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OF MODIFIED LENNARD-JONES POTENTIAL
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A modified Lennard-Jones potential with a finite interaction radius, which maintains the re-
alistic behavior of its parent and greatly simplifies the numerical simulation of high-density
thermodynamic systems, has been considered. The virial coefficients of this potential have
been calculated up to the fifth order, inclusive, in a wide range of temperatures. The modified
potential can be applied not only in numerical experiments but also in theoretical studies. It
is proposed as a reference model to test the adequacy of various theoretical and experimental
approaches.
K e yw o r d s: virial coefficient, irreducible cluster integral, Mayer function, spinodal, binodal.

1. Introduction

While studying the behavior of thermodynamic sys-
tems with high densities, the actual interaction be-
tween molecules is most often approximated by cer-
tain simplified analytical expressions for the force or
the potential energy (the potential) of interaction for
every molecular pair [1]. One of the most known and
widely used model potentials of this kind is the two-
parameter 12–6 Lennard-Jones (LJ) potential [2,3], in
which the repulsion energy is reciprocal to the 12-th
power of the intermolecular distance, and the attrac-
tion one to the 6-th power,

𝑢LJ (𝑟) = 4𝜖

[︂(︁𝜎
𝑟

)︁12
−
(︁𝜎
𝑟

)︁6]︂
, (1)

where 𝜖 is the bond dissociation energy for the pair,
and 𝜎 a characteristic distance, at which the potential
equals zero (Fig. 1). This potential is used to describe
various aggregate states of simple substances, such as,
e.g., inert gases [4, 5].

Unfortunately, the infinite radius of interaction in
the LJ potential (1) creates considerable technical
difficulties when carrying out numerical experiments
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both on the basis of the Monte Carlo method [4–11]
and the method of molecular dynamics (MD) [9–14].
In practice, since the potential quickly tends to zero
as the distance grows, it is usually “truncated” at a
definite distance. In other words, it is neglected at
larger distances.

However, the application of such a “truncated”
Lennard-Jones (LJT) potential brings us to other dif-
ficulties: the potential is discontinuous at the “trunca-
tion” distance, so that the interaction force becomes
infinitely large here, which is inadmissible, especially
at MD simulations. This problem, in its turn, is re-
solved by shifting the potential upwards by a con-
stant value, which is equal to the absolute potential
value at the “truncation” distance, and the final po-
tential has no break (nevertheless, the break in the
force still remains at that). Just this “truncated and
shifted” Lennard-Jones (LJTS) potential rather than
the “primordial” LJ one (Eq. (1)) was used in the ma-
jority of numerical experiments [6–14].

In time, the rejection of weak attraction at large
distances was found to bring about an appreciable
difference between the results of simulations. For
instance, the critical temperatures for the LJT and
LJTS potentials with a typical truncation radius
value of 2.5𝜎 were found to be by approximately 20%
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lower in comparison with that for the LJ potential
(1) [9, 14–16]. Certainly, there exist the techniques
that approximately take the rejected part of the po-
tential into account and correspondingly rescale the
results obtained [9, 14]. However, the unavoidable er-
rors arising in this case complicate the comparison of
the data obtained in various experimental and theo-
retical researches.

In recent years, the so-called modified Lennard-
Jones (mLJ) potential becomes more and more pop-
ular in computer experiments [17–19]. It looks like

𝑢 (𝑟) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4𝜖

[︂(︁𝜎
𝑟

)︁12
−

(︁𝜎
𝑟

)︁6]︂
+ 𝑐1; 𝑟 ≤ 2.3𝜎,

𝑐2

(︁𝜎
𝑟

)︁12
+𝑐3

(︁𝜎
𝑟

)︁6
+𝑐4

(︁𝑟
𝜎

)︁2
+𝑐5; 2.3𝜎<𝑟 <2.5𝜎,

0; 𝑟 ≥ 2.5𝜎.

(2)

where 𝑐1 = 0.0163169237𝜖, 𝑐2 = 3136.5686𝜖, 𝑐3 =
= −68.069𝜖, 𝑐4 = −0.0833111261𝜖, and 𝑐5 =
= 0.746882273𝜖.

This potential, as well as its derivative (the corre-
sponding interaction force) has no breaks and van-
ishes at the distance 2.5𝜎 (Fig. 1). Those properties
distinguish the mLJ potential among the others (LJ,
LJT, and LJTS) and make it an admissible candi-
date for the role of universal standard while compar-
ing various theoretical and experimental approaches
and estimating their adequacy.

On the other hand, the mLJ potential has not
found a wide application in theoretical researches till
now. In particular, the virial coefficients up to the
eighth order are known for the LJ potential [20, 21],
and up to the fifth order for the LJTS one [16]. At the
same time, the data concerning the coefficients for the
mLJ potential are absent for today. Therefore, this
work aimed at calculating the virial coefficients for
the modified Lennard-Jones potential (2) up to the
fifth order and in a wide temperature interval, which
could be used in theoretical researches and for the
comparison with available experimental data.

2. Calculation Technique

According to book [22], the virial coefficient of the
(𝑘 + 1)-th order in the power series expansion of the
pressure in the density parameter

𝐵𝑘+1 = − 𝑘

𝑘 + 1
𝛽𝑘, (3)
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Fig. 1. 12-6 Lennard-Jones potential (dashed curve) and a
modified Lennard-Jones potential (solid curve)

where 𝛽𝑘 is the so-called irreducible cluster integral
of the 𝑘-th order. The latter is defined as follows. For
an arbitrary pair of molecules with a given interaction
potential, let us introduce the Mayer function

𝑓(𝑟) = exp

(︂
−𝑢(𝑟)

𝑘𝑇

)︂
− 1.

Then, 𝛽𝑘 is defined as the integral of the sum of
all possible products of Mayer functions for (𝑘 + 1)
molecules over their configuration phase space di-
vided by 𝑘!𝑉 , that cannot be expressed in terms of
low-order irreducible integrals.

Figure 2 demonstrates all graphs corresponding to
the irreducible integrals of the first (a), second (b),
third (c), and fourth (d) orders. Every Mayer func-
tion is conditionally represented by a line connect-
ing two molecules. The multiplicity of each diagram,
which takes into account all possible permutations of
molecular indices, is also indicated.

Integration over the configurational space of one
of the molecules (conditionally, let it be molecule 1)
gives the multiplier 𝑉 , the system volume, which is
cancelled out with the volume parameter in the de-
nominator. So we obtain only integration over the rel-
ative positions of other molecules (in practice, since
the Mayer function decreases rapidly as the distance
grows, the integration is performed within infinite
limits).

Graphs with 𝑘 > 2 can be grouped together
(Fig. 3). Integrals within every group differ from
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Fig. 2. Irreducible graphs: two- (a), three- (b), four- (c), and
five-particle (d) ones. The graph multiplicities are indicated in
the parentheses

Fig. 3. Groups of similar graphs for the third (a) and fourth
(b) irreducible integrals. The numbers of corresponding graphs
in Fig. 2 are indicated in the parentheses

one another by the presence or absence of one Mayer
function (dotted lines in Fig. 3), and only the second
group of four-particle integrals (a) and the third and
sixth groups of five-particle ones (b) contain a single
graph that differs substantially from the others.

Instead of the distance between particles 𝑟𝑖𝑗 , let
us introduce the dimensionless square of this quan-
tity, 𝑠𝑖𝑗 = 𝑟2𝑖𝑗/𝜎

2, and the function 𝐹 (𝑠) = 𝑓 (𝜎
√
𝑠)

instead of the corresponding Mayer function. Such a
change of variables unifies the integration process and
makes it considerably simpler. First, the dependence
on the integration variable becomes weaker, which

is favorable for the calculation accuracy. In addition,
the irreducible integrals (their dimensionality is equal
to the volume raised to the power 𝑘) can be defined in
the dimensionless form, 𝛽′

𝑘 = −𝛽𝑘/𝜎
3𝑘. The simplest

one is the first irreducible integral

𝛽′
1 = 2𝜋

∞∫︁
0

𝐹 (𝑠)
√
𝑠𝑑𝑠. (4)

The corresponding second virial coefficient is
𝐵2 = 𝛽1/2.

In each many-particle (with 𝑘 > 1) irreducible in-
tegral, we can select three molecules (𝑖, 𝑗, and 𝑛), for
which particle 𝑛 is “connected” by means of the Mayer
functions with two other “basic” particles (𝑖 and 𝑗),
with the latter, in turn, can be either “connected”
with each other or not, depending on the specific dia-
gram. If particle 𝑛, in addition to its connections with
particles 𝑖 and 𝑗, is not connected with any other, the
integral over all its possible positions, provided that
the positions of particles 𝑖 and 𝑗 are fixed, looks like

𝜋𝜎3

2
√
𝑠𝑖𝑗

∞∫︁
0

𝐹 (𝑠𝑖𝑛) 𝑑𝑠𝑖𝑛

(√𝑠𝑖𝑗+
√
𝑠𝑖𝑛)

2∫︁
(√𝑠𝑖𝑗−

√
𝑠𝑖𝑛)

2

𝐹 (𝑠𝑗𝑛) 𝑑𝑠𝑗𝑛.

Let us introduce the function

Φ (𝑠) =

∞∫︁
0

𝐹 (𝑠1) 𝑑𝑠1

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2. (5)

Then, the dimensionless expression for the second ir-
reducible integral reads (we use the notation 𝑠 = 𝑠12)

𝛽′
2 =

𝜋2

2

∞∫︁
0

𝐹 (𝑠)Φ (𝑠) 𝑑𝑠. (6)

Integrals corresponding to the first graph group for
the third irreducible integral (Fig. 3, a) and to the
first graph group for the fourth irreducible integral
(Fig. 3, b) are expressed analogously:

𝛽′
31 =

1

3!

𝜋3

2

∞∫︁
0

[3 + 6𝐹 (𝑠)] Φ2 (𝑠)
𝑑𝑠√
𝑠
, (7)
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and

𝛽′
41 =

10

4!

𝜋4

4

∞∫︁
0

[1 + 𝐹 (𝑠)] Φ3 (𝑠)
𝑑𝑠

𝑠
, (8)

respectively. The same function (5) can be used to
express more cumbersome formulas for the integrals
of the second and third graph groups for the fourth
irreducible integral (Fig. 3, b):

𝛽′
42 =

60

4!

𝜋4

4

∞∫︁
0

[1 + 𝐹 (𝑠)] Φ (𝑠)
𝑑𝑠√
𝑠
×

×
∞∫︁
0

𝐹 (𝑠1) Φ (𝑠1)
𝑑𝑠1√
𝑠1

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2;

𝛽′
43 =

12

4!

𝜋4

4

∞∫︁
0

Φ (𝑠)
𝑑𝑠√
𝑠

∞∫︁
0

Φ (𝑠1)
𝑑𝑠1√
𝑠1

×

×

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2.

(9)

In the cases where particle 𝑛 from the group of
three molecules 𝑖𝑗𝑛 and particle 𝑚 from the group
𝑖𝑗𝑚 are “connected”, we introduce one more function

Ψ(𝑠𝑖𝑗 , 𝑠𝑖𝑛, 𝑠𝑗𝑛) =

∞∫︁
0

𝐹 (𝑠𝑖𝑚) 𝑑𝑠𝑖𝑚×

×

(
√
𝑠𝑖𝑚+

√
𝑠𝑖𝑗)

2∫︁
(
√
𝑠𝑖𝑚−√

𝑠𝑖𝑗)
2

𝐹 (𝑠𝑗𝑚) 𝑑𝑠𝑗𝑚

𝜋∫︁
0

𝐹 (𝑠𝑛𝑚) 𝑑𝜙, (10)

where 𝑠𝑛𝑚 (𝑠𝑖𝑗 , 𝑠𝑖𝑛, 𝑠𝑗𝑛, 𝑠𝑖𝑚, 𝑠𝑗𝑚, 𝜙) is the dimension-
less squared distance between particles 𝑛 and 𝑚, and
𝜙 is the angle between planes 𝑖𝑗𝑛 and 𝑖𝑗𝑚. Then,
integrals corresponding to graph 2 for the third irre-
ducible integral (Fig. 3,a) and the groups of graphs 4
and 5 for the fourth irreducible integral (Fig. 3,b) are
expressed as follows:

𝛽′
32 =

1

3!

𝜋2

2

∞∫︁
0

𝐹 (𝑠)
𝑑𝑠√
𝑠

∞∫︁
0

𝐹 (𝑠1) 𝑑𝑠1×

×

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2Ψ(𝑠, 𝑠1, 𝑠2);

𝛽′
44 =

30

4!

𝜋3

4

∞∫︁
0

[1 + 𝐹 (𝑠)]
Φ (𝑠) 𝑑𝑠

𝑠

∞∫︁
0

𝐹 (𝑠1) 𝑑𝑠1×

×

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2Ψ(𝑠, 𝑠1, 𝑠2);

𝛽′
45 =

1

4!

𝜋2

4

∞∫︁
0

[15 + 10𝐹 (𝑠)]
𝑑𝑠

𝑠

∞∫︁
0

𝐹 (𝑠1) 𝑑𝑠1×

×

(
√
𝑠+

√
𝑠1)

2∫︁
(
√
𝑠−√

𝑠1)
2

𝐹 (𝑠2) 𝑑𝑠2Ψ
2 (𝑠, 𝑠1, 𝑠2) . (11)

The most complicated is the expression for the in-
tegral that corresponds to the last (with ten connec-
tions) graph (graph 6) in Fig. 3,b:

𝛽′
46 =

1

4!

𝜋2

8

∞∫︁
0

𝐹 (𝑠)
𝑑𝑠

𝑠

∫︁
∞

𝑑𝑆3

∫︁
∞

𝑑𝑆4

∫︁
∞

𝑑𝑆5 ×

×
𝜋∫︁

0

𝐹 (𝑠34) 𝑑𝜙34

2𝜋∫︁
0

𝐹 (𝑠45)𝐹 (𝑠35) 𝑑𝜙35, (12)

where∫︁
∞

𝑑𝑆𝑖𝑓 =

∞∫︁
0

𝐹 (𝑠1𝑖) 𝑑𝑠1𝑖

(
√
𝑠1𝑖+

√
𝑠)

2∫︁
(
√
𝑠1𝑖−

√
𝑠)

2

𝐹 (𝑠2𝑖) 𝑑𝑠2𝑖𝑓,

𝜙34 is the angle between planes 123 and 124, and 𝜙35

between planes 123 and 125.

3. Results

The numerical integration in Eqs. (4), (6)–(9), (11),
and (12) was carried out with the use of the Gauss
method, which optimally combines accuracy and sim-
plicity [23]. With that end in view, the tables of inte-
gration nodes and weights were preliminarily created
for various node numbers 𝑛 = 7, 10, 15, 20, 25, 30,
40, 60, 80, 100, and 120.

The calculation of the first irreducible integral in
Eq. (4) to an arbitrary given accuracy does not cause
any technical difficulties. Function (5) includes a dou-
ble integral, but its preliminary tabulation at the in-
tegration nodes makes the calculation of integrals 𝛽′

2,
𝛽′
31, and 𝛽′

41 in Eqs. (6)–(8) as simple as that of 𝛽′
1.

The trivariate integration in Eq. (9) with the use
of the same tabulated function makes the calcula-
tion of 𝛽′

42 and 𝛽′
43 somewhat complicated. However,
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Virial coefficients of the modified Lennard-Jones potential (2) for various
dimensionless temperatures (the calculation accuracy corresponds to the last significant digit)

𝑇 * 𝐵′
2 𝐵′

3 𝐵′
4 𝐵′

5 𝑇 * 𝐵′
2 𝐵′

3 𝐵′
4 𝐵′

5

0.2 −208.38 −5.509× 105 −1.230× 1010 −9.0× 1014 1.2 −2.9095 2.9315 3.629 −0.763
0.3 −51.861 −7096 −4.689× 106 −5.77× 109 1.3 −2.4600 2.7670 2.682 −2.41
0.4 −25.141 −671.2 −8.981× 104 −1.81× 107 1.4 −2.0897 2.5913 1.997 −2.74
0.5 −15.583 −128.4 −6672 −4.62×105 1.5 −1.7797 2.4271 1.537 −2.45
0.6 −10.881 −32.12 −901.5 −2.98× 104 1.7 −1.2904 2.1555 1.061 −1.37
0.7 −8.1321 −7.704 −156.54 −2.99× 103 2.0 −0.77162 1.8788 0.8810 −3.63× 10−2

0.75 −7.1514 −2.960 −65.40 −1.01× 103 2.5 −0.22426 1.6324 0.9690 1.00
0.8 −6.3433 −0.2625 −25.128 −341 3.0 0.11540 1.5149 1.0978 1.318
0.85 −5.6667 1.2842 −7.107 −107 4.0 0.50756 1.4159 1.2330 1.354
0.9 −5.0924 2.1648 0.8040 −25.9 5.0 0.72157 1.3731 1.2590 1.229
0.95 −4.5991 2.6511 4.022 −0.481 7.0 0.93849 1.32076 1.2007 0.9840
1.0 −4.1711 2.9005 5.053 5.43 10.0 1.07058 1.25563 1.0686 0.7421
1.05 −3.7964 3.0065 5.090 4.95 15.0 1.13951 1.16069 0.88970 0.5219
1.1 −3.4658 3.0260 4.705 2.86 20.0 1.15292 1.08246 0.76472 0.4012

this difficulty does not affect practically the rate of
calculations in modern computers (even the general-
purpose personal ones).

A basically different situation arises at the six-fold
integration in Eq. (11) and, the more so, at the nine-
fold one in Eq. (12). In particular, the procedure of
calculation of the parameter 𝛽′

32 or the sum 𝛽′
44+𝛽′

45

with the integration node number 𝑛 = 30 required
about 1.5 min on a PC with the central processor
Intel Core i5 2.67 GHz, whereas the corresponding
calculations of a single 𝛽′

46-value would require about
a month.

However, the modern graphic processors can imple-
ment the multithreading at a hard-ware level, which
makes repeated simple operations with float num-
bers hundreds times more efficient in comparison with
analogous calculations on the basis of a central pro-
cessor. An opportunity to apply the computing func-
tions of a graphic processor is provided for today by
the CUDA platform and the DirectX 11 Compute
Shader technology in approximately equal scopes.
Therefore, the six-fold integration in Eq. (11) and
the nine-fold one in Eq. (12) were adapted to mul-
tithreaded calculations. In the case of integrals (11),
a two-dimensional 𝑠1 × 𝑠2 mesh of nodes was cre-
ated for every node 𝑠, and the function Ψ(𝑠, 𝑠1, 𝑠2)
in Eq. (10) was calculated in the thread mode, inde-
pendently for every mesh node. In a similar way, the
double integral at the end of expressions (12) was cal-
culated independently at the nodes of meshes created

for the integrals over 𝑆3, 𝑆4, and 𝑆5. As a result, one
value for the quantity 𝛽′

32 or the sum 𝛽′
44 + 𝛽′

45 was
calculated during about 1 s (at 𝑛 = 30) on the PC
with the graphic processor GeForce GTS 450 (instead
of 1.5 min). Calculations of one 𝛽′

46-value at 𝑛 = 15
lasted for about 1 h even if using the GPU.

The table partially exhibits the calculation results
obtained for the virial coefficients of the mLJ poten-
tial (2), in the dimensionless form 𝐵′

𝑘+1 = 𝐵𝑘+1/𝜎
3𝑘,

and for various values of dimensionless temperature
𝑇 * = 𝑘𝑇/𝜖. The order of integration error magni-
tude (it was evaluated using Aitken’s process [23])
was lower than the order of the last digit in the tab-
ulated values.

In Fig. 4, the dependences of the virial coefficients
of various orders on the temperature are shown for
both the “primordial” (Eq. (1)) and modified (Eq. (2))
Lennard-Jones potentials. A substantial difference
is evident even for the second virial coefficient. In
the low-temperature interval, this difference becomes
even more appreciable for higher-order coefficients.
As the temperature increases, this difference gradu-
ally disappears, because the contribution of the most
modified potential part, which is responsible for the
attraction at large distances, decreases (the repulsion
parts of potentials (1) and (2) differ weakly from each
other (see Fig. 1)).

In Fig. 5, the dependences 𝑇 * (𝜌*), where the 𝜌* =
𝜌𝜎3 is the dimensionless density, are depicted. They
correspond to the zero value of isothermal bulk mod-
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Fig. 4. Temperature dependences of the second and third (left panel) and the fourth and fifth (right
panel) virial coefficients for the LJ (dashed curve) and mLJ (solid curve) potentials

ulus (or the singularity of the isothermal compress-
ibility, (𝜕𝑃/𝜕𝑉 )𝑇 = 0) and were calculated on the
basis of the virial equation of state for mLJ model
with the coefficients up to the third, fourth, and fifth
orders. Such curves are conventionally associated
with spinodals [16,20], because they confine the ther-
modynamically forbidden sections of isotherms with
negative compressibilities (i.e. absolutely unstable
states) described by the virial equation of state. How-
ever, the issues concerning the adequacy limits for
the virial equation of state itself or whether the equa-
tion obtained on the basis of a single-phase statis-
tics developed for infinitely large systems can describe
metastable states in general still remain open [24].

Recently, there appeared the researches, whose re-
sults testify that just the singularity points of the
isothermal compressibility in the virial equation of
state are the applicability limits for this equation [25–
27], and the very fact that those points belong to
the spinodal cannot be considered quite indisputable.
Moreover, the behavior of the exact expression for the
partition function (in contrast to its virial approxima-
tion) at those points corresponds to the beginning of
the condensation [25, 26, 28], i.e. to a binodal rather
than a spinodal.

At temperatures below the critical one and at low
densities (these are states to the left from the exper-
imental binodal in Fig. 5), the virial equation with
four or five coefficients produces results that agree
well with the experiment (the difference does not ex-
ceed 1%). However, as the density grows, the devia-

0.0 0.1 0.2 0.3

0.8

1.0

1.2

*
T

*
ρ

Fig. 5. Curves of the isothermal compressibility singularity
calculated for the mLJ system according to the virial equa-
tion with three (dash-dotted curve), four (dashed curve), and
five (solid curve) coefficients. Symbols (◇) correspond to the
experimental binodal [19]

tion from experimental data increases, and the num-
ber of coefficients taken into account in the equation
starts to considerably affect the results obtained and
the position of curves corresponding to the isothermal
compressibility singularity (Fig. 5). It is evident that
the higher-order coefficients cannot be neglected in
the condensation region (at least, it takes more than
five coefficients). In accordance with the results ob-
tained for a different potential in work [28], we may
assume that the singularity curve for the isothermal
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compressibility will be really close to the experimen-
tal binodal if higher-order coefficients should be made
allowance for.

The values of critical parameters for the mLJ po-
tential obtained with regard for five virial coeffi-
cients – namely, 𝑇 * = 1.04, 𝜌* = 0.22, and 𝑃 * =
= 𝑃𝜎3/𝜖 = 0.081 – turn out somewhat less than
the parameters known from numerical experiments –
𝑇 * = 1.07, 𝜌* = 0.30,and; 𝑃 * = 0.12 [19]. This fact
may also indicate that the higher-order coefficients
should be taken into consideration.

4. Conclusions

The infinite radius of interaction in the Lennard-
Jones potential considerably complicates numerical
experiments. Therefore, various simplifications of the
potential, e.g., the modified Lennard-Jones potential
(see Eq. (2)), are used. The same modification is pro-
posed to be applied not only in experimental but also
theoretical researches. In this work, the values of the
second, third, fourth, and fifth virial coefficients for
the modified Lennard-Jones potential in a wide tem-
perature range were obtained. At high temperatures,
those coefficients do not differ practically from the
coefficients for the primordial Lennard-Jones poten-
tial. In the low-temperature interval, on the contrary,
the difference becomes very substantial. A compari-
son of experimental data with the results of numer-
ical simulations testifies that the obtained virial co-
efficients allow the behavior of the system with the
modified Lennard-Jones interaction potential (2) to
be described rather well at high densities and super-
critical temperatures, as well as at low densities and
subcritical temperatures. For the behavior of such a
system in the condensation region to be accurately de-
scribed at the quantitative level, the problem of find-
ing the higher-order virial coefficients still remains
challenging.
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ВIРIАЛЬНI КОЕФIЦIЄНТИ ДЛЯ МОДИФIКОВАНОГО
ПОТЕНЦIАЛУ ЛЕНАРД-ДЖОНСА

Р е з ю м е

Розглянуто модифiкований потенцiал Ленард-Джонса,
який має кiнцевий радiус взаємодiї i значно спрощує чи-
слове моделювання термодинамiчних систем великої густи-
ни, зберiгаючи, при цьому, його реалiстичнiсть. Для цьо-
го потенцiалу розрахованi вiрiальнi коефiцiєнти до п’ятого
порядку, включно, в широкому дiапазонi температур, що
дозволяє використовувати потенцiал не лише в числових
експериментах, а i в теоретичних дослiдженнях. запропо-
новано використання цього потенцiалу в ролi еталона для
оцiнки адекватностi рiзних теоретичних i експерименталь-
них пiдходiв.
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