2)

𝑏
𝑅2

}︂)︂}︂
. (16)

The features in the solution of problem (14) in the
BO adiabatic approximation are analogous to the dif-
ficulties faced with when solving the problem of three
particles, irrespective of the difficulties in the numer-
ical calculation of integrals (16); however, we will not
discuss this issue.

The results of calculations carried out for the low-
est terms (the ground states) in the symmetric and
antisymmetric states, which were obtained for the
2𝐷 problem, are depicted in Figs. 1 and 2, respec-
tively. The results of calculation for the symmetric
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Fig. 2. Antisymmetric electron term (𝑉𝑎(𝑅) = 𝑈𝑎(𝑅)+ 2.0+

+1/𝑅)

term completely agree with the result of work [12]
obtained in a different way. Note that, in this for-
mulation, the polar (spherical) symmetry is absent,
and, from the general point of view, all states can
be classed in the hyperspheroidal coordinates, where
the total separation of variables can be executed (see
works [1, 2, 12]). For convenience, we presented terms
(10) in such a form that they vanish as 𝑅 → ∞,
which is convenient, while considering effective in-
teraction potentials. The value 𝑈(𝑠,𝑎)(∞) = −2.0 is
the energy of one center (the hydrogen atom) in
the ground state. This is a two-particle decay thresh-
old. We would like to emphasize that the both terms
𝑉(𝑠,𝑎)(𝑅) calculated for the lowest states in the 2𝐷
problem remain negative (attraction) at significant
distances (𝑅 ≫ 1), as well as doubly degenerate in
this limit (we consider the two-center problem), the

Table 1. Parameters of symmetric
(𝑠) and antisymmetric (𝑎) terms in 2𝐷
and 3𝐷 problems

𝑠

𝑅min 𝑉min 𝑅0 𝑅13

2𝐷 0.51357 −0.820 0.2391 0.5821
3𝐷 1.99719 −0.102635 1.10

𝑎

𝑅min 𝑉min 𝑅0 𝑅13

2𝐷 5.59 −4.235× 10−4 4̇.625 3.9994
3𝐷 12.55 −6.08× 10−5 10.69

same being also valid for the 3𝐷 space. At short dis-
tances (the two centers are united, 𝑈(𝑠)(0) = −8, and
𝑈(𝑎)(0) = −8/9), the terms 𝑉(𝑠,𝑎)(𝑅→ 0) are positive
(repulsion) owing to the repulsive Coulomb potential
between the identical centers.

The characteristic parameters of symmetric and
antisymmetric 2𝐷 terms (attractive potential wells)
are quoted in Table 1, where a comparison with the
corresponding parameters for the 3𝐷 problem [4] is
also made. The Table demonstrates the positions of
the minima, 𝑅min, the values of terms at the corre-
sponding minima, 𝑉min, and the distance 𝑅, above
which the terms are negative. We would like to em-
phasize that the symmetric 2𝐷 term is almost eight
times as deep as the 3𝐷 term (stronger coupling),
and its position is located approximately four times
nearer. The distance 𝑅0 in the 2𝐷 case is also ap-
proximately four times shorter than that in the 3𝐷
problem. The minimum value of antisymmetric 2𝐷
term is anomalously large in comparison with the 3𝐷
term, but is much smaller than the value of symmetric
term. This means that, similarly to the 3𝐷 space, the
conditions for the emergence of antisymmetric states
are much poorer than the conditions, at which the
symmetric states with the given charge, 𝑍, and mass,
𝑚, values exist. However, in the 2𝐷 space, the anti-
symmetric term corresponds to a much stronger at-
traction than in the 3𝐷 state.

Note that, in the BO approximation, the root-
mean-square distance between the third (light) par-
ticle and one of the centers, 𝑅31, which can be calcu-
lated using the electron functions Φ(r,Rmin) accord-
ing to the formula

𝑅2
31 ≡ ⟨𝑅2

31⟩ =
∫︁
𝑑r𝑅2

31Φ
2(r,Rmin)/

∫︁
𝑑rΦ2(r,Rmin)

(17)

satisfies the abnormal relation

𝑅31 > 𝑅min (18)

at the point 𝑅min in the case of a symmetric main
term. This relation was revealed in work [5], while
carrying out three-particle calculations. Hence, the
fact is confirmed that the distance between the light
particle and the attracting center calculated in the
2𝐷 problem for large masses of two centers in molec-
ular systems exceeds the distance between repulsive
centers (let it be determined as 𝑅min). However, the
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natural relation 𝑅31 < 𝑅min takes place in the case
of the 3𝐷 problem. In the 2𝐷 problem, the natural
relation is also obeyed for the antisymmetric state
both in three-particle calculations [5] and in the BO
approximation.

It is worth to note that, if considering the vibration
states in the BO approximation, it is reasonable to
consider only the terms indicated for the symmetric
and antisymmetric ground states, because all other
excited terms lie above the two-particle decay thresh-
old 𝐸0(2) = −2.0. In Fig. 3, the main terms 𝑠0 and
𝑎0, as well as the excited symmetric term 𝑠1 (desig-
nated as 𝑈(𝑅) for convenience), are shifted by the
two-particle threshold energy, but are not shifted by
the Coulomb potential, analogously to the 3𝐷 prob-
lem. The figure makes it evident that only the main
terms can be responsible for the appearance of bound
states in Eq. (9).

3. Term Asymptotics

Consider the asymptotics of 2𝐷 terms at large and
short distances, which are obtained according to the
Schrödinger equation (8), and, if possible, let us make
a generalization onto an arbitrary space dimensional-
ity 𝑑. This problem was already examined in a se-
ries of works by Lazur and coworkers [1, 2]. In this
work, we will pay more attention to physical conclu-
sions. The 𝑑-dimensional two-center Coulomb prob-
lem allows the separation of all variables in the hy-
perspheroidal coordinates; these are two linear coor-
dinates, 𝜉 = (𝑟1 + 𝑟2)/𝑅 and 𝜂 = (𝑟1 − 𝑟2)/𝑅, and
𝑑− 2 angular variables, in a full analogy with the 3𝐷
space (see, e.g., works [4,12]). In the space of 𝜉 and 𝜂
coordinates, the problem for the lowest states that are
independent of the angles is reduced to the following
system of two coupled one-dimensional equations:

(𝜉2 − 1)
𝑑2𝑋

𝑑𝜉2
+ 2𝜎𝜉

𝑑𝑋

𝑑𝜉
+

+

(︂
𝐸𝑅2

2
(𝜉2 − 1) + 2𝑅(𝜉 − 1) + 2𝑅+𝑅𝐴

)︂
𝑋 = 0,

(1− 𝜂2)
𝑑2𝑌

𝑑𝜂2
− 2𝜎𝜂

𝑑𝑌

𝑑𝜂
+

+

(︂
𝐸𝑅2

2
(1− 𝜂2)−𝑅𝐴

)︂
𝑌 = 0,

(19)

where 𝜉 ≥ 1, −𝑅 < 𝜂 < 𝑅, 𝑈(𝑅) is the term, 𝐴 is
the separation parameter, and 𝜎 = (𝑑 − 1)/2 defines
the space dimensionality.
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Fig. 3. Ground (𝑠0, 𝑎) and excited (𝑠1) electron terms

In all aspects, the system of one-dimensional equa-
tions (19) is similar to the known problem in the 3𝐷
space. Therefore, to derive an analytical solution, a
standard perturbation theory can be developed for
large and small distances 𝑅. At large distances, where
the symmetric and antisymmetric terms are degener-
ate to within an exponential accuracy, it is convenient

to introduce the variables 𝜉 = 1 +
2𝑥

𝑅
(𝑥 ≥ 0), and

𝜂 = 1− 2𝑦

𝑅
(0 ≤ 𝑦 ≤ 𝑅) and, changing the variables,

𝑋 = exp

{︃
−

𝑥∫︁
𝐶(𝑥′)𝑑𝑥′

}︃
, 𝑌 = exp

{︃
−

𝑦∫︁
𝐷(𝑦′)𝑑𝑦′

}︃
,

(20)

to consider the equations of the Riccati type,

𝑥
(︁
1 +

𝑥

𝑅

)︁(︂
−𝑑𝐶
𝑑𝑥

+ 𝐶2

)︂
− 𝜎

(︂
1 +

2𝑥

𝑅

)︂
×

×𝐶 + 2 +𝐴+ 2𝐸𝑥
(︁
1 +

𝑥

𝑅

)︁
+

4𝑥

𝑅
= 0,

𝑦
(︁
1− 𝑦

𝑅

)︁(︂
−𝑑𝐷
𝑑𝑦

+𝐷2

)︂
− 𝜎

(︂
1− 2𝑦

𝑅

)︂
×

×𝐷 −𝐴+ 2𝐸𝑦
(︁
1− 𝑦

𝑅

)︁
= 0.

(21)

We will use the so-called logarithmic perturbation
theory in the small parameter 1/𝑅, when the en-
ergy, separation parameter, and solutions are sought
in the form of a power series in the small parame-
ter 1/𝑅 and satisfy equations of the Riccati type (see
Eqs. (21)). The final power series for the symmetric
term of the ground state (as well as for the antisym-
metric term, which is degenerate with the former in
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the power-law approximation) obtained from corre-
sponding recurrent relations in the space of any di-
mensionality 𝑑 > 1 looks like

𝑈0(𝑅) = − 1

2𝜎2
− 1

𝑅
− 1

𝑅3

1

2
𝜎2(1− 𝜎2)−

− 1

𝑅4

1

8
𝜎4(1+ 𝜎)(5+ 4𝜎)− 1

𝑅5

3

8
𝜎4(1− 𝜎2)(4− 𝜎2)−

− 1

𝑅6

1

4
𝜎6(1+𝜎)(28+5𝜎−14𝜎2−4𝜎3)+𝑂

(︂
1

𝑅7

)︂
, (22)

where four first terms reproduce the terms obtained
in work [1]. The logarithmic derivatives of wave func-
tions, obtained in the framework of perturbation the-
ory, are

𝐶(𝑥,𝑅) =
1

𝜎
+

1

𝑅2
𝜎
(︁
𝑥+

𝜎

2
(1 + 𝜎)

)︁
− 1

𝑅3
𝜎𝑥(𝑥+𝜎)+

+
1

𝑅4
𝜎

[︂
𝑥3 + 𝑥2

𝜎

2
(3− 2𝜎)− 𝑥

𝜎2

4

(︂
6𝜎2 +

+7𝜎 − 6

)︂
+

3

8
𝜎3(1− 𝜎2)(2 + 𝜎)

]︂
+𝑂

(︂
1

𝑅5

)︂
, (23)

𝐷(𝑥,𝑅) =
1

𝜎
− 1

𝑅2
𝜎
(︁
𝑦 +

𝜎

2
(1 + 𝜎)

)︁
− 1

𝑅3
𝜎𝑦(𝑦+𝜎)−

− 1

𝑅4
𝜎

[︂
𝑦3 + 𝑦2𝜎

3

2
+ 𝑦

𝜎2

4
(6 + 𝜎)+

+
3

8
𝜎3(1− 𝜎2)(2 + 𝜎)

]︂
+𝑂

(︂
1

𝑅5

)︂
. (24)

However, the shift of the antisymmetric term with re-
spect to the symmetric one has an exponential char-
acter irrespective of the space dimensionality,

𝛿𝐸 =
16

𝜎3Γ(𝜎)

(︂
𝑅

2𝜎

)︂𝜎
𝑒−𝑅/𝜎−𝜎

[︂
1 +

𝜎

2𝑅
+𝑂

(︂
1

𝑅2

)︂]︂
,

(25)

in accordance with the results of works [1,4,10] (here,
Γ(𝜎) is the gamma-function).

We would like to make a few general remarks. First,
the 2𝐷 terms (10), taking into account Eq. (22), have
an abnormal attractive asymptotics (22) of an order
of −1/𝑅3. Second, the asymptotic series (22) and,
the more so, the power series near the exponent in
Eq. (25) always diverge following the factorial law,
which is well known to be a general rule for a diver-
sity of problems in the 3𝐷 space. Hence, such series
can be used for estimations only at large enough dis-
tances. Third, from the formal viewpoint, the com-
puter facilities allow a significant number of higher

power terms in series (22)–(25) to be calculated, but,
generally speaking, this procedure has no reason be-
cause of the series divergence. By the way, the charac-
ter of divergence for such asymptotic series becomes
weakened a little as the space dimensionality 𝑑 di-
minishes. In particular, in the limit 𝑑 → 1, provided
that 𝑑 is strictly larger than 1 and that this case
has a physical sense, only the first terms in Eq. (22)
would expectedly compose a good approximation for
the term, even at moderate values of the distance 𝑅.

We would like to attract attention to one more im-
portant conclusion. In the 2𝐷 space, the main asymp-
totics at large distances for the interaction potential
of the van der Waals type between neutral atoms in
ground states with zero angular momenta is the ab-
normal repulsion law 𝐶/𝑅5 rather than the standard
attraction one −𝐴/𝑅6 (in the 3𝐷 space) even in the
first order of perturbation theory. In particular, in the
2𝐷 space, as well as for an arbitrary dimensionality
𝑑, we have a repulsive potential of interaction of the
quadrupole-quadrupole and quadrupole-dipole types
between two hydrogen atoms at very large distances,

1

𝑅5

[︂
3

4
⟨�̂�2(1)⟩⟨�̂�2(2)⟩+

1

2

(︂
⟨𝑑(1)2⟩⟨�̂�2(2)⟩+

+ ⟨𝑑(2)2⟩ ⟨�̂�2(1)⟩
)︂]︂

=
123

1024

1

𝑅5
.

Moreover, such abnormal repulsive asymptotics is of
high importance in a space with a large enough di-
mensionality 𝑑, rather than in the 3𝐷 one, where it
vanishes, and in spaces with 𝑑 slightly exceeding 3,
where a weak attractive asymptotics −𝐶/𝑅5 is re-
alized. It should be recalled that, in this case, there
also exists a centrifugal barrier of the kinematic ori-
gin, (𝑑 − 3)(𝑑 − 1)/4𝑅2. The next asymptotic term,
−𝐴/𝑅6, which is obtained in the second-order per-
turbation theory in the dipole-dipole interaction pa-
rameter, is always attractive for an arbitrary space di-
mensionality. Moreover, the constant 𝐴, most likely,
can be much larger that the constant 𝐶 (in the term
−𝐶/𝑅5). Therefore, the manifestation of the repul-
sive asymptotics in bound states can be strongly sup-
pressed at a low dimensionality. This conclusion is
also supported by the presence of the centripetal at-
traction of the kinematic origin.

A separate attention should be attracted to the
fact that the terms with the third, fifth, and some
higher odd power exponents of the reciprocal radius
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in Eq. (22) are contributions of the first-order per-
turbation theory. They are determined by the contri-
butions of a quadrupole (the 1/𝑅3-term in Eq. (22),
it equals zero only in the 3𝐷 space), octupole (the
1/𝑅5-term), and sixth-order multipole (some part
of the 1/𝑅7-term) averaged over the wave function
of one-center problem. The 1/𝑅4-term is a contri-
bution of the second-order perturbation theory and
describes the dipole-dipole interaction. The 1/𝑅6-
term is a superposition of the dipole-octupole and
quadrupole-quadrupole interactions in the second-
order perturbation theory. The remaining part of the
1/𝑅7-term arises owing to the contribution of the
dipole-quadrupole interaction in the third-order per-
turbation theory, and so on. Really, the following ex-
pansion into a multipole series is valid at large dis-
tances 𝑅 between the centers:

1

|r−R|
=

1

𝑅

∑︁(︁𝑟
𝑅

)︁𝑘
𝑃𝑘

(︂
(rR)

𝑟𝑅

)︂
=

=
1

𝑅

(︃
1 +

𝑑

𝑅
+

�̂�2

2𝑅2
+
∑︁ �̂�𝑘

𝑅𝑘

)︃
, (26)

where 𝑃𝑘 are the Legendre polynomials depending
on the angle cosine cos(𝜑) = (rR)/|r||R|, 𝑑 = 𝑧 =
𝑟 cos(𝜑) is the dipole moment operator, �̂�2 = (3𝑧2 −
𝑟2) is the quadrupole moment operator, and �̂�𝑘 =
𝑟𝑘𝑃𝑘(cos(𝜑)) are the operators of higher-order multi-
pole moments. Then the even multipole moments av-
eraged over the spherically symmetric wave function
of the ground state in the 𝑑-dimensional space,

𝜓0(𝑟) = 𝐵𝑒−𝑟/𝜎, (27)

must be, generally speaking, different from zero. The
quadrupole moment equals (see work [5])⟨
�̂�2

⟩
=
⟨︀
(3𝑧2 − 𝑟2)

⟩︀
=

(3− 𝑑)(1 + 𝑑)(𝑑− 1)2

16
. (28)

Hence, it is positive (the system is elongated along
the 𝑧-axis) in the 2𝐷 space (as well as in the range
1 < 𝑑 < 3). At 𝑑 > 3, it is negative (the system
is flattened along the 𝑧-axis) and grows by absolute
value according to the law 𝑑4. It is of interest that the
quadrupole and all multipole moments tend to zero if
the space dimensionality tends to 1, which is a conse-
quence of the collapse. The next, octupole, moment
depending on the dimensionality 𝑑 looks like

⟨�̂�4⟩ =
⟨
1

8
(35𝑧4 − 30𝑧2𝑟2 + 3𝑟4)

⟩
=

=
3(𝑑− 1)4(1 + 𝑑)(9− 𝑑2)(5− 𝑑)

2048
. (29)

It equals zero in the 3𝐷 and 5𝐷 spaces and remains
positive for 1 < 𝑑 < 3 and negative for 3 < 𝑑 < 5
(as all even multipole moments do). At 𝑑 > 5, the
octupole moment ⟨𝑄4⟩ is positive again. The general
formula for nonzero even multipole moments in the
ground state reads

⟨�̂�2𝑛⟩ =
(2𝑛− 1)!!

25𝑛𝑛!
(𝑑− 1)2𝑛(𝑑+ 1)(32 − 𝑑2)×

× (52 − 𝑑2)(72 − 𝑑2)...
(︀
(2𝑛− 1)2 − 𝑑2

)︀
(2𝑛+ 1− 𝑑).

(30)

A consequence of the general formula (30) consists
in that the multipole moments

⟨
�̂�2𝑛

⟩
in the spaces

with odd dimensionalities equal zero if 𝑑 ≤ 2𝑛+1 and
oscillate 𝑛 times if 𝑑 > 2𝑛+1; for even dimensionali-
ties (𝑑 = 2𝑛), they always differ from zero. Therefore,
all multipole moments averaged over the spherically
symmetric wave functions vanish only in the 3𝐷 space
(and, formally, in the 1𝐷 space as a result of the col-
lapse), but it is not so for even dimensionalities and
other odd and fractal ones. In the 5𝐷 space, all mul-
tipoles equal zero in a spherically symmetric field,
except for the quadrupole, which is negative in this
case. In the 7𝐷 space, all multipoles equal zero, but
for the quadrupole, which is negative, and the oc-
tupole, which is positive, and so on. Note also that
the averaging of the multipole expansion (26) gives
rise to a factorially divergent asymptotic series, and
the character of divergence grows with the space di-
mensionality 𝑑.

Similar regularities are also observed for average
multipole moments in excited states. For instance,
for the first radially excited state, the Coulomb wave
function is

Ψ1(𝑟) = 𝐵

{︂
1− 𝑟

𝜎(𝜎 + 1)

}︂
exp

{︂
− 𝑟

𝜎 + 1

}︂
. (31)

The angular part remains the same as for the ground
state. Therefore, the quadrupole moment is equal to⟨
1|�̂�2|1

⟩
=

(𝑑+ 1)2(𝑑+ 11)(3− 𝑑)

16
, (32)

and the octupole moment to⟨
1|�̂�4|1

⟩
=

3(𝑑+ 1)4(𝑑+ 29)(32 − 𝑑2)(5− 𝑑)

128
(33)
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with all general regularities being similar to those in
the ground state. Let us consider a state with the
angular moment equal 1 (the 𝑃 state). In this case,
the wave function of the one-center problem is

Ψ𝑃 (𝑟) = 𝐵𝑧 exp

{︂
− 𝑟

𝜎 + 1

}︂
, (34)

the energy equals 𝐸1 = −2/(𝑑 + 1)2, and the
quadrupole moment⟨
𝑃 |�̂�2|𝑃

⟩
=

(𝑑+ 1)2(𝑑+ 3)(7− 𝑑)

16
(35)

evidently differs from zero in the 3𝐷 geometry. The
octupole,

⟨𝑃 |�̂�4|𝑃 ⟩ =
3(𝑑+ 1)4(𝑑+ 5)(32 − 𝑑2)(21− 𝑑)

2048
, (36)

and higher multipole moments also oscillate and van-
ish for the increasing number of odd 𝑑-values. For
even 𝑑-values, all multipoles are nonzero again.

Making allowance for the dipole interaction 𝑧/𝑅2

(the second term in Eq. (26)) in the framework of per-
turbation theory for the 2𝐷 space and at any 𝑑 (in
high-order terms of the small parameter 1/𝑅2) de-
serves a special attention. In those cases, we obtain a
multidimensional Stark problem for a hydrogen atom
in a uniform electric field,{︂
−1

2
Δ− 1

𝑟
+ 𝜖𝑧

}︂
Ψ = 𝐸Ψ, (37)

with 𝜖 ≡ 1/𝑅2. Let us consider the energy shift for the
ground state, when only the contributions of terms
with even power exponents of 𝜖 survive: the Stark
effects of the second, fourth, and so on, orders. Note
that the quadratic Stark effect was already contained
in formula (22) as the fourth term. Analogously to
the 3𝐷 case (see work [12]), the hyperparabolic coor-
dinates allow the separation of variables in Eq. (37)
to be done, so that, for the angle-independent ground
state, we obtain the system of 1𝐷 equations(︂
𝜉
𝑑2

𝑑𝜉2
+ 𝜎

𝑑

𝑑𝜉
+
𝐸

2
𝜉 − 𝜖

4
𝜉2 + 𝛽1

)︂
𝜒(𝜉) = 0,(︂

𝜂
𝑑2

𝑑𝜂2
+ 𝜎

𝑑

𝑑𝜂
+
𝐸

2
𝜂 +

𝜖

4
𝜂2 + 𝛽2

)︂
𝜑(𝜂) = 0,

𝛽1 + 𝛽2 = 1,

(38)

which is identical formally to the equations for the
3𝐷 Stark effect, provided the substitution 1 → 𝜎 =
= (𝑑− 1)/2 in terms before the first derivative. After
the change of variables,

𝜒 = exp

{︃
−

𝜉∫︁
𝐹 (𝜉′)𝑑𝜉′

}︃
, 𝜑 = exp

{︃
−

𝜂∫︁
𝐺(𝜂′)𝑑𝜂′

}︃
(39)

the linear second-order equations for the ground state
are reduced to a system of two nonlinear first-order
equations of the Riccati type,

−𝑑𝐹
𝑑𝜉

+ 𝐹 2 − 𝜎

𝜉
𝐹 +

𝐸

2
− 𝜖

4
𝜉 +

𝛽1
𝜉

= 0,

−𝑑𝐺
𝑑𝜂

+𝐺2 − 𝜎

𝜂
𝐺+

𝐸

2
+
𝜖

4
𝜂 +

𝛽2
𝜂

= 0,

𝛽1 + 𝛽2 = 1.

(40)

The system of equations (40) is rather convenient for
the application of perturbation theory (the logarith-
mic perturbation theory in the form of recurrent rela-
tions), if its solutions are sought in the form of power
series in the small parameter 𝜖,

𝐹 (𝜖, 𝜁) =
∑︁
𝑛

𝜖𝑛𝐹𝑛(𝜁),

𝐺(𝜖, 𝜂) =
∑︁
𝑛

𝜖𝑛𝐺𝑛(𝜂),
(41)

with the coefficient functions taken in the form of
polynomials. Then, taking only the dipole interaction
into account, we obtain the nonzero contributions to
the energy in the even orders of perturbation theory
(the generalized Stark law),

𝐸0 = −1

2
𝜎2− 1

𝑅4

𝜎4

8
(1+𝜎)(5+4𝜎)− 1

𝑅8
𝜎10(1+𝜎)×

× (192𝜎3 + 933𝜎2 + 1550𝜎 + 880) +𝑂

(︂
1

𝑅12

)︂
. (42)

The second term in Eq. (42) coincides with the fourth
one in formula (22). Note that series (42) in the small
parameter 1/𝑅4 also diverges factorially at the fixed
𝜎 = (𝑑− 1)/2.

In view of the results obtained above for multipoles
in the asymptotic expressions for term (22), we note
that the available asymptotics 1/𝑅3 (the polarizabil-
ity of the first order according to perturbation theory)
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has a quadrupole origin and is negative (attraction)
for 1 < 𝑑 < 3 (in particular, for the 2𝐷 problem) and
positive (repulsion) for 𝑑 > 3. Moreover, the higher
the space dimensionality, the stronger is the repulsion
in the 1/𝑅3-asymptotics. The term of the second or-
der in the dipole-dipole interaction (the polarizability
of the second order) for the ground state always cor-
responds to the attraction (the negative term).

At short distances, where the problem of finding
the asymptotics becomes even more complicated (see
work [2]), the terms have the following behavior: for
the symmetric ground state,

𝑈𝑠(𝑅) = −8 + 64𝑅2 ln

(︂
1

2
𝑒𝐶𝑅

)︂
+𝑂(𝑅2), (43)

where 𝐶 = 0.57722... is the Euler constant, for the
lowest state of the antisymmetric term,

𝑈𝑎(𝑅) = −8

9
− 80

9
𝑅2 +𝑂(𝑅4), (44)

and, for the first excited symmetric term,

𝑈𝑠(𝑅) = −8

9
+

64

27
𝑅2 ln

(︂
3

2
𝑒𝐶+1𝑅

)︂
+𝑂(𝑅2). (45)

4. Approximation Formulas for Terms

For the application of energy terms to be convenient,
we will derive the approximation formulas for the
symmetric and antisymmetric ground terms 𝑉𝑠,𝑎(𝑅)
in the 2𝐷 space. The approximations account for the
results of direct calculations shown in Figs. 1 and 2,
as well as the asymptotic behavior of the terms at
short and large distances discussed in the previous
section.

For the symmetric term in the short-distance in-
terval (𝑅 < 0.1), we use the asymptotics [1, 2]
𝑉𝑠(𝑅) = 1/𝑅 − 6 + 64𝑅2 ln(1/2𝑒𝐶𝑅). At large dis-
tances (𝑅 > 6.5), we use asymptotics (22) and (25),
when we may put

𝑉𝑠(𝑅) = − 3

32

1

𝑅3
− 21

256

1

𝑅4
− 135

2048

1

𝑅5
−

− 159

1024

1

𝑅6
− 32

𝜋𝑒
𝑒−2𝑅

(︂
1 +𝑂

(︂
1

𝑅

)︂)︂
. (46)

In the intermediate region, we use approximation for-
mulas in the form of the ratio between polynomials
of the distance 𝑅,

𝑉𝑠,appr(𝑅)=
𝑏0+𝑏1𝑅+𝑏2𝑅

2 +...+𝑏𝑛−2𝑅
𝑛−2

𝑅(𝑎0+𝑎1𝑅+𝑎2𝑅2+...+𝑎𝑛𝑅𝑛)
. (47)

which should involve two first asymptotic terms at
short distances and all known power-law asymptotics
at large ones. The account of the power-law asymp-
totics at large and short distances, as well as the lin-
earity in the sought parameters in the numerator and
the denominator, imposes the following additional re-
lations:
𝑏0 = 𝑎0,

𝑏1 = 𝑎1 − 6𝑎0,

𝑏2 = 𝑎2 − 6𝑎1,

𝑏3 = 1,0,

𝑏𝑛−2 = −(3/32)𝑎𝑛,

𝑏𝑛−3 = −(3/32)𝑎𝑛−1 − (21/256)𝑎𝑛,

𝑏𝑛−4 = −(3/32)𝑎𝑛−2−(21/256)𝑎𝑛−1−(135/2048)𝑎𝑛,

𝑏𝑛−5 = −(3/32)𝑎𝑛−3 − (21/256)𝑎𝑛−2 −
− (135/2048)𝑎𝑛−1 − (159/1024)𝑎𝑛.

(48)

The parameters 𝑎𝑘 and 𝑏𝑖 were determined using the
procedure of best fitting to the calculated term in the
range 0.1 < 𝑅 < 6.5 according to the 𝜒2

and-criterion;
the corresponding 𝜒2

and = 1.2×10−6. To obtain a sat-
isfactory approximation in Eq. (47), it was enough to
take 𝑛 = 9 and to neglect the last abnormal term in
Eq. (46). In this case, the parameters to fit were only
10 quantities 𝑎𝑘 in the denominator of Eq. (46). Their
values are listed in Table 2. All parameters in the nu-
merator of Eq. (46) were unambiguously determined
from relations (48).

An approximation formula similar to Eq. (47) was
used for the antisymmetric term:
𝑉𝑎,appr(𝑅) = {𝑏0 + 𝑏1𝑅+ 𝑏2𝑅

2 + ... + 𝑏𝑛−2𝑅
𝑛−2+

+𝑏𝑛−1 32𝑅𝑛+1 exp(−2𝑅− 1)/𝜋}/

/{𝑅(𝑎0 + 𝑎1𝑅+ 𝑎2𝑅
2 + . . .+ 𝑎𝑛𝑅

𝑛)}. (49)

Table 2. Approximation coefficients
for symmetric and antisymmetric terms

𝑖 𝑎𝑖, 𝑠 𝑎𝑖, 𝑎 𝑏𝑖, 𝑎

0 0.13241 1.5067
1 1.84394 0.9674
2 4.12047 1.3044
3 1.30497 0.073
4 1.29747 2.5425 −2.1696

5 0.03477 0.8491 0.4898
6 −0.00581 −0.3083

7 0.19956 −3.4974

8 −0.06119 3.0725 1.8518
9 0.01156 0.072605
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Fig. 4. Diagrams (schematically) of the energy level stability
for a two-dimensional system of three charged particles

Table 3. Critical mass values
𝑚

(𝑛)
crit. for symmetric states with (the second row) and

without (the third row) regard for the abnormal cen-
tripetal attraction − 1

4𝑟2

State 𝑛 0 1 2 3 4 5

Total potential 0 6.01 19.03 37.27 59.03 84.43
without −(1/4)/𝑟2 0.75 8.09 22.19 42.67 68.92 99.89
3-part. calc. 0 5.9 20.2 40.9 67.2 98.3

Table 4. Critical mass values 𝑚
(𝑛)
crit.

for antisymmetric states with (the second row)
and without (the third row) regard for the abnormal
centripetal attraction − 1

4𝑟2

State 𝑛 0 1 2 3 4

Total potential 55.8 335.5 916.5 1741.5 2807
without −(1/4)/𝑟2 128.3 509.2 1155.5 2063.5 3229
3-part. calc. 111 643 1675 3266 5690

The difference consists in that the abnormal asymp-
totics (the last term with the opposite sign) from
Eq. (46) is taken now into account, and we have the
short-distance asymptotics 𝑉𝑎(𝑅) = 1/𝑅 + 10/9 +
𝑂(𝑅2). This means that, in the second and third for-
mulas of Eqs. (48), the coefficient −6 should be bet-
ter substituted by 10/9. In addition, we neglect the
last two relations from Eqs. (48) in the numerator
of Eq. (49). The other parameters in the numerator
of Eq. (49) are unambiguously determined by rela-
tions (48). The obtained values of approximation pa-

rameters (at 𝑛 = 9) for the antisymmetric term are
quoted in Table 2 (the third and fourth columns). We
hope for that the accuracy of the approximations ob-
tained for both symmetric and antisymmetric terms
is high enough for those terms to be used in further
researches.

It is worth noting that the symmetric term in the
2𝐷 problem decreases according to the asymptotic
law −1/𝑅3 in the preasymptotic region of large dis-
tances. As a result, there is no reason for the realiza-
tion of the preasymptotic law −1/𝑅2, which was dis-
cussed in work [13] for neutral atoms in the 3𝐷 case.

5. Stability Diagrams
in the Born-Oppenheimer
Adiabatic Approximation

The determined terms allow us, in accordance with
Eq. (9), to find vibration spectra in the BO approx-
imation and to plot the corresponding stability dia-
grams (for the three-particle problem in the 2𝐷 space,
they were found in work [5]). In Fig. 4, the curves of
stability threshold calculated for the symmetric (𝑠𝑛)
and antisymmetric (𝑎𝑛) states in the BO adiabatic
approximation are exhibited schematically. The cor-
responding curves on the plane (𝑚,𝑍) mean that the
𝑛-th symmetric state exists to the right from the cor-
responding curve 𝑠𝑛, whereas the 𝑛-th antisymmet-
ric state exists to the right from the corresponding
curve 𝑎𝑛. Certainly, although the diagrams are plot-
ted for all values of mass ratio 𝑚, one should bear in
mind that the BO adiabatic approximation is physi-
cally justified only for the molecular mode, so that the
results obtained for small 𝑚-values are shown only
to make a more complete comparison with the re-
sults of direct three-particle calculations taken from
work [5]. Tables 3 and 4 also demonstrate the re-
sults of calculation, according to simple Eq. (9), of
critical masses 𝑚(𝑛)

crit. for the symmetric and antisym-
metric states, when 𝑍 = 1 and the energy 𝜀 = 0.
Those values are partially shown in Fig. 4: they de-
termine vertical asymptotes. We also calculated the
simple 1𝐷 problem (9) with the effective potentials
𝑉eff(𝑟) = 𝑉 (𝑟)− (1/4/(𝑚+ 1/2))/𝑟2 both in the full
variant (the second rows in Tables 3 and 4) and ne-
glecting the second term associated with the kinetic
energy of the centripetal attraction (Eq. (9)) (the
third rows in Tables 3 and 4). The last rows show
the results of three-particle calculations for the crit-
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ical values 𝑚(𝑛)
crit. (more accurate in comparison with

work [5] and carried out using a Gaussian basis with
1300 components).

Let us compare various variants of critical mass,
𝑚crit., sets in more details. First of all, we should pay
attention to that the BO adiabatic approximation is
a variational estimate “from above” for the energies
and critical values 𝑚(𝑛)

crit.. Therefore, all the curves in
Fig. 4 calculated in the BO approximation must lie
above those calculated in the three-particle problem
and be more correct if the mass 𝑚 is larger. From
a comparison of the second and fourth rows in Ta-
ble 3, it follows that, while calculating the symmetric
state in the framework of the three-particle scheme,
the accuracy higher than that attained in the BO
approximation was obtained only for the first two
states. Hence, the calculation of the terms and the vi-
bration level energies in the adiabatic approximation
turns out justified from the viewpoint of accuracy and
the understanding of regularities. To a larger extent,
those remarks concern anomalously weakly coupled
antisymmetric states. From a comparison of the sec-
ond and fourth rows in Table 3, it follows that even
the substantially corrected, in comparison with work
[5], results of calculations (using the basis of about
1100 Gaussoid-like components) turn out unsatisfac-
tory at the quantitative level in comparison with the
results obtained in the BO approximation. At last,
a comparison of the results in the second (the to-
tal effective term) and third (here, the centripetal
attraction −(1/4)/𝑟2 is neglected) rows of Tables 3
and 4 allows us to evaluate the order of the contri-
bution given by this centripetal attraction to the sta-
bility diagram structure. For instance, neglecting the
centripetal attraction in the symmetric ground state
always gives rise to a finite critical mass, whereas,
for higher excitations, the difference between the re-
sults in the second and third rows becomes larger
and larger. A special attention should be paid to the
fact that, in the 2𝐷 problem and in the adiabatic ap-
proximation for the ground state, we obtain a bound
three-particle level at any mass value, which follows
from the known fact [15, 16] that, in the case of
two particles and an attractive potential, there al-
ways exists at least one weakly bound state with the
energy that exponentially depends on the potential,
𝐸0 = −(~2/𝑚𝑟20) exp(Const/𝑣0+𝐶2), where 𝑣0 is the
zero-momentum Fourier component of the attractive
potential, 𝑣0 < 0.

Concerning the horizontal asymptotes in Fig. 4,
the threshold curves determine the minimum value
of charge

𝑍crit = min
{︀
[1−𝑅𝑉𝑠(𝑅)]

−1
}︀
, (50)

for symmetric and antisymmetric states in the limit
of large mass𝑚. For the corresponding 𝑅crit(𝑠) = 0.89
in the symmetric state, we obtain 𝑍crit(𝑠) = 0.64686,
and this value coincides with the results of three-
particle calculations [5]. Accordingly, the antisym-
metric threshold curves have the minimum 𝑍crit(𝑎) =
= 0.9976, and 𝑅crit(𝑎) = 5.7. The indicated values
were determined more exactly than it could be done
in three-particle calculations.

Note also that the results of three-particle calcula-
tions according to Eq. (14) imply that there are no an-
tisymmetric bound states for all masses at dimension-
alities 𝑑 > 3.337. This is a result of the repulsion pro-
vided by both the centrifugal barrier 𝑙eff(𝑙eff +1)/𝑅2,
where 𝑙eff = (𝑑 − 3)/2 is the effective angular hyper-
momentum, and the repulsive asymptotics ⟨𝑄2⟩ /2𝑅3

of term (22) with the abnormal quadrupole moment
of a hydrogen atom. In this case, as the dimension-
ality grows, the antisymmetric term becomes exclu-
sively repulsive (it remains attractive only in the 2𝐷
and 3𝐷 problems, if the space dimensionality is an
integer number). In turn, the results of three-particle
calculations according to Eq. (14) demonstrate that
symmetric states are absent for all masses 𝑚 only at
large space dimensionalities, when 𝑑 > 9, and the
bound state of an atomic hydrogen ion is absent at
𝑑 > 6. This follows from the presence of the centrifu-
gal barrier (𝑑− 3)(𝑑− 1)/4𝑅2, abnormal quadrupole
moment, and repulsion ⟨𝑄2⟩ /2𝑅3.

Note at last that the results of calculations for the
critical masses 𝑚crit(𝑠) of various states in the BO
approximation can be approximated by a square law,
depending on the number of a state (in the case of 3𝐷
problem, this was done in work [5]). In particular, for
the symmetric states,

𝑚crit(𝑠),𝑛 = 2.47(𝑛+ 1)2 − 3.3. (51)

This formula is much more exact than the approxima-
tion obtained from three-particle calculations [5], es-
pecially for high excited states. The general constant
at 𝑛2 in Eq. (51) is determined as the asymptotics of
the quasiclassical approximation

𝑚crit = (𝜋/𝐽)2𝑛(𝑛+ 1), (52)
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in which the quasiclassical integral (neglecting the
centripetal attraction)

𝐽 = 1.84785

and, accordingly,(︁𝜋
𝐽

)︁2
= 2.89

are determined only by the negative part of the term.
Similarly, for the antisymmetric critical states, we ob-
tain the approximation

𝑚crit(𝑠),𝑛 = 138.6𝑛(𝑛+ 1) + 51, (53)

and, from the quasiclassical approximation for anti-
symmetric states,(︁𝜋
𝐽

)︁2
= 129.845.

Note that the quasiclassical estimation for the asymp-
totics of energy levels in the 2𝐷 case is not well-
grounded. There are principal difficulties in the esti-
mation of quasiclassical integrals at both large and
short distances owing to the centripetal attraction
−1/(4𝑅2).

As a consequence of those approximations, it fol-
lows from the adiabatic approximation that there are
26 excited levels for a molecular hydrogen ion H+

2

(with the mass 𝑚 = 1836.152701) in the symmetric
state. In the antisymmetric state, the total number
of levels equals four.

6. Final Remarks

To summarize, we would like to note that the re-
searches carried out for three charged particles in the
framework of Born–Oppenheimer approximation al-
lowed us to establish a number of abnormal regular-
ities arising in the 2𝐷 space and the spaces of ar-
bitrary dimensionality. In the 2𝐷 space, the multi-
pole expansions for Coulomb potentials in a spheri-
cally symmetric field are nonzero. Also nonzero are
the quadrupole, octupole, and other multipole mo-
ments in the 𝑑-dimensional problems. In the 2𝐷 prob-
lem, the quadrupole moment of a hydrogen atom
is positive and generates an attractive asymptotics
∼−1/𝑅3 for the ground-state term, whereas, in the
3𝐷 problem, this contribution equals zero. As a re-
sult, it was found that a hydrogen atom in the 2𝐷
space is polarizable already in the first-order pertur-
bation theory. Expressions for higher multipole mo-
ments in spaces with arbitrary dimensionalities are

obtained and analyzed. The antisymmetric terms of
trions 𝑋𝑋𝑌 are attractive only in the 2𝐷 and 3𝐷
problems. Moreover, it is shown that there is a crit-
ical dimensionality value 𝑑crit = 3.337, and there
are no bound antisymmetric states in spaces with
𝑑 > 𝑑crit. The abnormal behavior of the asymptotics
for interaction potentials of the van der Waals type
between neutral hydrogen atoms in the 2𝐷 space is
demonstrated.

The convenient approximation formulas for 2𝐷
terms are proposed. In the framework of the Born–
Oppenheimer adiabatic approximation, the stabil-
ity diagrams for the 2𝐷 space are obtained, and
the main characteristic asymptotics for the stability
threshold curves for trions 𝑋𝑋𝑌 are plotted and an-
alyzed. They agree with the stability diagrams ob-
tained earlier in three-particle calculations.

The authors express their gratitude to
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dures.
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I.В. Сименог, В.В.Михнюк, Ю.М.Бiдасюк
ЕНЕРГЕТИЧНI ТЕРМИ ТА ДIАГРАМИ
СТАБIЛЬНОСТI ДЛЯ 2𝐷 ЗАДАЧI
ТРЬОХ ЗАРЯДЖЕНИХ ЧАСТИНОК

Р е з ю м е

Для двовимiрних кулонiвських систем типу симетричних
трiонiв 𝑋𝑋𝑌 у варiацiйному пiдходi отримано симетричний
та антисиметричний терми. Дано якiсне пояснення дiаграм

стабiльностi та певних аномалiй в 2𝐷 просторi на основi
адiабатичного наближення Борна–Опенгаймера. Виконано
аналiз отриманих для довiльної вимiрностi простору асим-
птотик енергетичних термiв на великих вiдстанях, i запро-
поновано апроксимацiйнi формули для 2𝐷 термiв. Встанов-
лено аномальну залежнiсть мультипольних моментiв вiд ви-
мiрностi простору у випадку сферично-симетричного поля.
Проведено кiлькiсне порiвняння основних результатiв для
2𝐷 i 3𝐷 задач двох кулонiвських центрiв.
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