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TWO-PARTICLE PHOTODISINTEGRATION OF 4He:
4He(𝛾, d)d, 4He(𝛾, p)T, 4He(𝛾, n)3HePACS 11.15.-q

Using a covariant diagram technique and the concept of a nucleus as an elementary particle, we
calculated the differential cross-sections for two-particle photodisintegration reactions of 4He.
The only functional parameter is the vertex structure function, which describes the “collapse”
of 4He nucleus and the nucleon remnants. The interaction of a real photon is determined by
the value of particles charge, since the electromagnetic (EM) form factors are calculated at the
photon point. The inseparability property of the electric charge from the particle mass allowed
us to match the energy-momentum and charge conservation laws in the interaction. Therefore,
the requirement of gauge symmetry is immediately satisfied. The covariant amplitude of the
process equals to the sum of pole diagrams and the regular part, which is added to fulfil the
EM current conservation requirement.
K e yw o r d s: gauge invariance, vertex function, photodisintegration of 4He, regular ampli-
tude.

1. Introduction

Quantum theory of gauge fields (QTGF) is a widely
recognized basis of the elementary particle physics.
QTGF is based on the thesis that all the known in-
teractions in the Nature are transferred by means of
gauge fields. The principle of gauge symmetry is one
of the most important heuristic principles. The con-
siderable success in understanding the properties of
electromagnetic and weak interactions was achieved
by using the gauge invariance principle. The imple-
mentation of this principle led to the modern elec-
troweak interaction theory.

Quantum electrodynamics (QED) as an important
part of QTGF was formed in order to describe elec-
tromagnetic (EM) interactions and those of charged
matter fields. The considerable breakthrough in the
description of EM interactions was achieved on the
basis of the following assumption 1: the interaction of
a gauge field with fundamental matter fields is of a
local nature.

However, the matter fields that form the nature
variety are of a nonlocal formation and are closely re-
lated to the strong interaction. Thus, there is the ad-
ditional uninvestigated interaction in EM processes,
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which forms a bounded state and, at the same time,
originates all difficulties in using the Lagrangian ap-
proach. A nonlocal nature of the strong interaction,
which appears in vertices that describe the disinte-
gration of a compound strongly coupled nuclear sys-
tem into constituents, does not allow us to “add”
properly 2 the EM field to the Lagrangian. As a re-
sult of this bewildering fact, a vast number of non-
relativistic approaches, which describe photonuclear
reactions, appeared. These traditional, quantum-me-
chanical approaches, which are aimed to consider a
nucleus structure and many-particle effects, result in
a gauge invariance violation. The problem of cre-
ation of the gauge-invariance theory that could de-
scribe the EM disintegration of atomic nuclei has not
been solved so far.

The approach that considers a possibility to con-
struct an analogous Lagrangian that can describe a
nonlocal and EM field interactions was proposed in
papers [1, 2]. It satisfies the universality principle.
The method is based on the theory of fiber spaces, in
which an electromagnetic field vector-potential pro-
vides a connection. Due to the fact that the elec-
tric charge cannot be separated from the mass and,

1 The assumption was assured by the universality property.
2 According to the standard QED approach.
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consequently, it is not an independent quantity, it is
necessary to consider additionally the movements in
the associated charge space, while describing the par-
ticles movement in the base space. As a result of
these operations, it was succeeded to harmonize the
4-momentum and charge conservation laws in the am-
plitude of processes. In papers [2, 3] with the use of
generalized Feynman rules, the mentioned approach
was applied to the description of the photodisintegra-
tion of a deuteron.

While applying this approach to the electromag-
netic and nonlocal interactions of the matter field,
it is essential to follow the requirement of a general
covariance and to consider dynamically the require-
ment of the gauge invariance. The only unknown pa-
rameter is the vertex, which describes the collapse of
strongly interacting particles. The dependence of the
vertex on the space-like four-momenta of fragments
allows us to keep the invariance of the approach irre-
spective of its explicit form.

Several points that are infusion into the theory by
the new approach or, to be more precise, by the reg-
ular (pole) part of the amplitude should be noted.

Momentum distributions of the components in var-
ious nonlocal fields of matter are individual and con-
tain information about the steady-state interactions
in a coupled system. They also reflect the space-time
evolution of a coupled system during the whole en-
ergy and structural ranges. The information about
the each nonlocal field is determined by the following
things: the decrement of the momentum distribution
function, its rate of change, and the nature of the
curve curvature (its convexity or concavity).

Another established property of the generalized,
gauge-invariant pole amplitude, which occurs inde-
pendently of the explicit form of a vertex function, is
related to the degree of its increase or decrease. The
relative sign between the pole and regular parts in the
amplitude is fixed by the total electromagnetic cur-
rent conservation requirement. If the vertex function
of the strong interaction is constant, then the regular
part of the amplitude turns to a zero. At the same
time, the pole part is determined by Yukawa asymp-
totic behavior 3. For a decreasing function, its deriva-
tive is negative. This fact changes the sign in the am-
plitude for the regular part, making the sign equal to
the sign of the pole part. In this case, the contribu-

3 A constant that is divided by the pole.

tion from the regular part to the total cross section
is constructive (a positive interference). In the case
where the vertex function increases with the argu-
ment, its derivative is positive, and the contribution
to the cross section is changed to the destructive one.

To sum up, the regular component of the gener-
alized pole amplitude is a dynamic measure of the
bound state nonlocality. It shows how “quickly” the
structural formations of the initial level of a matter
structure lose their identity upon the transition to the
other scale of the space-time localization.

The regular component of the amplitude introduces
an additional dependence on the vertex function in
the form of its derivative. It was established in [1]
that the contribution from the regular part to the
full amplitude for the electric dipole splitting at low
energies is determined by the derivative of a strong
interaction vertex. If the electric dipole transition
is absent (the case of the splitting into two identical
fragments), then the regular part contribution to the
total amplitude is determined by the second deriva-
tive of the strong interaction vertex.

The investigation of interaction processes between
EM fields and nuclei appears to be an important tech-
nique. It helps to solve the vast number of nuclear
and elementary particle physics issues. Namely: the
understanding of the role of different reaction mecha-
nisms, a revision of different nuclear models, obtain-
ing an information about the nucleon-nucleon inter-
action, the structural analysis of the wave functions of
nuclei, the understanding of the role of quark configu-
rations and non-nucleon degrees of freedom in nuclei,
etc. In the theoretical aspect, this method possesses
the significant advantage: using the constant of the
EM interaction, we can consider processes with the
bounds of perturbation theory.

Especially valuable results can be obtained by in-
vestigating EM interactions of few-nucleon systems.
The special place in nuclear physics belongs to these
systems for several reasons. Some of them are: the
relative simplicity of structures of such nuclei and the
possibility to find the precise solution to the tree- or
four-body problem. Applying the proposed theory,
we will consider the two-particle photodisintegration
of 4He. A good agreement of the results of theoret-
ical calculations and experimental measurements of
the differential and total cross sections for these re-
actions was obtained by using a minimum number of
parameters.
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2. Process 4He(𝛾,d)d

The 4He(𝛾,d)d process is characterized by the fact
that, because of the isospin selection and the identity
of particles in a final state, the electric dipole mo-
ment is suppressed, and the process realizes mostly
due to the quadrupole 𝛾-ray absorption. Therefore,
this channel is of a considerable interest to study the
nature of a quadrupole transition.

Data [4–10] provide information about the total
cross-section of the direct 4He(𝛾,d)d reaction. A part
of these data was obtained from experimental mea-
surements of the differential cross-sections of the re-
verse reaction 4.

The information about the reverse d(d, 𝛾)4He reac-
tion is more abundant. There are some data about
differential cross-sections [11, 12]. Furthermore, the
total energy dependence of cross-sections, in the as-
sumption of the explicit form of angular distributions,
was measured in [4, 7, 9, 13].

Theoretical calculations of the cross-sections of the
𝛾4He ↔ dd reaction had appeared long time before
experimental measurements [14] were done. The au-
thors used wave functions that were not eigenfunc-
tions of the Hamiltonian of the system and did not
produce the proper values of its general characteris-
tics 5. Thus, their calculations did not substantially
coincide with the experiment [4]. Further calcula-
tions were done to the extent of the traditional con-
sideration of the atomic nucleus as an interacting nu-
cleon system. This system was described by the wave
function that is the solution to the nonrelativistic
Schrödinger equation.

In [15], the calculations of Hulten’s and Yukawa’s
wave functions were used to describe the 4He ground
state and the deuteron, respectively. However, the
correct description of the cross-section form and its
maxima was not achieved, despite the fact that these
calculations correctly reproduced the binding energy
and the charge radius of a 4He nucleus.

A considerable improvement in the description of
the total cross-section of the 4He(𝛾,d)d process was
achieved in [16]. In that paper, Irving’s function was
used as the 4He nucleus wave function. The wave
function that describes a relative movement of two
deuterons was obtained by the total energy minimi-
sation of a (dd)-system [17].

4 Using the detailed balancing principle.
5 Such as a binding energy or charge radius.

In [18], the total cross-section calculations were
done under assumption that, at the energy of 𝐸𝛾 = 30
MeV, the appearance of the excited (2+) 4He state 6

is possible.
Erdas et al. [19] used the dispersion approach, in

which it was assumed that the matrix element of the
4He(𝛾,d)d process is known, if the phases of the elas-
tic (dd)-scattering are also known. These phases were
used as resonant (2+), with the solid sphere phases
addition. Gaussian-type functions were used to de-
scribe 4He nucleus and the ground state of a deuteron.
As a result, a quite good fit to the experiment was
achieved.

In the more recent papers [13, 20, 21], the impor-
tance of the D-wave for the d(d, 𝛾)4He reaction cross-
section formation and the influence of the D-wave
on a tensorial analyzing ability were discussed. The
wave function of a (dd)-system was obtained, by us-
ing the resonant group method and the Woods-Saxon
potential. The importance of the D-wave was sup-
ported by the introduction of a 𝜌-parameter equal
to the D/S ratio. As a result, a considerable influ-
ence of the D-wave on the total cross-section, in the
case of small energies, was revealed. However, the
disagreement between the theory and the experiment
appears in describing the total cross-section of the
d(d, 𝛾)4He process in the case where the deuteron
energy exceeds 4 MeV [13]. It was supposed that
this disagreement can be removed by the contribu-
tion of other transitions and the 2+ resonance ac-
counting.

There are some features of the mentioned theoret-
ical works that should be noted. Uppermost, they
are of a nonrelativistic nature in the case where the
matrix element is defined by the overlap integrals of
wave functions. As a result, a number of parame-
ters, which define the form of potentials, are added
to the theory. Consequently, the quantitative esti-
mations strongly depend on the structure of effects.
Moreover, these estimations are false on broader en-
ergy intervals. Nonrelativistic computations account
for this. Thus, the importance of nonrelativistic cor-
rections still be unresolved. In addition, all men-
tioned calculations were done without regard for the
gradient invariance requirement. This led to differ-
ent results for different choices of the EM field cali-
bration.

6 With the isotopic spin 𝑇 = 0.
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Fig. 1. 4He(𝛾, d)d process in the center-of-mass system
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Fig. 2. Set of diagrams for the 4He(𝛾, 𝑑)𝑑 reaction

That is why, nowadays, an unambiguous and con-
sistent theory that is able to describe all the data set
concerning the 4He(𝛾,d)d reaction is absent.

In our approach, the gradient-invariance require-
ment ensuring was assured by the other choice of
the reaction mechanism: the contact diagram sup-
plements the well-known field-theory row. This di-
agram involves many-particle effects, including the
EM interaction with the “strong interaction carriers”.
In addition, the constructed amplitude satisfies the
fundamental principle of the gradient-invariance ir-
respective of the explicit form of the disintegration
form-factors or of their number.

To describe the cross-section of the process
4He(𝛾,d)d, it is convenient to use spiral amplitudes,
which were obtained in a Cartesian coordinate sys-
tem, when the 𝛾-quantum momentum is directed
along 𝑧-axis and the first deuteron momenta is sit-
uated in the 𝑥𝑂𝑧 plane. First, we define the matrix

𝑅𝜆𝛾 ,𝜆′
𝛾
=
∑︁
{𝜆}

𝑀
𝜆𝛾

𝜆1,𝜆2
𝜌𝜆𝛾 ,𝜆′

𝛾
𝑀

*𝜆′
𝛾

𝜆1,𝜆2
, (1)

where 𝑀
𝜆𝛾

𝜆1,𝜆2
are spiral amplitudes of the 4He(𝛾,d)d

process, 𝜆𝛾 , 𝜆1, and 𝜆2 are helicities of a 𝛾-quantum
and the first and second deuterons, respectively, and
𝜌𝜆𝛾 ,𝜆′

𝛾
is the polarization density matrix of a 𝛾-

quantum.
The differential cross section of the 4He(𝛾,d)d pro-

cess in the case where a 𝛾-ray is polarized in an arbi-
trary way in the center-of-mass system (see Fig. 1) is

𝜕𝜎

𝜕Ω
=

1

2(8𝜋𝑊 )
2

|p|
|q|

Sp𝑅, (2)

where

𝑊 = 𝑞
0
+ 𝐸0 = 2𝐸.

Using Eq. (1) and the explicit form of a photon
polarization density matrix, we obtain

Sp𝑅 =
∑︁
𝜆1,𝜆2

𝑀1
𝜆1,𝜆2

𝑀1*
𝜆1,𝜆2

+ 2Re(𝑀1,1𝑀
*
−1,−1 +

+𝑀1,−1𝑀
*
−1,1−𝑀1,0𝑀

*
−1,0−𝑀0,1𝑀

*
0,−1+

1

2
|𝑀0,0|2).

In order to write down the amplitude of the process
4He(𝛾,d)d, we follow the approach described in [2]. In
that paper, the problem of ensuring the gradient in-
variance of the amplitude was solved by choosing the
following reaction mechanism: the contact diagram
was added to the known field-theoretic row. This di-
agram takes multiparticle effects into account, includ-
ing the electromagnetic interaction with the “carriers
of strong interaction". Rooting from this approach,
the amplitude, which satisfies the principles of the
relativistic and gradient invariances, was determined
by the sum of contact and pole diagrams, which are
shown in Fig. 2.

The matrix element pole part of these diagrams
is characterized by two electromagnetic vertices
(𝛾4He → 4He), (𝛾d → d) and the strong one –
(4He → dd). The explicit form of these vertices can
be obtained by the use of the Argonne [22] or Urbana
parametrization. To obtain these vertices within the
Urbana parametrization, we used data from [23]. The
following parametrization of the functions 𝐴00

𝑑𝑑 and
𝐴22

𝑑𝑑 is possible:

𝐴00
𝑑𝑑(|p|) = 𝑎1 + 𝑎2 * |p|+ 𝑎3 * |p|2+

+ 𝑎4 * |p|3 + 𝑎5 * |p|4,

𝐴22
𝑑𝑑(|p|) = 𝑏1 + 𝑏2 * |p|+ 𝑏3 * |p|2+

+ 𝑏4 * |p|3 + 𝑏5 * |p|4,

where the parameters 𝑎1 = 316.51, 𝑎2 = 0.48×
×10−3, 𝑎3 = −0.0138, 𝑎4 = 0.543 × 10−4, 𝑎5 =
= −6.21 × 10−8; 𝑏1 = −0.0272, 𝑏2 = 0.373 × 10−2,
𝑏3 = 0.117 × 10−3, 𝑏4 = −0.6847 × 10−6, 𝑏5 =
= 9.696× 10−10. Figure 3 shows the functions
𝐴00

𝑑𝑑(|p|), 𝐴22
𝑑𝑑(|p|), and 𝑁𝑑𝑑(|p|), where the solid lines

represent the approximation of real values that are
marked as dots.
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In view of the expressions for vertices [22], we esti-
mated the following matrix elements corresponding
to the pole 𝑠-, 𝑡-, and 𝑢-channel diagrams:

𝑀 (𝑠) = 𝑒𝜀𝜇(2𝑝+ 𝑞)𝜇
1

𝑠−𝑚2
He

𝑈*
𝜌 (𝑝1)𝑈

*𝜎(𝑝2)×

×𝐺𝜌
𝜎(𝑝; 𝑝1, 𝑝2),

𝑀 (𝑡) = 𝑒1𝜀𝜇𝐹
𝜇𝜌
𝛽 (𝑞, 𝑝′1, 𝑝1)

1

𝑡−𝑚2
𝑑

𝑈*
𝜌 (𝑝1)𝑈

*𝜎(𝑝2)×

×𝐺𝛽
𝜎(𝑝; 𝑝

′
1, 𝑝2),

𝑀 (𝑢) = 𝑒2𝜀𝜇𝐹
𝜇𝛽
𝜎 (𝑞, 𝑝′2, 𝑝2)

1

𝑢−𝑚2
𝑑

𝑈*
𝜌 (𝑝1)𝑈

*𝜎(𝑝2)×

×𝐺𝜌
𝛽(𝑝; 𝑝1, 𝑝

′
2),

where 𝑠 = (𝑞 + 𝑝)2, 𝑡 = (𝑝1 − 𝑞)2, 𝑢 = (𝑝2 − 𝑞)2

are the Mandelstam variables, 𝑚𝑑 and 𝑚He are the
deuteron and helium nucleus masses, respectively,
and 𝑝′ = 𝑝+ 𝑞.

The matrix element, which corresponds to the con-
tact diagram, is presented in the integral form:

𝑀 (𝑐) = 𝑒𝜀𝜇𝑈
*
𝜌 (𝑝1)𝑈

*𝜎(𝑝2)×

×

(︃ 1∫︁
0

𝑑𝜆

𝜆

𝜕

𝜕𝑞𝜇
𝑒1𝐺

𝜌
𝜎 (𝑝

′ − 𝑞𝜆; 𝑝1 − 𝑞𝜆, 𝑝2)+

+

1∫︁
0

𝑑𝜆

𝜆

𝜕

𝜕𝑞𝜇
𝑒2𝐺

𝜌
𝜎 (𝑝

′ − 𝑞𝜆; 𝑝1, 𝑝2 − 𝑞𝜆)

)︃
.

In the above-mentioned model, the full amplitude
of the process 4He(𝛾,d)d is determined by the follow-
ing sum: 𝑀 (𝑠) +𝑀 (𝑡) +𝑀 (𝑢) +𝑀 (𝑐). A differential
and total cross-sections were calculated by the sub-
stitution the full amplitude into Eq. (2).

Figure 4 shows the angular dependence of the dif-
ferential cross section of the process 4He(𝛾,d)d at
photon energies in the lab system 𝐸𝛾 = 40 MeV
in the case where a 𝛾-quantum is linearly polarized.
The qualitative description of the experimental angu-
lar distribution was obtained: the correct location of
the cross-section minimum at 𝜐 = 90∘ and maxima
at 𝜐 = 45∘, and 135∘.

The quadrupole transition can be investigated by
analyzing the differential cross-section at angles 𝜐 =
= 0∘, 90∘, and 180∘. The thorough study of the na-
ture of the dipole transition will be presented in the
following section.

3. 4He(𝛾,p)T and 4He(𝛾,n)3He Reactions

To estimate the differential cross-section of the pro-
cesses 4He(𝛾,N)T, where N is a nucleon (either p or
n) and T is either 3He or 3H, we have to write down
the corresponding matrix element. It equals

𝑀 = 𝑒𝜀𝜇�̄�(𝑁)
∑︁

𝑖 = 𝑠,𝑡,𝑢,𝑐

𝑀𝜇(𝑖)𝜈(𝑇 ), 𝜈(𝑇 ) = 𝐶�̄�𝑇 (𝑇 ),

Fig. 3. S-, D-waves, and the momentum distribution approx-
imation for the Urbana function

Fig. 4. 4He(𝛾, d)d differential cross section at 𝐸𝛾 = 40 MeV,
solid lines take the contact part into account, dash lines don’t
take the contact part into account, curves 1, 2 were calcu-
lated, by using the Argonne parametrization, curves 3, 4 were
calculated, by using the Urbana parametrization, and * – ex-
perimental data [24]
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Fig. 5. Energy dependence of a 𝐺-function

Fig. 6. Dependence of the differential cross section 4He(𝛾,p)T

(𝑎) and 4He(𝛾, n)3He (𝑏) on the photon energy at angles 𝜐 =

90∘. × – experimental data [25]

where:

𝑀𝜇(𝑠) = 𝑒
(𝑝+ 𝑝′)

𝜇

𝑠−𝑚2
He

𝐺(𝑠)𝛾5,

𝑀𝜇(𝑡) = 𝑗𝜇(𝑡)
(�̂� ′ +𝑚N)

𝑡−𝑚2
N

𝐺(𝑡)𝛾5,

𝑀𝜇(𝑢) = 𝐺(𝑡)𝛾5
(𝑇 ′ −𝑚T)

𝑢−𝑚2
T

𝑗𝜇(𝑢),

𝑀𝜇(𝑐) =

1∫︁
0

𝑑𝜆

𝜆

𝜕

𝜕𝑞𝜇
{𝑧N𝐺[−𝑘2𝑠𝑡] + 𝑧T𝐺[−𝑘2𝑠𝑢]}𝛾5,

q,p,N, and T are 4-momenta of a 𝛾-quantum, 4He, a
nucleon, and a nucleus T, respectively. Electromag-
netic currents were defined in a standard way: 𝑗𝜇(𝑡) =
= (𝑧N+ 𝑘N𝑘)𝛾

𝜇, 𝑗𝜇(𝑢) = (𝑧T+ 𝑘T𝑘)𝛾
𝜇, where 𝑧N(𝑧T)

and 𝑘N(𝑘T) are the charge and the anomalous mag-
netic moment of a particle 𝑁(𝑇 ); 𝑧H is the charge
of 4He.

The relative four-momenta that characterize the
vertex 4He → NT in the pole diagrams are as follows:

𝑘𝑠 = 𝑁 − (𝑁𝑝′)

𝑝′2
𝑝′ =

(𝑇𝑝′)

𝐻 ′2
𝑝′ − 𝑇,

𝑘𝑡 = 𝑘𝑠 −
(𝑇𝑝′)

𝑝′2
𝑞, 𝑘𝑢 = 𝑘𝑠 +

(𝑁𝑝′)

𝑝′2
𝑞.

The quantities 𝑘𝑠𝑡(𝜆) and 𝑘𝑠𝑢(𝜆) are defined as

𝑘𝑠𝑡(𝜆) = 𝑘𝑠 − 𝜆
(𝑇𝑝′)

𝑝′2
𝑞, 𝑘𝑠𝑢(𝜆) = 𝑘𝑠 + 𝜆

(𝑁𝑝′)

𝑝′2
𝑞.

The vertex functions 𝐺(𝑖) ≡ 𝐺(−𝑘2𝑖 ), (𝑖 = 𝑠, 𝑡, 𝑢)
depend on the appropriate four-momentum. They
describe the virtual collapse of 4He into NT and, due
to the relativistic invariance, depend on the square of
the relative four-momentum.

It is also should be noted that, in the case where
𝐺(𝑠) = 𝐺(𝑡) = 𝐺(𝑢) = const, we have 𝑀𝜇(𝑐) = 0.
Therefore, the sum of pole diagrams is a gauge-
invariant quantity.

We parametrize our vertex function on the basis of
work [23]. This step allows us to determine all neces-
sary quantities. Figure 5 shows the parametrization
of 𝐺 as a function of the relative momentum of frag-
ments.

As soon as all quantities were defined, we made cal-
culations and compared them with experimental data
without changing any previously fixed variables. Fig-
ure 6 shows the dependence of the differential cross-
section 4He(𝛾,N)T on the photon energy at the angle
𝜐 = 90∘(𝐸 is a photon energy in the lab system). The
obtained data fits well experimental ones. According
to the results, the standard row of pole amplitudes
should be supplemented with an additional mecha-
nism, namely the regular part of the amplitude, to
better describe the processes under study. Practically
at all photon energies, the regular part is essential.

Figure 7 presents six pairs of the angular spectra
at fixed energies. The experimental angular distribu-
tions are well described by this model in any consid-
ered energy interval.

In Fig. 8, the solid line indicates the dependence of
the total cross sections for the reactions 4He(𝛾,N)T
on the photon energy in the interval from 20 to 44
MeV taking all the diagrams into consideration. The
dash-dotted and dotted lines describe the account
for pole diagrams and the regular one, respectively.
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Fig. 7. Angular dependence of the differential cross sections for the reactions 4He(𝛾, p)T (𝑎) and
4He(𝛾, n)3He (𝑏) in the energy interval from 𝐸𝛾 = 22.5 to 75.0 MeV. × – experimental data [25]

Fig. 8. Dependence of the total cross sections for the reactions 4He(𝛾, p)T (𝑎) and
4He(𝛾, n)3He (𝑏) on the photon energy in the interval from 20 to 44 MeV. Experimental
data are from [26]

It is evident that the required agreement with ex-
perimental data can be achieved only if we consider
both inputs. Accounting only the pole diagrams does
not provide an adequate description of experimental
data.

4. Conclusion

We have attained the high-quality theoretical descrip-
tion of the two-particle photodisintegration processes
of He-4, using a minimal number of parameters. The
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performed calculations and comparisons with exper-
imental results have shown that a generalization of
the Feynman rules for the description of photonuclear
processes works well. The alternative approach to
the theory describing the electromagnetic processes
in compound systems allowed us to reproduce the
results without any problems. The special role was
given to the construction of the regular part of the
amplitude, which determines the gauge-closed matrix
element. This means that the structure of the ma-
trix element has been adapted to the description of
various processes. These elements satisfy the require-
ments of covariance and the fundamental requirement
of gauge symmetry.

We would like to express our sincere gratitude to
Dr. S.S. Ratkevich and Mr. M. Dubovoy for their
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ДВОЧАСТИНКОВЕ ФОТОРОЗЩЕПЛЕННЯ 4He:
4He(𝛾, d)d, 4He(𝛾, p)T, 4He(𝛾, n)3He

Р е з ю м е

Пiдраховано диференцiальний перетин реакцiй двочастин-
кового фоторозщеплення 4He, використовуючи коварiантну
дiаграмну технiку та концепцiю ядра як елементарної ча-
стинки. Єдиним функцiональним параметром була стру-
ктурна вершинна функцiя, яка описує “колапс” ядра 4He
на нуклони-залишки. Взаємодiя реальних фотонiв визна-
чалась значенням зарядiв частинок, в той час як електро-
магнiтнi форм-фактори було пiдраховано у фотонних то-
чках. Закони збереження енергiї-iмпульсу та заряду протя-
гом взаємодiї було виконано за рахунок властивостi невiд-
дiльностi електричного заряду вiд маси елементарної ча-
стинки. Таким чином, вимога калiбрувальної симетрiї ви-
конувалась автоматично. Коварiантна амплiтуда процесу
дорiвнювала сумi полюсних дiаграм та регулярної части-
ни, яку було додано щоб задовольнити вимогу збереження
електромагнiтного току.
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