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IONIZATION OF ATOMS
IN A STRONG LASER RADIATION FIELD
AND THE IMAGINARY TIME METHODPACS 32.80.Fb

The phenomenon of nonlinear relativistic ionization induced by a strong electromagnetic wave
has been considered. The relativistic version of the imaginary time method is used to calculate
the probability for an electron with an energy of the order of its rest energy to tunnel through
a potential barrier under the action of a strong electromagnetic wave. Besides the exponential
factor, the Coulomb and pre-exponential ones are also obtained with regard for the electron spin
and the ionization probability. Simple analytical formulas for the momentum distributions of
relativistic photo-electrons are derived. The relativistic effects are shown to result in a nonzero
drift velocity of an electron, when it quits the barrier. In the nonrelativistic limit, the well-
known Keldysh exponent and the Landau–Lifshitz formula for the ionization probability of a
hydrogen atom in the ground state are obtained.
K e yw o r d s: relativistic tunnel and multiphonon ionization, imaginary time method, Keldysh
parameter.

1. Introduction

An extensive body of the literature is devoted to the
study of the ionization of atoms and ions under the
action of intensive laser radiation [1–6]. The theory
of these processes was started by Keldysh in his clas-
sical work [7], where the tunnel effect in an alter-
nating electric field and the multiphoton ionization
of atoms were demonstrated to be the limiting cases
of the nonlinear photoionization process, the course
of which considerably depends on the value of the
Keldysh adiabatic parameter 𝛾. This parameter is
defined as the ratio between the frequency of laser
radiation, 𝜔, and the frequency of electron tunneling
through the potential barrier, 𝜔𝑖,

𝛾 =
𝜔

𝜔𝑡
=

√︀
2𝑚|𝐸0|𝜔
𝑒𝐹

, (1)

where 𝐸0 is the potential of atomic level ionization,
and 𝐹 the electromagnetic field strength created by
a laser. The tunnel ionization of atomic states occurs
if 𝛾 ≪ 1. In the case 𝛾 ≫ 1, the process has a mul-
tiphoton character. The authors of works [1–7] used
the nonrelativistic approximation, which is valid for
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the valence electrons in each atom between hydrogen
and uranium. For today, owing to the progress in
laser physics and technology, the intensity of laser
pulses reaches the values up to 𝐼 ∼ 1022 W/cm2

[8], and the range of their duration was substantially
expanded (femto- and even ultrashort atto-second
pulses were already obtained [9, 10]). In electro-
magnetic fields with such intensity, the ponderomo-
tive energy of an electron emitted due to the ioniza-
tion, 𝐸𝑝 = 𝑒2𝐹 2/(4𝑚𝜔2), can be of the order of its
rest energy, 𝑚𝑐2. In addition, the laser fields that
are so intense that they can exceed the atomic field
𝐹H = 5.14 × 109 V/cm by several orders of mag-
nitude are capable of creating the multivalent ions
with charges 𝑍 ∼ 40–60, for which the binding en-
ergy of the ground level is also comparable with the
electron rest energy. According to the modern ideas,
the sub-barrier motion of an electron in the course of
ionization cannot be considered as nonrelativistic, so
that the Keldysh theory needs modifications [7, 11–
13]. The main relativistic effects in the final state are
[14–18] the relativistic distribution of the energy of
emitted electrons and the shift of their angular dis-
tribution in the propagation direction of the incident
laser beam.
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The process of relativistic ionization in crossed
electric and magnetic fields was considered in works
[19, 20]. The results obtained can be applied to the
ionization only in the case of very strong laser fields,
when the parameter 𝜀 = 𝑒𝐹

𝜔𝑚𝑐 ≫ 1. As the frequency
𝜔 of the light emitted by a laser increases (e.g., in the
case of sensitive x-ray lasers), very high intensities are
required to satisfy this condition. Hence, the result
of works [19, 20] has to be generalized onto the case
of nonzero frequencies. In this work, we intend to
examine the effects associated with relativistic veloc-
ities in the final states and/or with low-lying initial
states from a special viewpoint. We concentrate our
attention on the process of nonlinear ionization of a
strongly coupled electron with the binding energy 𝐸𝑏,
the latter having an order of the electron rest energy.
A requirement to be satisfied in this case is inverse in
comparison with that for the case of purely classical
ionization, i.e. 𝐹 ≪ 𝐹𝑏. In addition, we also have
a quasi-classical condition ~𝜔 ≪ 𝐸𝑏. No restrictions
are imposed on the parameter 𝜀. In such a manner,
the both modes–relativistic tunneling and multipho-
ton ionization–are included into consideration. Be-
low, we apply the relativistic version of the “imaginary
time” method [20, 21]. Being a generalization of the
quasi-classical WKB-approximation onto the case of
fields varying in time, this method describes the tun-
nel transition of an electron from a bound state into
the continuum with the help of the classical equa-
tions of motion, but the time is an imaginary-valued
quantity.

2. Classical Relativistic Action
and Imaginary Time Method

The imaginary part of the reduced classical action
𝑆𝑓 calculated along similar trajectories determines,
with an exponential accuracy, the probability for an
electron to transit from a bound state with energy 𝐸0

into the continuum,

𝑊0 ∝ exp

{︂
−2

~
Im (𝑆𝑓 (𝑡0) + 𝐸0𝑡0)

}︂
, (2)

where 𝐸0 = 𝑚𝑐2 − 𝐸𝑏, and 𝑆𝑓 is the classical rel-
ativistic action for an electron with charge 𝑒 that
moves in the field of a plane electromagnetic wave
with the vector potential 𝐴(𝑡 − 𝑥/𝑐). Hereafter, the
notation 𝐴 means a two-dimensional vector in the
𝑦− 𝑧 plane. The action can be found as a solution of

the Hamilton–Jacobi equation [22],

𝑆𝑓 (𝜉; 𝜉0) = 𝑚𝑐2
{︂
𝑓 · 𝑟

𝑐
− 𝛼

𝑥

𝑐
− 1 + 𝛼2 + 𝑓2

2𝛼
(𝜉 − 𝜉0)+

+
𝑒

𝑚𝑐2𝛼
𝑓

𝜉∫︁
𝜉0

𝐴𝑑𝜉 − 𝑒2

2𝑚2𝑐4𝛼

𝜉∫︁
𝜉0

𝐴2𝑑𝜉

}︂
, (3)

where 𝛼 and 𝑓 = (𝑎1, 𝑎2) are constants, 𝑟 = (𝑦, 𝑧),
and 𝜉0 is the initial value of the variable 𝜉 = 𝑡− 𝑥/𝑐.

In the framework of the ordinary Hamilton–Jacobi
method, we differentiate the action 𝑆𝑓 with respect
to the variables 𝑎1, 𝑎2, and 𝛼; then, equating the
results to new constants 𝛽1, 𝛽2, and 𝛽3, we obtain a
trajectory of the electron under the wave-field action.
In the case of harmonic, plane, and linearly polarized
waves with the field strength 𝐸 = 𝐹𝑒𝑦 cos𝜔𝜉, the
electron motion in the laboratory coordinate system
is described by the expressions

𝛼2(𝑡+ 𝑥/𝑐)− 𝛽2𝜉 +
2𝜀

𝜔
𝑎1 cos𝜔𝜉+

𝜀2

4𝜔
sin 2𝜔𝜉=𝛽3,

𝑣𝑥= 𝑐
𝑓(𝜉)− 1

𝑓(𝜉) + 1
, 𝑦 = 𝛽1+

𝑐𝑎1
𝛼

𝜉 − 𝑐𝜀

𝛼𝜔
cos𝜔𝜉,

𝑣𝑦 =
2𝑐

𝛼 (1 + 𝑓(𝜉))
[𝑎1 + 𝜀 sin𝜔𝜉] , 𝑧 = 𝛽2+

𝑐𝑎2
𝛼

𝜉,

𝑣𝑧 =
2𝑐

𝛼 (1 + 𝑓(𝜉))
𝑎2,

𝑓(𝜉) =
𝛿2

𝛼2
+

2𝜀

𝛼2
𝑎1 sin𝜔𝜉 +

𝜀2

𝛼2
sin2 𝜔𝜉,

(4)

where the parameters 𝛽1, 𝛽2, and 𝛽3, as well as 𝑎1, 𝑎2,
and 𝛼, have to be determined from the initial con-
ditions for the charge position and velocity. Let us
introduce the notation 𝛽2 = 1 + 𝑎21 + 𝑎22 + 𝜀2/2 and
𝛿2 = 1+𝑎21+𝑎22. The complex initial time moment 𝑡0
is determined from the classical return point on the
complex half-plane,

𝐸𝑓 (𝑡0) = 𝑚𝑐2
{︂
1 + 𝛼2 + 𝑓2

2𝛼
− 𝑒

𝑚𝑐2𝛼
𝑓𝐴(𝑡0)+

+
𝑒2

2𝑚2𝑐4𝛼
𝐴2(𝑡0)

}︂
= 𝐸0. (5)

Minimizing the imaginary part of the action, we ar-
rive at the following boundary conditions [3, 21]:

𝑟(𝑡0) = 0, Im 𝑟(𝑡 = 0) = 0. (6)

The former corresponds to the start of the electron
motion under the barrier at a time moment 𝑡0, and
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the latter means that the most probable (extreme)
trajectory becomes actual at 𝑡 = 0. At 𝑡 > 0, it
describes the electron motion to the infinity in the
classically allowed region.

While searching for simple analytical results, let
us consider the case of laser-emitted linearly polar-
ized light. By minimizing the action, we obtain from
Eqs. (5) and (6) that 𝑓 = 0. We intend to derive
a system of nonlinear equations that determines the
complex initial time 𝑡0 and the constant 𝛼,

𝑡0 = 𝑖𝜏0 = − 𝑖

𝜔
arcsinh

(︁
𝜂
√︀

1 + 𝛼2 − 2𝛼𝜀0

)︁
,

𝛼2 = 1 +
1

2𝜂2

[︂
1− 𝜂

√
1 + 𝛼2 − 2𝛼𝜀0

arcsinh
(︀
𝜂
√
1 + 𝛼2 − 2𝛼𝜀0

)︀ ×
×
√︀
1 + 𝜂2 (1 + 𝛼2 − 2𝛼𝜀0)

]︂
(7)

with the dimensionless initial energy 𝜀0 = 𝐸0/𝑚𝑐2

and the relativistic adiabatic parameter 𝜂 = 𝜀−1 =
= 𝜔𝑚𝑐/(𝑒𝐹 ). Substituting the quantities 𝑡0 and 𝛼
into the action for the final state, we obtain the prob-
ability of relativistic quasi-classical ionization in the
field of a linearly polarized laser beam. With an ex-
ponential accuracy,

𝑊0 ∝ exp

{︂
−2𝐸𝑏

~𝜔

[︂(︂
1 +

1

2𝛾2𝛼
+

𝑚𝑐2

𝐸𝑏

(1− 𝛼)2

2𝛼
×

× arcsinh𝛾(𝛼)

)︂
− 1

2𝛾2𝛼
𝛾(𝛼)

√︀
1 + 𝛾2(𝛼)

]︂}︂
, (8)

where 𝛼 is the solution of Eq. (7). Hereafter, 𝛾 =
=

√
2𝑚𝐸𝑏𝜔/(𝑒𝐹 ) is the nonrelativistic Keldysh pa-

rameter corresponding to the binding energy 𝐸𝑏, and
𝛾(𝛼) = 𝜂

√
1 + 𝛼2 − 2𝛼𝜀0 is the 𝛼-dependent adia-

batic parameter. Equation (8) is the most general
expression for the ionization rate in the quasi-classical
regime and at the field strength lower than the over-
barrier threshold. It describes both the tunnel and
multiphoton ionization. It is a relativistic generaliza-
tion of the well-known result obtained by Keldysh [7].

Now, let us analyze some limiting cases. Near the
tunnel ionization limit, 𝜂 ≪ 1, we reproduce the
static result [19, 20] with the frequency correction,

𝑊0 ∝ exp

{︂
−𝐹𝑠

𝐹
Φ

}︂
,

Φ =
2
√
3
(︀
1− 𝛼2

0

)︀3/2
𝛼0

−
3
√
3
(︀
1− 𝛼2

0

)︀5/2
5𝛼0

𝜂2 +𝑂(𝜂4),

(9)

where 𝐹𝑠 = 𝑚2𝑐3/𝑒~ = 1.32 × 1016 V/cm is the
Schwinger field in quantum electrodynamics [23] and
𝛼0 = (𝜀0 +

√︀
𝜀20 + 8)/4. In the nonrelativistic limit,

𝜀𝑏 = 𝐸𝑏/𝑚𝑐2 ≪ 1, we obtain that the parameter
𝛼0 = 1 − 𝜀𝑏/3 + 𝜀2𝑏/27, and the expression for the
probability of the nonrelativistic tunnel ionization,
which takes the first relativistic and the frequency
corrections into account, looks like

𝑊0 ∝

∝ exp

{︃
−4

3

√
2𝑚𝐸

3/2
𝑏

𝑒~𝐹

[︂
1− 𝛾2

10
− 𝐸𝑏

12𝑚𝑐2

(︂
1− 13

30
𝛾2

)︂]︂}︃
.

(10)

Here, the first two terms in the brackets describe the
rate of ordinary nonrelativistic ionization and the first
frequency correction to it [15]; the last term is the
first relativistic correction. From Eq. (9), it follows
that the account of relativistic effects overestimates
the ionization rate in comparison with the nonrela-
tivistic case. However, even for the binding energy
of the order of the electron rest energy, the rela-
tivistic correction in the exponential factor is rather
small. Near the “vacuum” limit 𝜀0 = −1 (i.e. for
a level that is shifted down to the limit of a lower
continuum, which corresponds to the critical nucleus
charge 𝑍𝑐𝑟 = 173), Eq. (9) transforms into 𝑊0 ∝
∝ exp

{︀
−9𝐹𝑠/2𝐹 (1− 9𝜂2/40)

}︀
. The maximum devi-

ation in the exponent argument from the Keldysh for-
mula reaches 18%. Here, the “vacuum” limit should
not be confused with the creation of pairs in vacuum.
It is known that the nonlinear vacuum phenomena
are absent for a plane wave [23]. In contrast, we
deal with the ionization of an atom that is at rest in
the laboratory coordinate system. Note also that the
one-particle approximation is used. Therefore, the
process of pair generation remains beyond the scope
of our consideration.

Now, let us proceed to the multiphoton limit,
𝜂 ≫ 1. In this case, the parameter 𝛼 = 1−𝜀𝑏/2 ln 2𝛾,
and the probability of relativistic ionization reads

𝑊0 ∝ exp

{︂
−2𝐸𝑏

~𝜔

[︂
ln 2𝛾 − 1

2
− 𝐸𝑏

8𝑚𝑐2 ln 2𝛾

]︂}︂
. (11)

The first two terms in the brackets display, as above,
the nonrelativistic result [7]. Relativistic effects giv-
ing rise to the increase of the ionization probability
are contained in the last term.
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It was shown above that, in the relativistic the-
ory, the ionization rate grows irrespective of whether
the parameter 𝜂 is large or small. This result can be
compared with those obtained by Crawford and Reiss
[14, 17]. In their numerical calculations, the cited au-
thors also found that the ionization rate increases in
the field of a circularly polarized wave if 𝜂 ≫ 1; how-
ever, in the case 𝜂 ≪ 1, their results demonstrate
a substantial decrease of the ionization probability
[14]. In the case of linearly polarized light, it was
shown [17] that the ionization rate is depressed by rel-
ativistic effects. However, Crawford and Reiss stud-
ied the over-barrier ionization of a hydrogen atom in
the strong field approximation. In contrast to them,
we analyze the sub-barrier ionization from a strongly
coupled electron level, which results in an increase of
the ionization rate. This growth is associated with a
shift of the initial time 𝑡0 toward earlier moments. As
a result, the sub-barrier complex trajectory becomes
shorter, and the ionization rate increases in compari-
son with that in the nonrelativistic theory. In Fig. 1,
the dependence of the relativistic ionization rate on
the binding energy 𝜀𝑏 (Eq. (8)) and the results of
calculation using the Keldysh nonrelativistic formula
are shown. Figure 1 should be regarded only as an il-
lustration of the increment effect for two parameters,
𝜂 < 1 and 𝜂 > 1, because the values of frequency and
intensity used at calculations remain not accessible
for experimenters till now.

The transition from the multiphoton regime to the
tunnel one as the field strength increases can be stud-
ied near the nonrelativistic limit 𝜀𝑏 ≪ 1. Here, in
the first approximation with respect to 𝜀𝑏 and at
𝛼 = 1− (𝜀𝑏/2𝛾

2)[(𝛾/arcsinh𝛾)
√︀
1 + 𝛾2 − 1], the ion-

ization probability is estimated as follows:

𝑊0 ∝ exp

{︂
−2𝐸𝑏

~𝜔
𝑓(𝛾)

}︂
,

𝑓(𝛾) = arcsinh𝛾 +
1

2𝛾2

[︁
arcsinh𝛾 − 𝛾

√︀
1 + 𝛾2

]︁
−

− 𝜀𝑏
𝛾4+𝛾2−2𝛾

√︀
1+𝛾2 arcsinh𝛾+arcsinh2𝛾

8𝛾4arcsinh𝛾
. (12)

The terms in the function 𝑓(𝛾), which survive at
𝜀𝑏 → 0, describe the rate of nonrelativistic quasi-
classical Keldysh ionization [7], whereas the term pro-
portional to 𝜀𝑏 is the first relativistic correction to the
Keldysh formula. Equation (12) is valid in the whole
interval of 𝛾-variation, i.e. both in the multiphoton,

Fig. 1. Dependences of the absolute value of ionization rate
logarithm on the binding energy 𝜀𝑏 = 𝐸𝑏/𝑚𝑐2. Solid curves
show the results of relativistic calculations by formula (8),
dashed curves are the results of nonrelativistic calculations by
the Keldysh formula (formula (12) without the relativistic cor-
rection). The parameter values (in atomic units) are 𝜔 = 100

and 𝐼 = 8.5× 107

𝛾 > 1, and tunnel, 𝛾 < 1, limits. For a small adi-
abatic parameter, 𝛾 → 0, it coincides with Eq. (10)
and transforms in the case of large 𝛾 into Eq. (11).
Note that Eq. (12) reproduces very accurately the
complete relativistic formula (8) at 𝐸𝑏 < 𝑚𝑐2.

Now, let us consider the changes in the energy spec-
trum induced by relativistic effects. In the nonrela-
tivistic theory and in the case of linear light polar-
ization, the most probable value of electron momen-
tum at 𝑡 = 0, i.e. at the electron departure moment,
equals zero. Electrons are emitted mainly in the di-
rection of the laser beam polarization. In the rela-
tivistic theory, which is considered in this work, we
may put 𝑎1 = 𝑎2 = 0 in Eq. (4). Then, for the most
probable velocity of electron departure in the labora-
tory coordinate system, we obtain

𝑣𝑥 = 𝑐
1− 𝛼2

1 + 𝛼2
, 𝑣𝑦 = 𝑣𝑧 = 0, (13)

where 𝛼 is the solution of the second equation in sys-
tem (7). In the static limit, 𝜔 → 0, the result of work
[20] is reproduced.

From those equations, it follows that the strongly
coupled electron is emitted along the laser beam prop-
agation direction, i.e. perpendicularly to the polar-
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Fig. 2. Dependence of the 𝑥-component of the emission ve-
locity, 𝑣𝑥/𝑐, on the binding energy of the initial level 𝜀𝑏 =

= 𝐸𝑏/𝑚𝑐2. In the nonrelativistic theory, the emission veloc-
ity equals zero. The parameter values (in atomic units) are
𝜔 = 100 and 𝐼 = 8.5× 107

Fig. 3. Spectra of electron momentum projections on the
beam propagation direction calculated by formula (14). The
field strength 𝐼 = 2.5× 1010 V/cm

ization direction. For a nonrelativistic initial state
with 𝜀𝑏 ≪ 1, the average velocity of departure along
the beam propagation direction, 𝑣𝑥 = 𝑐𝑒𝑏/3, is low.
Nevertheless, this quantity seems to be a more sensi-
tive criterion of relativistic effects in the initial state.
The dependence of the 𝑥-component of the emission

velocity, 𝑣𝑥/𝑐, on the binding energy of the initial
level is shown in Fig. 2.

The electron energy spectrum undergoes the in-
fluence of relativistic effects in the final state as
well. Let us put 𝑎1 = 𝑝𝑦,0/𝑚𝑐, 𝑎2 = 𝑝𝑧,0/𝑚𝑐, and
𝛼 = (−𝑝𝑥,0 +

√︁
1 + 𝑝2𝑥,0 + 𝑝2𝑦,0 + 𝑝2𝑧,0)/𝑚𝑐, and con-

fine the consideration to the tunnel limit, 𝛾 ≪ 1.
Supposing that the relativistic effects are weak in the
initial state, 𝜀𝑏 ≪ 1 and (𝑝𝑦,0, 𝑝𝑧,0) ≪ 𝑚𝑐, it is possi-
ble to obtain the following formula:

𝑊𝑝 = 𝑊0 exp
{︁
− 𝛾

𝑚~𝜔

[︁
(𝑝𝑥,0− < 𝑝𝑥,0 >)

2
+ 𝑝2𝑧,0

]︁}︁
×

× exp

{︃
−

𝑝2𝑦,0
𝑚~𝜔

(︃
𝛾2

3
+

𝑝2𝑦,0
4𝑚2𝑐2

)︃
𝛾

}︃
, (14)

where 𝑊0 is the total ionization rate (Eq. (10)) in the
weakly relativistic tunnel limit. The first exponential
function in formula (14) describes the momentum dis-
tribution in the plane that is perpendicular to the po-
larization axis. In the weakly relativistic limit, there
is only one relativistic effect; this is the appearance
of the average momentum ⟨𝑝𝑥,0⟩ = 𝐸𝑏/3𝑐 at the de-
parture moment. A nonzero average velocity of elec-
tron departure along the propagation vector breaks
the symmetry in the (𝑥, 𝑧)-plane, the violation taking
place in the nonrelativistic theory as well. The first
term in the second exponential function in Eq. (14)
is responsible for the nonrelativistic energy spectrum
of low-energy electrons moving along the polarization
axis, whereas the second (relativistic) term becomes
important at large energies, 𝑝2𝑦,0 > 4𝛾2𝑚2𝑐2/3. Only
if the adiabatic parameter is small, 𝛾 ≤ 1, the re-
quirement of high energies does not contradict the
condition 𝑝𝑦,0 < 𝑚𝑐. Note that the second term in
the second exponential function agrees with the cor-
responding Krainov’s term [15, 16]. The spectrum of
electron momentum projections on the beam propa-
gation direction is depicted in Fig. 3.

3. Coulombic Correction

Above, we neglected the Coulomb interaction be-
tween the departing electron and the atomic core, so
that the formulas obtained concern the case of nega-
tive ion ionization (ions of the type H−, Na−, and so
forth). In the case of ionization of neutral atoms and
positive ions, the Coulomb interaction of the arisen
electron with the atomic (ionic) remnant has to be

120 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 2



Ionization of Atoms in a Strong Laser Radiation Field

taken into account. With that end in view, we in-
tend to apply the quasi-classical perturbation theory
in order to calculate the correction to the classical
action, 𝛿𝑆 = 𝑍

∫︀
𝑑𝑡/𝑟(𝑡). However, since this inte-

gral diverges at 𝑟 → 0, let us use the procedure of
matching with the asymptotic wave function of a free
atom, 𝜒𝑘(𝑟) ≃ exp {− [(𝑘𝑟)− 𝜂 ln(𝑘𝑟) +𝑂(1)]} (see
details in work [13]). This approximation gives us
the Coulomb factor [3]

𝑄(𝑧0) = 2𝜆𝑧0 exp {𝐽(𝑧0)},

𝐽(𝑧0) =

1∫︁
0

[︂
𝛾𝑧0

|𝑟([1− 𝑠]𝑧0)|
− 1

𝑠

]︂
𝑑𝑠

(15)

in the expression for the tunnel ionization probability
𝑊 [20],

𝑊 = 𝜔𝑏 𝐶2
𝜅𝑙𝑆± 𝑃0(𝜏0) 𝑄

2𝑛*
(𝜏0)𝑊0, (16)

where 𝑧0 = 𝜔𝜏0, 𝑟 is trajectory (4) corresponding to
the imaginary time (7) at the sub-barrier motion of
an electron,𝜔𝑏 = 𝐸𝑏/~ = 0.776(1 − 𝜀0) × 1021 s−1 is
the frequency corresponding to the binding energy of
the level, the parameter 𝑊0 is defined by formula (8),
and 𝑛* = 𝑍�̃�𝜀0/

√︀
1− 𝜀20 is a relativistic analog of the

Sommerfeld parameter (𝑍 is the atomic core charge,
and �̃� = 𝑒2/~𝑐 = 1/137). The parameter 𝑛* is close
to 1, as a rule (for a hydrogen atom, 𝑛* = 1). In ad-
dition, 𝐶𝜅𝑙 is the asymptotic coefficient in the atomic
wave function at infinity (in particular, 𝐶𝜅𝑙 = 1 for
the 1𝑠-state of a hydrogen atom [12]); 𝑃0 and 𝑆± are
the exponential and spin factors, respectively, which
can also be determined in the framework of the imagi-
nary time method. Collecting all multipliers and car-
rying out rather cumbersome calculations, we obtain
the following formula for the ionization probability of
a relativistic 𝑠-level in the adiabatic approximation:

𝑊 = 𝜔𝑏 𝐶2
𝜅𝑙𝐸

3/2−2𝑛*
𝑆± 𝑃 𝑊0, (17)

where

𝐸 = (1 + 𝜁2)𝐹/(3
√
3𝜁3𝐹𝑠);

𝑆± = exp

{︃
±

√
3𝜁√︀

1 + 𝜁2

(︂
1− 𝜇

𝜇B

)︂}︃
; (18)

the subscripts ± correspond to the spin projections
(𝑠𝑧 = ±~/2) on the magnetic field direction of the

Fig. 4. Logarithm of the ionization probability (formula (17),
solid curve) and Keldysh formula (expression (12) without the
relativistic correction, dashed curve). 𝜂 = 1.47. The account
for the Coulomb interaction increases the ionization probability

wave (we suppose that the magnetic field of the wave
is directed along the 𝑧-axis), so that the states with
different 𝑠𝑧-values have different ionization rates;

𝜁 =

[︂
1 +

𝜀0
2

(︂
𝜀0 −

√︁
8 + 𝜀20

)︂]︂1/2
,

and, for the ground level 1𝑠1/2 of a hydrogen-like
atom with the charge 𝑍 = 60, we have 𝜇 = 0.933𝜇B

[24], where 𝜇B = 𝑒~/2𝑚𝑐 is the Bohr magneton. For-
mula (18) makes allowance for the spin rotation in an
external electromagnetic field (its magnitude is de-
termined by the Bargmann–Michel–Telegdi equation
[25]), as well as the split of the initial level by the
wave magnetic field. The factor 𝑃 is expressed by
the formula

𝑃 =

√
3(1 + 𝜀0)√︀
𝜋(1− 𝜁4/9)

[︃
2

(︂
1− 𝜁2

3

)︂2]︃2𝑛*

×

× exp

(︂
6𝑍�̃� arcsin

𝜁√
3

)︂
. (19)

In the nonrelativistic limit, relation (17) gives rise
to the well-known Landau–Lifshitz formula [26]

𝑊H = 8|𝐸H|
𝐹H

𝐹
exp

{︂
−2𝐹H

3𝐹

}︂
(20)
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for the ionization probability of the ground state in
a hydrogen atom (𝐸H = 13.6 eV). Figure 4 demon-
strates the result of taking the Coulomb interaction
into account.

4. Conclusions

On the basis of the Hamilton–Jacobi equation, the
classical action and the trajectories of relativistic mo-
tion are obtained for an electron moving in the field of
a linearly polarized electromagnetic wave. With the
help of the imaginary time method, the sub-barrier
motion of an electron is studied, and the simple for-
mulas for the probability of atomic level ionization in
the field of the strong laser radiation with the energy
comparable with that of an electron at rest are de-
rived. The expressions for the ionization probability
presented in this work cover a wide interval of adia-
batic Keldysh parameter variation ranging from the
multiphoton ionization to the tunnel mode. In the
nonrelativistic limit, they coincide with the known
relations obtained by other authors. The momen-
tum distribution of outcoming electrons is studied,
and it is shown, in particular, that the electron can
possess a nonzero drift velocity after it quits the sub-
barrier region in the relativistic case. In the adiabatic
limit, the Coulomb interaction between a relativistic
electron and the atomic core and its influence on the
ionization probability are taken into account. In the
nonrelativistic limit, the Landau–Lifshitz formula for
the ionization probability of a hydrogen atom in the
ground state is obtained, and the expression for a spin
relativistic correction is given. The results obtained
can also be applied to nuclear physics and quantum
chromodynamics.
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В.М.Рилюк, В.A.Настасюк

IОНIЗАЦIЯ АТОМIВ
У ПОЛI СИЛЬНОГО ЛАЗЕРНОГО
ВИПРОМIНЮВАННЯ ТА МЕТОД УЯВНОГО ЧАСУ

Р е з ю м е

Розглянуто феномен нелiнiйної релятивiстської iонiзацiї,
спричиненої потужним лiнiйно поляризованим полем лазе-
ра. За допомогою релятивiстської версiї методу уявного ча-
су розраховано ймовiрнiсть тунелювання електрона, енер-
гiя зв’язку якого може бути порядку енергiї спокою, крiзь
потенцiaльний бар’єр пiд дiєю поля сильної електромагнi-
тної хвилi. Окрiм експоненцiйного множника розраховано
також кулонiвський та передекспоненцiйний фактори з ура-
хуванням спiну електрона та ймовiрностi iонiзацiї. Отри-
мано простi аналiтичнi формули для iмпульсних розподi-
лiв релятивiстських фотоелектронiв. Показано, що реляти-
вiстськi ефекти приводять до появи ненульової (дрейфової)
швидкостi електрона пiсля виходу з-пiд бар’єра. На нереля-
тивiстськiй границi отримано вiдому експоненту Келдиша,
а також формулу Ландау–Лiфшица для iонiзацiї основного
стану атома водню.
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