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A RATIO OF THE SHEAR VISCOSITY
TO THE DENSITY OF ENTROPY FOR HELIUMPACS 75.50Gg

We have studied the ratio (𝜂/𝑠) of the shear viscosity 𝜂 to the density of entropy 𝑠 for helium as
a function of the temperature and have established that the minimal value, (𝜂/𝑠)min, satisfies
the Kovtun–Son–Starinets inequality, (𝜂/𝑠)min ≥ (~/4𝜋𝑘B).
Ke yw o r d s: Helium, ratio of the shear viscosity to the density of entropy, Kovtun–Son–
Starinets inequality.

1. Introduction

In 1998, J.M. Maldacena established a gauge-string
relation [1], which appears to be a very efficient
method to study the strongly interacting quantum
systems. Using this relation, P.K. Kovtun, D.T. Son,
and A.O. Starinets showed in 2005 that, for such sys-
tems, the ratio of the shear viscosity 𝜂 to the entropy
density 𝑠 satisfies the relation

(𝜂/𝑠) ≥ (~/4𝜋𝑘B) ≃ 6.08× 10−13 K · s,

and the equality is reached only for the so-called per-
fect liquid [2] (see, e.g., the recent review [3]). Here,
~ is the Planck constant, and 𝑘B is the Boltzmann
constant. The authors provided evidence that this
inequality could be valid for a wider class of systems.
Till now, this statement was tested and proved for a
number of substances (see, e.g., [4, 5]).

In this paper, we study the temperature depen-
dence of the ratio (𝜂/𝑠) and consider the applicability
of the above inequality for helium.

2. Liquid Helium

At temperatures less than 𝑇𝜆 = 2.18 K, helium is liq-
uid. According to L. Tisza and L. Landau, we can
imagine ourselves the liquid helium as a mixture of
two “liquids”: superfluid liquid and normal liquid. If
we assume the liquid helium incompressible, then the
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equation for it splits into two equations: an equa-
tion for superfluid liquid and an equation for normal
liquid. Of two liquids, only the normal liquid is vis-
cid, and its hydrodynamics for small velocities is de-
scribed with the equation
𝜕

𝜕𝑡
𝜌𝑣𝑖 +

𝜕Π𝑖𝑘

𝜕𝑥𝑘
= 0,

Π𝑖𝑘 = 𝑝𝛿𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘 − 𝜂

(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

)︂
,

where 𝜂 is the shear viscosity.
At temperatures 𝑇 ≪ 𝑇𝜆 (more exactly, at 𝑇 <

< 0.8–1.0 ∘K), we can consider the normal liquid as a
Bose gas of phonons with the energy spectrum 𝜖(𝑝) =
= 𝑝𝑐 where 𝑐 is a velocity of sound. Therefore, the
mass density 𝜌𝑛𝑝ℎ and the entropy 𝑆𝑝ℎ of the normal
liquid are described with the expressions

𝜌𝑛𝑝ℎ =
2𝜋2

45~3𝑐5
(𝑘B𝑇 )

4, 𝑆𝑝ℎ =
2𝜋2

45~3𝑐3
(𝑘B𝑇 )

3𝑘.

At such temperatures, the viscosity of the normal liq-
uid is defined by phonon scattering processes [6]:

𝜂𝑝ℎ = (1/5)𝑐2𝜌𝑛𝑝𝑓𝜏𝑝ℎ,

where the inverse mean free time

1

𝜏𝑝ℎ
=

9 · 13!
213

(𝑢+ 1)4
(︂
𝑘B𝑇

2𝜋~

)︂7(︂
𝑘B𝑇

𝜌𝑐5

)︂2
, 𝑢 =

𝜌

𝑐

𝜕𝑐

𝜕𝜌
.

Therefore, the viscosity of the normal helium looks as
follows:

𝜂𝑝ℎ =
221𝜋9

52 · 92 · 13!
1

(𝑢+ 1)4

(︂
~
𝜌𝑐

)︂3(︂
𝜌𝑐2

𝑘B𝑇

)︂5
~.
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At last, the ratio of the shear viscosity 𝜂 to the
volume density of entropy 𝑠 is

𝜂𝑝ℎ
𝑠𝑝ℎ

=
220𝜋7

5 · 9 · 13!
1

(𝑢+ 1)4

[︃(︂
~
𝜌𝑐

)︂3(︂
𝜌𝑐2

𝑘B𝑇

)︂4]︃2
~
𝑘B
.

We can present this expression as

𝜂𝑝ℎ
𝑠𝑝ℎ

=

(︂
𝜂𝑝ℎ
𝑠𝑝ℎ

)︂
𝑇=𝑇1

(︂
𝑇1
𝑇

)︂8
, (1)

where(︂
𝜂𝑝ℎ
𝑠𝑝ℎ

)︂
𝑇=𝑇1

=
222𝜋8

5 · 9 · 13!
1

(𝑢+ 1)4

[︃(︂
~
𝜌𝑐

)︂3(︂
𝜌𝑐2

𝑘B𝑇1

)︂4]︃2

.

Thus, at temperatures 𝑇 ≪ 𝑇𝜆, the ratio (𝜂𝑝ℎ/𝑠𝑝ℎ)
decreases with increase in the temperature.

3. Gaseous Helium

At temperatures 𝑇𝜆 ≪ 𝑇, we can consider helium
as a classical Boltzmann gas. In order to simplify
notations in this section, we assume the Boltzmann
constant 𝑘B = 1.

The entropy of this gas [7]

𝑠(𝑇, 𝑃 ) = −𝑁 [ln𝑃 + 𝜒′(𝑇 )],

where 𝜒′(𝑇 ) is some function of the temperature. If
we assume that the heat capacities 𝑐𝑣 and 𝑐𝑝 do not
depend on the temperature,

𝑐𝑝, 𝑐𝑣 = const,

then

𝜒′(𝑇 ) = −𝑐𝑝 ln𝑇 − 𝑐𝑝 − 𝜁,

where 𝜁 is the chemical potential. In this case, the
density of entropy 𝑠 takes the form

𝑠(𝑇, 𝑃 ) = 𝑁 [ln(𝑇 𝑐𝑝/𝑃 ) + 𝑐𝑝 + 𝜁].

A viscosity of the classical Boltzmann gas is
equal to [8]

𝜂 ∼ 𝑚𝑣𝑙𝑁,

where 𝑣 is the thermal velocity and 𝑙 is the mean free
path,

𝑣 ∼
(︂
𝑇

𝑚

)︂1/2
, 𝑙 ∼ 1

𝜎𝑁
.

Therefore, the viscosity of the classical Boltzmann gas
has the following dependence on the temperature:

𝜂 ∼ (𝑚𝑇 )1/2

𝜎
.

Thus, the ratio of the shear viscosity 𝜂 to the vol-
ume density of entropy 𝑠 reads

𝜂

𝑠
∼ (𝑚𝑇 )1/2

𝜎𝑁

1

ln(𝑇 𝑐𝑝/𝑃 ) + 𝜁 + 𝑐𝑝
.

It is convenient to represent this expression as follows:

𝜂

𝑠
=

(︁𝜂
𝑠

)︁
𝑇=𝑇2

(𝑇/𝑇2)
1/2

ln(𝑒𝑇/𝑇2)
, (2)

where

𝑇2 = [𝑃 exp(−𝜁)]1/𝑐𝑝 = [𝑃 exp(−𝜁)](𝛾−1)/𝛾 ,

𝛾 = 𝑐𝑝/𝑐𝑣.

We can see that, at temperatures 𝑇𝜆 ≪ 𝑇, the ratio
(𝜂𝑝ℎ/𝑠𝑝ℎ) increases with the temperature.

4. Helium at the temperature 𝑇𝜆

At the temperature 𝑇𝜆, the Bose–Einstein condensa-
tion takes place in helium. If we neglect the inter-
action of helium atoms, then the entropy of helium
and its first derivative with respect to the tempera-
ture (i.e., specific heat) are continuous functions of
the temperature at 𝑇𝜆, but the second derivative of
the entropy is discontinuous.

If we take the interaction of atoms in account, then
helium near the 𝜆-transition is described with a com-
plex order parameter which is nothing else as the con-
densate wave function,

𝜓 =
√
𝜌𝑠 𝑒

𝑖𝜑.

To describe helium at |𝑇 − 𝑇𝜆| ≪ 𝑇𝜆, we should con-
sider fluctuations of the order parameter.

As a consequence, the entropy of helium 𝑠(𝑇, 𝑃 ) at
𝑇 → 𝑇𝜆 can be presented in the form of a sum of two
parts,

𝑠(𝑇, 𝑃 ) = 𝑠0(𝑇, 𝑃 ) + 𝑠sing(𝑇, 𝑃 ),

where 𝑠0(𝑇, 𝑃 ) is the continuous part of the entropy
and 𝑠sing(𝑇, 𝑃 ) is its singular part, which appears due
to fluctuations. The singular part of the entropy is

𝑠sing(𝑇, 𝑃 ) ∼ |𝑇 − 𝑇𝜆|1−𝛼,
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where the thermodynamical critical index 𝛼 for he-
lium is negative and small,

𝛼 ≃ −0.02.

Therefore, the entropy of helium 𝑠(𝑇, 𝑃 ) at 𝑇𝜆 is fi-
nite.

The viscosity of helium 𝜂 at |𝑇 − 𝑇𝜆| ≪ 𝑇𝜆 can be
presented also as a sum of two terms,

𝜂(𝑇 ) = 𝜂0(𝑇 ) + 𝜂sing(𝑇 ).

The singular term 𝜂sing(𝑇 ) is characterized with the
dynamical critical indices [8, 9, 10]. We can express
these dynamical critical indices in terms of the ther-
modynamic critical index 𝛼 due to a special circum-
stance: the non-equilibrium free energy of helium de-
pends only on the modulus of the order parameter
[10, 11, 12]. Considerations similar to that for the
entropy lead us to the conclusion that the viscosity
of helium 𝜂(𝑇, 𝑃 ) at 𝑇𝜆 is finite. Therefore, the ratio
(𝜂(𝑇𝜆, 𝑃 )/𝑠(𝑇𝜆, 𝑃 )) is also finite.

5. Conclusion

According to our consideration, when the tempera-
ture 𝑇 grows, starting from the absolute zero, then
the ratio (𝜂/𝑠) of the shear viscosity 𝜂 to the density
of entropy 𝑠 for helium decreases at first, achieves
a finite minimum (𝜂/𝑠)min near the temperature of
the phase transition 𝑇𝜆, and then increases. The
inspection of the experimental data for helium [13,
14] shows that this conclusion is qualitatively valid.
However, we should remark that the experimental
value (𝜂/𝑠)min is approximately 10 times larger than
(~/4𝜋𝑘B). Therefore, helium is far from the perfect
liquid in this sense. Although for the unitary limit,
the value (𝜂/𝑠) can achieve 1.3 [15].

In this work, we assume that the liquid helium is
not compressible. If we take the compressibility of he-
lium into account, the above consideration becomes
more complicated as a result of the interaction of nor-
mal and superfluid motions in helium and the neces-
sity to consider, due to that, three more volume vis-
cosities along with the shear viscosity.

In addition, we should remark that, besides he-
lium, we have nowadays, due to special experimental
techniques, the gases of alkali metals which can also

undergo to the Bose–Einstein condensation and can
have the same properties, but their viscosities are not
studied accurately enough.

We believe also that since the superfluidity and the
superconductivity are related phenomena, the latter
will demonstrate similar properties.
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ВIДНОШЕННЯ В’ЯЗКОСТI
ЗСУВУ ДО ГУСТИНИ ЕНТРОПIЇ В ГЕЛIЇ

Р е з ю м е

Дослiджено для гелiю вiдношення (𝜂/𝑠) в’язкостi зсуву 𝜂 до
густини ентропiї 𝑠 як функцiю температури i встановлено,
що мiнiмальна величина, (𝜂/𝑠)min, задовольняє нерiвнiсть
Ковтуна–Сона–Старинця, (𝜂/𝑠)min ≥ (~/4𝜋𝑘B).
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