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OF THE HARMONIC OSCILLATOR PROPAGATOR

We find the possibility of a non-perturbative anharmonic correction to Mehler’s formula for the
propagator of a harmonic oscillator. The conditional Wiener measure functional integral with
a fourth-order term in the exponent is evaluated using a method alternative to the conventional
perturbative approach. In contrast to the conventional perturbation theory, we expand the term

linear in the integration variable in the exponent into a power series.

The case where the

starting point of the propagator is zero is discussed. The results are presented in analytical
form for positive and negative frequencies.
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1. Introduction

As to the definition of a Wiener path integral, there
are essentially two approaches:

— to define the path integral via a finite-dimensional
approximation. Then the path integral is an appro-
priate continuum limit, when the number of time
slices goes to infinity;

— to define the Wiener measure in the frame of the
axiomatic probabilistic measure theory as a Gauss-
type measure on the set of trajectories.

Quantum theory is rather pointed toward the inte-
gration method, when it comes to deal with the condi-
tional Wiener measure. We would like to use the path
integral formalism to obtain the non-perturbative an-
alytical description of an anharmonic oscillator in
quantum mechanics or possibly to describe quantum
field theory systems in this way. In the quantum the-
ory with imaginary time, we see the formal connec-
tion with the path integral formalism for the Brown-
ian motion. The main difference between the classi-
cal description of the Brownian motion as a random
process and the quantum description of the particle
motion via a path integral inheres in the interpreta-
tion of results. In classical physics, we interpret the
results of the path integral as a probability of the dis-
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placement of a particle from position ¢ to position f.
In quantum theory, we evaluate the amplitude of a
propagation of the particle by a path integral, and
this should not be confused with the statistical prob-
ability of the underlying Brownian motion.

The transition probability for a Brownian particle
under an external harmonic oscillator force is given
by Mehler’s formula

i 1/2
Wiz, tiyay,ty) = (%Slnh(u)) -
k(z} +2%)  kaay
— : 1
X eXp{ + sinh(v) W

2 tanh(v)
This formula was derived by F. Mehler (1866) who
investigated the diffusion equation in the presence of
a harmonic oscillator force, i.e. with the unit mass
harmonic oscillator Hamiltonian (see [1])

1 1
H=—§A+§k2x27 v=Fk(ty —m) (2)

on the right-hand side of the diffusion equation. The
same result was derived for the probability of a
stochastic movement of a Brownian particle in an ex-
ternal harmonic potential using the conditional mea-
sure Wiener path integral methods (see, e.g., Hille [2],
Doob [3]). Alternatively, Eq. (1) can be obtained also
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as the propagator of a harmonic oscillator in quantum
mechanics (i.e., with 7 replaced by it). R. Feynman
obtained it in 1948 within his path integral approach
to quantum mechanics (see [4] and [5]).

R. Feynman expressed the quantum mechanical
transition amplitude for a general potential V(z) as
a path integral of the following form:

/ ﬁ da(t)
all paths T=ti Y %ﬂhdt
. tf
/ dt <1mx2 - V(x)) . (3)
t

i

X exp

Later, M. Kac rigorously justified the imaginary time
analog of a Feynman path integral (see [6, 7]) for a
broad class of potentials V(z). The imaginary time
propagator can be represented by a conditional mea-
sure Wiener path integral defined by the continuum
limit of time-sliced finite-dimensional integrals.

The path integral approach is frequently used in
quantum mechanics and quantum field theory, since it
provides a way to efficiently derive/incorporate stan-
dard perturbative expansions and even indicates steps
beyond perturbative methods (see, e.g., [8], [9], [10]).
However, there are few path integrals that allow the
explicit evaluation. Such are, for example, the sys-
tems of harmonic oscillators and the free (relativistic
or Euclidean) fields. The corresponding transition
probabilities/amplitudes represent multidimensional
generalizations of Mehler’s formula.

Our aim is to evaluate the transition probability
for the motion of a Brownian particle in a quartic
anharmonic external potential given by a conditional
measure Wiener integral. In the quantum mechan-
ical formalism with imaginary time, such a system
corresponds to a symmetric anharmonic oscillator.
There are various approximative or numerical esti-
mates of various quantities, e.g., the eigenenergies of
systems, that go beyond standard perturbative meth-
ods. However, to our best knowledge, there is little
known directly about the anharmonic oscillator tran-
sition probability (propagator).

Our ambition in this article is pointed toward a
non-perturbative correction to the Mehler’s formula
for a harmonic oscillator. To simplify the evalua-
tions, we fixed the start point of the propagator to
zero. The evaluation of the N dimensional integral
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is given in Section 2, where we present the precise
result expressed in the form of the parabolic cylinder
functions, but we have still N — 1 fold summations
in Eq. (12) as a consequence of Taylor’s expansions
during the evaluation. These summations are the
only point in our calculations, where some approx-
imation appears. The procedure used to deal with
such summations is described in Section 2; the result
is Eq. (16). In Section 3, we evaluate the contin-
uum limit of the N-dimensional integral. The final
formula for the conditional Wiener measure path in-
tegral with a term of the fourth order in the exponent
(see Eq. (16)) is a product of the Mehler’s formula
for a harmonic oscillator (17) with fixed start point
to be zero and the anharmonic correction to this for-
mula (21). Our result, in contrast to the conventional
perturbative approach, describes the propagator for
an anharmonic oscillator for the positive or negative
frequency (in our model, the parameter b). In Section
4, we show the evaluation of a non-perturbative cor-
rection to the exponential factor of Mehler’s formula
for a harmonic oscillator.

2. Evaluation of the Path Integral

Below, we shall present the non-perturbative evalu-
ation of a conditional measure Wiener path integral
with quartic addition to the harmonic oscillator po-
tential. There is no reason to assume that this anhar-
monicity is small. Let us briefly describe the idea of
the evaluation of a finite-dimensional integral, which
was explained in our previous article [11] in detail.

Let us first consider the one-dimensional integral
with the fourth order term in the exponent, which is
going to appear frequently:

+oo
J(a,b,c) = / dzexp {—(az* + ba®r + cz) }, (4)

—0oQ

where Re a > 0. This integral is not given by a (sim-
ple) formula. The standard perturbation approach
corresponds to the expansion in powers of a:

=3 auar, @u= G (7))

o (OWi m (Y ©
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The behavior of @, for large n indicates that (5)
represents just a singular power expansion with zero
radius of convergence (which is, in fact, Borel-
summable). However, J(a,b,c) is an entire function
for any complex values of b and ¢, since there exist
all integrals

ORO I (a,b,¢) =

+oo
= (=1)tm / dz 2*™ " exp{—(az* + bz® + cx)}.

—00

As a result, the power expansions of J(a,b,c) in ¢
and/or b have an infinite radius of convergence. Con-
sequently, they are uniformly convergent on any com-
pact set of values of ¢ and/or b. The power expansion
in cis

“+o0

J(a,b,c) = Z (_C')n / dx " exp{—(az* + ba?)}.

n!

n=0 s

(6)

For n odd, integrals (6) are zero. For n even (n =
= 2m), the integrals can be expressed in terms of the
parabolic cylinder function D,(z), v = —m — 1/2,
(see, e.g., [12,13]):

This sum is convergent for any values of ¢, b, and
a> 0.

Using the expansions based on (7), we are going to
evaluate the conditional Wiener measure path inte-
gral defined as (see [9, 10]):

1N=/WﬂﬂewFEM% (s)
where

Elyp] = /BdT [0/2 ((‘3(257’))2_ bo(T)* + aap(7)4]. 9)

In the conditional Wiener measure path integral,
the values ¢(0) = z; and ¢(f) = zy are fixed by
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definition. The path integral (8) can be defined as the
limit of time-sliced finite dimensional integrals [9]:

N ooy
Wy = [ —2 /Hd-ex (—En) (10)
N PLTAN i i P N
with
N o 2
Ex=Y_A [c/z <‘P‘A¢H> 1o tapt| (11
i=1

representing the standard time-slice discretization of
E[y]. The conditional Wiener measure path integral
is defined by the limit:

= li .
44 Ngnoo WN

To simplify the evaluation, we fix the initial point
©(0) = x; = 0. Performing successively all one-
dimensional integrals in (10), we are dealing with in-
tegrals of the form (6) all the time. The evaluation
of the N — 1-dimensional integral (10) is described in
details in the long version of this article [14]. The
result reads

—N-+1

—1/2 9
= (22) 7 |y (4 2)]

X F(kifl + ki + 1/2)Dk11k11/2(2)} x
—kn—
(1 + bA,Q) o c kn—1
N7 (E2
T (k) (A @N) .

XD(kn—2+kn-1+1/2)D gy, gy, -1/2(2) X

X exp {—aAgo‘}V - (22 + bA) cp?v}

Here, a,b,¢,on = x5, N = B/N are constants of the
model, the variable z is defined as

c (1 + b%2>

V2aA3

(12)

z =
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and the functions D_,_;/5(z) are related to the
parabolic cylinder functions D_,_/5(2) by the re-
lation

22
D—V—l/Q(z) = ZV+1/2 exp {4}D_y_1/2(2).

The result in Eq. (12) is an exact expression; we have
not used any approximation in the evaluation. As we
have shown in [11], the multiple sums are uniformly
convergent.

Our aim is to separate the multiple summations
over k; into the leading term and the remainder dis-
appearing in the continuum limit A — 0, when
z ~ A73/2 The individual summation over given k;
in product (12) is

oo 14 b2 ¢
> {((ngr(k“ + ki 4+1/2) x
ki=0 v

X D,ki_l,ki,l/Q(z)F“?i + ki1 + 1/2) X

x D_ki_ki+1—1/2(z)}' (13)

We shall divide this sum into the leading part and
the remainder:

S ()
i=0 kim0
X F(ka + ki+1 + 2] + 1/2) X

XD_p,_—k,—1/2(2) + R(T, Ko).

To manage this task, we introduce the first and the
only one approximation in our calculation, when one
of the parabolic cylinder functions is replaced by the
asymptotic Poincaré-type expansion (see [15], [16])
of the parabolic cylinder functions valid for a finite
index and a large argument z:

D_,_1y2(2) = ZV+1/2622/4D7U71/2(Z) =

J
(v+1/2),.
o J( / )}2] + Ej(l/, Z),

ey .

§=0
where €7 (v, z) is the remainder of the Poincaré-type
expansion. Here, (V) =v(v+1)...(v + k — 1) is the
Pochhammer symbol. This asymptotic expansion is
particularly useful in the continuum limit A — 0,
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when 2z ~ A~%2, and the functions D_,_1/2(2) —
1. The first term in (14) contributes to the leading
part of (13), whereas the second part generates the
remainder. The k; summations of the leading part
can be performed using the Taylor expansion formula
for parabolic cylinder functions [13], which takes the
form

2/ax- (W o—t)?
e /4 Z WtkD_y_k(z) =e@/AD_ (x —1t).
k=0

(15)

The estimate of the remainder part of (12) can be
found in [11]. The detailed evaluation and discussion
of the summation over indices k; for the conditional
Wiener measure path integral can be found in [14],
where the following expression has been given for the
leading term of the N — 1-dimensional integral (12):

leading 1
Wy = X

(2”A) ]_Vlj; 2uw;(1 4+ bA2/c)

C

X exp {aAga‘}V - (QCA + bA) o + §} X
2v

J
<X (1 S 2 ©F (V-1
v=0 p=0

The new symbols ¢ and w; are defined as

(16)

__1 ¢ 2
v an iy o)

c

and the expression (N — 1)12)'/ is defined by the recur-
rence relation in Appendix A.

3. Path Integral as the Continuum
Limit of the N — 1-Dimensional Integral.

The evaluation of Wy was the target of the preceding
sections, where we have found relation (16) for the
leading term of an N — 1-dimensional integral. In
this section, we will discuss its continuum limit. The
continuum limit of the first line in (16) is evaluated
in Appendices B and C, giving the result

1
lim X

e ¢ (27; ) Ilvl_qoz 2w (1 + bA2/c)
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X exp {—aAgoZ}V - (M + bA) N+ 5} =

\/m exp {f— coth (v8)¢ }

= /2b/c.

(17)

Formula (17) represents Mehler’s formula for the
imaginary time [9], [10] for the propagator of a har-
monic oscillator with starting point zero and end
point . The anharmonic content of the oscilla-
tor is stored in the continuum limit of the second
line in (16):

J 2v

>V sy X € (V=17

v=0 p=0

(18)

where the variable z was defined in the previous sec-
tion as

c (1 + %)
V2aA3

We see that z diverges as A~3/2 in the continuum
limit A — 0. We rewrite Eq. (18) into the form

J 2v
>V (Ag”Z © (v —1>§”>~

v=0 p=0
(19)
The term (222A3)" is finite in the continuum limit;
and we are interested in the continuum limit of

2v

AT (N =1)5 .

p=0

(20)

The detailed evaluation of the above expression is
done in [14]; here, we summarize the final result only.

The anharmonic correction to Mehler’s formula de-
fined in Eq. (19) in the continuum limit reads

J 2v P 1 ) 2v—p
2, 0" 2 1, (@ms) >

X Z HE(mj’j7pj)l’m1,...,mu(0)7

{my,...omy} j=1
mi4...4my=p

(21)
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where

Iml yeesMy

B B B
T)Z/d7'1 /dTQ... / dr, x

x d"™ (711)d™? (12)...d™ (1) Q4(Ty)...Q4(Tg) Q4(7'1).

(22)
The multiple summations in (21) are meant to be over
all sets of indices 0 < m; < 4 satisfying the condition
m1 + ... + m, = p. The dependence of X(mj, 7, p;)
(where p; = p — my — ... —m;) on the values m; is
given in the Table 1.

Equation (21) is the key formula. For any given
J, it gives the anharmonic correction as a finite sum.
The integrals I, . m,(7) are analyzed in the next
section, where we derive various recurrence relations
that allow us to analyze anharmonic corrections suc-
cessively in the parameter p. The symbols d(7) and
Q(r), following the definitions in Appendices, read:

d(r) = % (coth(y7) — coth(v5)),

2b

v=1/=-
C

Q(7) = 2sinh(y7),

4. Analysis
of the Anharmonic Correction

In this section, we will show the evidence that the an-
harmonic corrections in (21) give a non-perturbative
contribution to Mehler’s formula for the propagator
of a harmonic oscillator. In order to extract as much
information as possible, we interchange the order of
finite summations in Eq. (21):

Yoy Y

v=0 p=0 p=0, Lp+1

Table 1. Values of X(mj, j, p;j) for m;

m; %(mj, J,pj)

0 @ —34)—pj +1/2)2W —j) —pj +3/2)

1 42(v —j) —p; +1/2)(2(v — j) — p; +3/4)

2 | 6(2(w—3)—p;)(2(v—j)—p; —1)+9(2(v—7j) —p;) +3/4
3 42(v —j) —p; — /92w —5) — pj)

4 2w —J)—p; — D@ —Jj) —p;)

183



J. Bohdadcik, P. Augustin, P. Pre3najder

For finite p and v high enough, the product

H E(mi, i,pi)
i=1

in Eq.(21) contains many terms with m; = 0.
Let mj # 0, my # 0, and m; =0 for j <i < k. As
a result, p; = px. Then the product in question is

j—1
T(k,j,pr) = [ Qv =) —pe+1/2) x
i=k+1
| PR — k) — e+ 1/2)
X (2w —1)—pr+3/2) = - .
B =0 =3 = hah ) et 5/2)
Here, we have used the identity
\/7
P(@)(z+1/2) = 5201 I'(2z).
Let mj, # 0 for j; = j1,...,ju. Then

Hz(miaiapi) = H(O7j17p)z(mj1aj1apj1) X

X H(jl,jg,pjl)...z(mj}”j‘u,O)H(j#, v+ 1,0)

This expression can be rewritten in the form

H E(mi, i, pi) = I —pt1/2)
=1

I(1/2)
T ey i) -
A
. F(Q(I;/(Q(?u; J'u;;j/j)w 2 =m0 3:0)- - (23)

Table 2. Dependence
of the algebraic factor on mj,

mj, | F(ik, Mgy, Py )
1| 42(v = j&) — pj, +3/4)
2 | 6(20—n)—psy +1/4+i/4) (v — i) —ps, +1/4—i/4)

42(v—3r) —pj), ) 2(v—3k) —pj), —1/2) (2(v —j&) —

’ —pj, —1/4)
4 | W =3k) =pi )20 = jk) = pj, — D@ —jk) =
i — 1/2) 2 — jk) — pj, —3/2)
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We can rewrite expression (23) as a product of alge-
braic factors, which depend on all m; # 0 :

F(ji»mjiﬂpji) =

F(2(V_Ji) — Pj; — My +5/2) s
In the above definition, the identity p;,
has been used.

With this definition, we can rewrite Eq.(23) in
terms of nonzero m;:

i=1

The dependence of the values of algebraic factor
F(ji,mj,,pj;) on the values of m;, # 0 is summa-
rized in Table 2

We stress the important interesting characteristics
of integrals in the form (21):

= DPjs_1 — My,

(1/2)2V—PHF(jiamjmpji)' (25)

=1

B B
Iml,...,mn(T) :/dﬁ/d'rg...
s T g
. / ATn Iy (T1) <o I, () (26)

Putting 7 = 0 and J,(7) = d*(7)Q*(7), the connec-
tion to integrals in Eq. (21) is evident. The crucial
feature is the identity

Top(T) + Iy o(7) = I (7) I (7). (27)
In the second term, we change the order of inte-

grations and then rename the integration variables
Ty

Imm+adﬂ—fmi@h@%@+

o o favnirnio= o founcano
[ /dm -] /ﬂdmw i) =
= Lo () Ip(7).
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Various identities related to the products of such
integrals can be proven using (27) such as, for in-
stance,

Iml,. Mnp—1 + Im,l,m,mg,...,mn_l +

..,mn_ljm = Im,ml,...,

Mp—1,M"

SRR N Y O

We obtain n terms with n indices each as a result
of the product of an integral with one index m and
another integral with n — 1 indices my,ma, ..., My_1.
The index m takes successively all the positions in
the string of n indices, the indices m; don’t permute
among themselves.

In order to evaluate the anharmonic correction in
(21), we consider such a product of integrals, where
one of the integrals has n indices of the same value.
A well-known identity is obtained by induction:

In
Topa(r) = 200 (28)
The application of (27) gives
Io(T) o, . a(T) =D Ta,. . a0a..4(T) (29)
\.\: i

The subscript j in « indicates the position of
the index « among the indices of the integrals
I,..a,0;,a,....a- In order to evaluate (21), we need

Ia,ﬂ(T)I a,u.,a(’r) =
——

n—2

n—1

- n
= Ia,...,a aj,a,...,a,Bk a,...,a(T)~
Qs )
j=1 k=j+1

n

(30)

We will have to deal with the case where 8 = a, then
the integrals Ia,..‘7a7aj7a,...,a(7—) in the above expres-

n
sion are independent of the summation index k, and
we obtain

Ia,a(T)I a,.,.,a(T) -

n—2

E n-— j a,aj,a,

— \—/—7’

(31)
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We have expanded the summation over the index j
up to n by adding the zero term for j = n. The eval-
uations of some other useful relations are given in
Appendix D.

Applying this new notation to the anharmonic cor-
rection (21), we have

S r 3 o g
v= [P+1]
x Yy HF Jis M, ps;) X
{my,.mu}
mjl+...+mj#_p
X 10,...0,mj; ,0,,0,m5,0,0,0,m5, 0,...,0(0)- (32)
v
Here
P
Xy =
Q*(B)

has been introduced to simplify the formulas.
Let us analyze this result. We can see that, for
p = 0, the contribution to (21) can be written as

—a)’ 2v I(l)/(o) ~ ex aIO(O)SON
S (~a)" (Xn) p{ o } (33)

For sufficiently large J, the contribution of the terms
with v > 7,

0o apd Io(0)
O N
> (—a) (Xn)? OV(' ) < ?}B') L0<6<1,
v=J+1 ’ )

can be neglected with a sufficient precision preserved.
The contribution for p = 1 can be expressed as

(—a)” (Xn)™" x

M

v=1
X F(j1,1,0)I0,..0,1,,0,..0(0). (34)
Ji=1
Inserting F'(j1,1,0) from Table 2, we get
J 2w—2
(—aXn) Y (—a)" ™" (Xn)™ " x
v=1
X Z (v—41) +3) 0,01, 0..00). (35)
Jj1=1 M
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exp. factor (38)
S
T

v

10 20

N

-40 -30
b

The b dependence of the exponential part of Mehler’s formula
for the anharmonic oscillator (40), when the model parameters
are fixed as f=c=1, a =2

Following Eqgs. (29),(31), we have

J
ClXN Z
v=1

2u—2
X

Il/ 2(0)
x (811,0(0) (fj )i
~ ox alo(0)ph
~ p{ Q%) }X

X {—3(1 (XN) I (O) + 8a? (XN)3 11’0(0)}.

+30,(0)

fl )

(36)

As to the contribution for p = 2, we must take
into account that it is divided into two parts, one for
the case where one m; = 2 and another where two
m; = 1, and m;, = 1 are nonzero. We have

J

D o(—a)” (Xn)* 7 x

X { Z F(j1,2,0)I 0,02, 0.
—

Jji=1

530>

J1=1j2=71+11

j17171 (]2)170)><

x Io,...,o,ljl,0,,..,0,13-2,o,n.,O(O)}-

v

186

In the spirit of the previous calculations, the contri-
bution to the anharmonicity correction for p = 2 is
obtained as

oS} b

% (30L5,0(0) + 2111 1 (0)) (XN)2> +(—a)®x

I(0) + (—a)*x

X (4815,0.0(0) + 14414 1 0(0) + 2411 01 (0)) (Xn)* +

+ 64(=a)* (11,0,10(0) + 211,100(0)) (1)} (38)

Calculations can be extended to any value of p.
The common characteristic of all calculations is the
universal non-perturbative exponential correction to
Mehler’s formula given by the exponential factor

{2525,

where

1o(0)
Q*(B)

+ cosh® () sinh(y8) + cosh(v3) sinh®(y3)}/

= {378 — 4 cosh(yB) sinh(vf)+

/{8ysinh*(v8)}. (39)

The second factor, given in braces in Eq. (38), i
p-dependent and is represented for any p as a poly-
nomial of degree 2p in the variable —a.

5. Conclusions

We present an analytical method of evaluation of the
conditional Wiener measure path integral with the
fourth-order term in the action. In contrast to the
methods used in the conventional perturbative ap-
proach, the linear part of the kinetic term of the ac-
tion is expanded. We obtain the analytical results
representing the anharmonic correction to Mehler’s
formula for the propagator of a harmonic oscillator.
The most vital parts of this article are related to
the recurrence relations in Section IV leading to the
exponential correction in (40). The universal non-
perturbative exponential correction to the exponent
of Mehler’s formula is the most important result. For
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the anharmonic oscillator, the exponential factor can

be written as
. IO(O) 4 }
QBN

In Figure, the dependence of the exponential term
(40) on the parameter b is shown (for positive and
negative values). The remaining anharmonic correc-
tions come from polynomials of order 2p in the vari-
able a that multiply the exponential factor in (36)
and (38). The corrections for p = 0,1,2 are pre-
sented in detail. Of course, the same can be done
systematically for any p. An interesting feature is
the information given by Eq. (40), when the fre-
quency is negative (this can occur for b < 0.). The
exponential factor in Eq. (40) approaches —oo, when
vB = B+/2b/c — ikw. This means that the propaga-
tor for this particular b, 8 vanishes, and the particle
is frozen at the origin x; = 0, because it cannot prop-
agate to any other point of the space.

em{”mwm% (40)

2

APPENDIX A
Evaluation of the Wy by the recurrent
summation over k; indices

This Appendix is a short version of a more detailed evalua-
tion given in [14]. Let us begin with Eq. (16), which can be

rewritten as
—N+1
bAZ2
2(1+ — X
c

Wi = (%)_1/2
o1 —2k;
x J\i:f { i M(ki—l +1/2)k,; %

k;!

o s
2 (kn—1)! 1/2kn—1 x

kN—1=0

XDkilkil/Z(Z)}

kN -1
C
X (Z(p?\’) (hN—2+1/2)kpy 1Dy _g—kn_1—1/2(2) X

X exp {—aAgo‘}V - (ﬁ + bA) }

The summation relation for the parabolic cylinder function
is needed now, see [13]:

ex2/4i( ) tkD7V k( )

!
k=0 kt

(A1)

e(w—t)2/4

D_y(z —t). (A2)

As to the functions D_,_(z), the above formula leads to

> ki, ) - (-

=0 r —xt
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)V D_,(z — at). (A3)

The direct use of this identity in Eq. (A1) is not possible,
because each function D_, _g(z) has, in fact, two summation
indices. So, we have to evaluate the sum

L g k)™
s

XD_g, —1/2(2) (k1 +1/2) (k) D—ky —kp—1/2(2)- (Ad)
In our previous article [11], it has been shown that the sum in
Eq. (A4) is uniformly convergent. Therefore, we can approxi-
mate the infinite sum up to the desired precision by replacing
it by a finite one. It is of importance that, in a finite sum of the
type Eq.(A4), we can benefit from the Poincaré-type expansion
of the parabolic cylinder function, which means

2/4
Zk1+1/2ez / D—k1—1/2(z) _

(k)1 X

D—k1—1/2(z) =

72 _ )] k1+1/2)2j +e
z2)J
In the last relatlon, J denotes the number of terms of the
asymptotic expansion taken into account, while e7(k1,2) is
the remainder. We have discussed the problem of this remain-
der in our previous paper [11], where we have shown that it
converges to zero more rapidly than 1/N. This means that all
the contributions to the summations over indices k; containing
such remainder, or products of such remainders, disappear in
the continuum limit. Our evaluations and estimates concern-
ing the upper limit of this remainder follow from works [17]
and [16] dealing with estimates of the upper bounds of remain-
ders of the Poincaré-type expansions of the parabolic cylinder

7 (k1 2). (A5)

functions.

When the Poincaré-type asymptotic expansion is applied to
the function D_j, _1/5 (2), then the following holds for the
leading term (i.e. without the remainder) of the finite sum,
which approximates the infinite one in Eq. (A4):

g ke

2(1+#) k1 =0 k!

X

« i(fl)j (k1+1/2)2;

2V ey (A6)

(1/2) kot D—jy—kp—1/2(2)-

1 J 1

Z(_I)J j!(2z2)7 x

Swapping the order of the summations leads to
2
+ bA )

2
—2k
Bl e >] 1
k1=0
X(1/2)k2+k1D—k17k2—1/2(z)~ (A7)
In the previous paper [11], the following relation has been

—

(k1 +1/2)25x

proven:
min (2j,k1) ]
(k1 +1/2)2; = ;0 a?%. (A8)
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The coefficients a?j are given by

i _ J (1/2)3' Al
) — L 9
=0, (49)
Inserting these relations into Eq. (A7), we get
Ly DI
- - 7
J1(222)7
2 (1 + bf) i=o (22
2k
M
X [ ( >] (1/2) kg 41y Py —ky—1/2(2). (A10)

(k:lfz

k1=t
The sum over k; is uniformly convergent, and we can extend
the summation to be as precise as we want; even to infinity, if
required. Let us define

=)

‘We have

J
g '(222)

2 (1 T b“)

o 2k1 —24

X Z a; 1/2 Jko+i O Z
(lcl —1)

ki1=1i
X (kz +i4+1/2) b —iD_ (kg —i)— (ko ti)—1/2(2)- (A11)
Recalling the identity from Eq.(A3), the leading term of Eq.

(A4) is
J 2%,
J 26
a;’ ot x
(1 + bm) Z:: '(222) ; '

2 ko+it1/2 )
X (m) (1/2)ky+iD—_pg—i—1/2(2 — 207).
‘We have neglected the remainders of two uniformly convergent
series in this calculation. Such an approximation can be done,
still maintaining the desired precision. In the continuum limit,
the truncated series approaches the original one. In order to
simplify dealing with the recurrence procedure, we define some

(A12)

new variables:
o1 = o2,

21 = 2(1 — 02),
w=2=1-0y,
z

2j
(1) J —

The surnmation over all indices k; is done in [14], with the
recurrence evaluation described step by step.

The following lemma can be proven by induction:

Lemma. The leading term of the partial sum in Eq. (A1)
over the indices ki, ko, ..., ka, A < N — 2 is given by

1

ZA = X

\/%f (2wi (1 + bA2/c))

188

W (772) "

= ul(222)m o 1—oyp
kA+1

( ) U Dnnsnsin Donsinoaalen). (A13)

The symbol (A)}, is defined via the recurrence relation

u 2jA 2p—2jp
2 _ H 1 2ja+i
A)iA = Z ( ) (WA—1> Z azy X

ja=0 JA i=max (0, ip—2jr)

2u—2 oa-1 Y
X (A -1 JA(1*UA 1)‘

The first term is

(A14)

2 2
(1);* =az*.

There are also some more recurrence definitions to note:

. —1—0— —1 -2
Wi+1 = P w1 = a,
i

wo = 1.
After performing the summation over all indices k;, we fi-
nally find the leading term of Eq (Al):

1
WN= X

\/(%A) 1‘[ 2wi (1 + bA2/c)

X exp{faAgojl\, - (E +bA) % + E}X

J 1 2v
X Z (=1~ T2y Z &P (N —
v=0 p=0

All non-leading terms disappear due to the remainders of the
Poincaré expansion of the parabolic cylinder function in the
continuum limit [11]. The continuum limit of Eq. (A15) is to
be discussed in the next appendices.

1)%v.

2 (A15)

APPENDIX B
Continuum Limit
of the Square-Root Factor in Eq. (A15)

In our paper [11], we have evaluated the continuum limit of
the leading part of the N-dimensional integral Wy, using the
generalized Gelfand—Yaglom equation. We defined the function
Fn connected with the N-dimensional integral by the relation

WN = ——.

VFEN
Due to the recurrence relations for the quantities in Wy, we
can evaluate the difference equation for the values F}j, where
k=1,2,..,N. The aim of the Gelfand-Yaglom construction
is to find the continuum limit of the difference equation for
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the function F}. The solution of this differential equation is
connected to the continuum path integral by

1
W(B) = ;
VF(B)
where  is the upper bound of the time interval in the action.
We could use the same method to evaluate the continuum

limit of the N-dimensional integral, when dealing with the con-
ditional measure Wiener integral, but we would like to present a
slightly different method here. In the Gelfand—Yaglom method,
we have to evaluate the difference equation. Then, after im-
posing the continuum limit, we obtain the differential equation
and can find its solution. In the new approach, we evaluate
directly this function. We will present the evaluation of the
continuum limit:
N-2
(2“A) T 201 +22/0),

¢ =0

(B1)

where w; obeys the recurrence relation

o2

wz‘+1:1—;7
1

where

2 —1
wo =1, w1:1—02, a:[?(l—l—g)] .
c

Let us define

n
Qp = H Wi .
1=0

Using the recurrence relation for wy,, we obtain the recur-
rence relation for €2,,:
Qpn = wnwn—lﬂn—Q =
= (wnfl - 0'2)an2 =Qp-1— 0'2977,727 (B2)
with the first two values
Q=1 O =1-c2

The methods of difference calculus [18]| propose to search for a
solution of the recurrence equation (B2) in the form

Qn = w107 + w203 (B3)
The characteristic equation for g is

0*—o+0?=0,

with the solution

14++/1—402

— S

The coefficients w1 and w2 will be obtained from the values
Qo , 1, and we can write

01,2 =

_ (1 222
wi,2 = / ﬁ .
For expression (B1), the following holds:

(@) [2(1 +642/0)) N Tt Oy s = (Q’TA) x

C
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x [201 4+ 642/ 7 (w1pY 72 4 wap) ). (B4)

Inserting w12 , p1,2 and performing some calculations, we get
dn (1+ bAQ) 1 (1+ 1— 202 ) “
c c 2 V1—4do2
bAQ N-—-2
X{(1+—>(1+\/1—402)] +
c
1 ( 1—202 )
+-(1— —— ) X
2 V1 —402
bA2 N—-2
x |:(1+ )(17\/17402)} .

C

(B5)

Let us define

v =V2b/c,
and

r=2.
N

Now we are left with the following result for (B5) in the con-
tinuum limit lim N — oo:

27 sinh(v3)

c vy ’
The same outcome is acquired by the Gelfand—Yaglom method.
APPENDIX C

The Continuum Limit
of the Exponential Factor in Eq. (A15)

We are going to evaluate the exponent in Eq. (A15):
c
—alph — [— +bA) 3
exp{a PN (2A+ )SDN'i‘f}v
where £ is defined as

1 c 2
= PN
WN-2 4A (1 + bM) N

(C1)

c

and wy_2 obeys the recurrence relation

o2 9 1—202
Wit1=1——, w1 =1-07, wy = ———>.

wj 1—0
We are going to evaluate w;. Following the method of the n-th
convergent [18], we define

Pn bn

Wwp = — =an + 5
qn Wn—1

pn and g, are bound to satisfy
Pn = anPn—1 + bnpPn—2,

qn = Gnqn-1 + ann—Q-
Solutions of the above recurrence relations can be written in
the form

Pn = u1py + u2p3,
qn = U1p7 + U205 -
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Here, p has to satisfy the characteristic equation

p2fanpfbn =0, an=1, by, =—0.
The solution reads
14++v1—402
pra=—Y——"0 (2)
2

The coefficients u1,2 and w12 are obtained from the conditions
1—202

w1:il£:170'2, w2:p£:70'2.

q1 q2 l—0o

Now, we have
1 1—202 1 1
uz == 1i7), f12= 2 (117). C3
2( V1 — 402 2 1 — 402 (©3)
An important identity follows from Egs. (C2), (C3):
dn = Pn—1-
This allows us to write w,, as

Pn dn+1 ) (C4)

Wp =
Pn—-1 dn

At this point, we define new variables for the evaluation of the
continuum limit. Following the definition of w;,,, we have

. 1, = 1
UIP?JF + U2P§+

dn+1
Wn = - =~ on =~ on -
dn ulpy + u2py
prynt+l | G (payntl
o (o— + Uy (0‘ 7O_Qn+1 (05)
n i n -
@ EET e

In the following evaluations, we will use the definition of the
variable Qn:

P1\ " U2 P2\ ™
o (@) 2 ()

o u; \o
Compared to gn, the variables @, are finite in the continuum
limit. The primary variable in our calculation is wy , which is

(ce)

finite in the continuum limit and is more convenient from the
point of view of the following evaluation to express it as the
proportion of @,. For complexity, we define the variable Qy:

w-@-2@

To evaluate relation (C1), we need to do the key calculation:

(C7)

1 gv—aa
WN-2  gN-2

Y . VI—402(iap) % —iizp} %) ‘
(a1p) 2 +iizpy ) +VI—402 (a1 py ° —iizpy 2)
Inserting into Eq. (C1), we find the exponent in the form:
NS S bA_;)_
GOPN T PN (m YT PRy ey

B VI —402(a1pY =% — dapy ~2)
(a1p) 2 +iizpy 2) + VI—402(i1p) > —dizpy )

X

c 2
24 (14 222) o

190

X (C8)

In the continuum limit lim N — oo for the terms in the line,
we take advantage of some useful identities:

T A £/2b/c+ b2 A%/ c?
402 =

14+ bA2/c ’
. Ug . V1—402 -1
lim (—) = lim |—/m——] =-1,
N—oco \U7p N—o0 m+ 1
and
lim (201,2)Y 2= lim (1++1—402)N =
N—o0 N—o0

N —oco

N
AN/2b/c+ b2A2/c?
= 1 1+ = +t).
i (10 SR exp (10
So, considering lim N — co, we have got the result for
Eq. (C8):

5 coth ()R- (C9)

Recall that

AN=t/N, v=+/2b/c.

APPENDIX D
Algebra of Integrals

For the product of integrals with three indices, we can write

n—2 n-—1 n

Ia»ﬂ,'y(T)Ia,...,a(‘r):Z Z Z «

— j=1 k=j-+11l=k+1
n—3
(D1)

XIa,“.,a,aj,a,...,a,ﬁk,a,u.,a,'yl,a,.“,a(T)-

n
To evaluate the anharmonic correction (21), we need the fol-
lowing terms characterized by different algebraic factors in the
sum on the right-hand side:
Ia,ﬂ,a(T)Ia,...,a(T) =

——
n—3

n—

(D2)

1 n
Z (n - k)Ia,...,a,aj,a,...,a,ﬁk,a,...,a(T)'
1 k=j+1

n
The expansion of the summations over summation indices (j
up to n — 1 and k up to n) was done by adding the zero terms
due to the factor (n — k).
In the case of two indices a, we have

Ia,a,a(T)I a,...,a(T) =
——r

n—3

n—2 n—1 n
= g E Iu,...,u,ai,u,...,a(T)-
1=1 j=i+1k=5+1 M

(D3)

The integrals [ q,...,a,0;,a,...,a(T) are independent of the sum-
—_——

n
mations indices j, k. Consequently, we have

Ia,a,a,(T)I a,...,a(T) =
——

n—3
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(D4)

n i
:Z:X 2 )Iw(f)

i=1

We are free to do the summation for ¢ = n — 1,7 = n, because
the added terms are zero.
sandwiched between a and 3, we have

In the case where the index a is

,a,ﬁl,a,...,a(7)~ (D5)

= ]a,...,a,aj,a,m

n

Due to the k-independence of the integral, we may write

Zn: (l—1-75)x

]a,a,B(T)I a,m,a
\v/

HMI

n—3

Xla, ,a,ﬁl,a,...,a(‘r)' (DG)

@, Q5,0

n
Thanks to the factor (I—1—j), we can expand the summations
uptoj=n—1landl=j5+1:

n—1 n
Ia,a,p(T) a,....a(T) = Z (I—1-j5)x
Jj=ll=j+1
n—3
><Ia,,”,a,aj,(l,.”,a,ﬁl,ay ’a(T). (D7)
n

Now, let us look at the product of integrals with four Greek
indices:

n—2 n-—1 n
22 D«
i+1 k=j+11=k+1

]ayﬁmé(T)I ay.a(T) =
—~— ;

n—4

x1 a,...,a,0;,a,...,a,8; ,a,...,a,'yk,a,”.,a,él,a,...,a(T)' (DB)

n
For the sake of the current evaluations, the case where two
Greek indices are equal to a is of interest:

n—3 n—2 n-—1 n
Ia,a,'y,a(T)I a,...,a(T) = Z Z
e i=1 j=it+1 k=j+1l=k+
n—4
XIa,.u,a,ai,a,m,a,'yk,a,...,a(7)~ (D9)
n

Because the integrals I q,....a,a;,a,...,a,v4,a,...,a(T) are indepen-

n
dent of the summation indices j, [, we have:

n—3 n—1
Taam,a(m)a,. . a(T) = X
~— i=1 k=i+2
n—4
x(n—k)(k—i—11a, . a0;a..a7vma..a(T)- (D10)
n
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Due to the factor (n — k)(k — i — 1), we can include k =i+ 1

and k = n as well. Thanks to the identity
k—i—1=Mn—-i—2)—(n—k—1)

and the new algebraic factors allowing us to extend the sum
over the index i, we have

n—1 n
losay,a(T)a,.a(T k)(n —i—2)x

NS S

n—4

n—1 n
XIa.,m,a,oq,,a,4.4,a,wk,a,..4,a(7) - Z Z
M =1 k=1

X(TL - k/')(n — k- 1)-[ a,..4,a,ai,a,..4,a,’yk,a,...,a('r)-

n

As the last example, we evaluate the product

n—1

eSS

Ia,ﬁ,a,a(T)I a7~-~,a(7_)
N——
n—4

Xla, .,a,Bj,a,.”,a(T)' (Dll)

0,0,

n

The integrals 1. q4,q;,a,... .a(7) are independent of

a,B5,a,

n
the summation indices k£ and [, and the factor (ng]) appears.
This factor allows us to extend the summation over the indices

i and j, so we can write

n—1 n
Ia,ﬂ,a,a(T)Ia,m,a(T) = Z Z X
M~ i=1 j=it+1

n—j
X( 2 )Iu,...,a,ai,a,...,a,ﬁj,a,.“,a(T)' (D12)

n
The evaluation of other identities is not necessary for the
purposes of this paper.
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HEIIEPTYPBATUMBHA

AHTAPMOHIYHA ITOITPABKA

J0 ®OPMVJIN MEXJIEPA JI1 ITIPOITATATOPA
TAPMOHIMHOT'O OCITUJISITOPA

Peszowme

PosrisiHyTo MOXKIIMBICTE HENEepTypHGATHBHOI AaHTapMOHIYHOT
nonpaBku 10 dopmysu Mexiepa st mporararopa rapMoOHiii-
HOro ocruiiATopa. PyHKIIOHAJIBHUN IHTErpaJ Mo yMOBHIM Mipi
Biruepa 3 wienom 4eTBepTOro MOPsIIKY B €KCIIOHEHT] OIL[iHEHO B
paMKax MeTOLy aJIbT€PHATHUBHOI'O 3BHYAWHOMY IEPTYpOATHB-
vomy minxomy. Ha Bimmimy Bim 3Bmuaitrol Teopil 30ypeHb, Mu
PO3KJ/Ia/Ia€MO YJIEH B €KCIIOHEHTI JIiHIfHUI 1o 3MiHHI iHTerpa-
1ii B creneneBuit pss. O6roBopeHo BUIAJOK, KOJIM ITOYATKOBA
TOYKa Ipomararopa AopiBHIOE Hymio. PesynbraTu gaHo B aHa-
JIITUYHOMY BUIVISIZ] fIK JJIS IIO3UTUBHUX, TAK i HETATUBHUX Ya-
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