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AUTOLOCALIZED STATES
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A theory of electron affinity for an ionic cluster is proposed both in a quasiclassical approach
and with quantization of a polarization electric field in a nanoparticle. The critical size of a
cluster as for the formation of electron’s autolocalized state and dependences of the energy and
the radius of a polaron on cluster’s size are obtained by the variational method. It has been
found that the binding energy of an electron in the cluster depends on cluster’s radius, but the
radius of electron’s autolocalization does not and equals the polaron radius in a corresponding
infinite crystal. The bound state of an electron in the cluster is possible only if cluster’s radius
is more than the polaron radius.
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1. Introduction

The bound state of an electron in a polar medium
is caused by a local polarization of the medium in-
ducted by the electron. The electron is in a potential
well in states with a discrete energy, and its field sup-
ports the polarization. In terms of the self-consistent
state of an electron and a polar medium (ammonium,
water, protein globules), some mathematical models
of an excess electron in a cluster have been built and
investigated [1–3]. In the models, it is supposed that
the solvated electron does not belong to a separate
molecule but collectively interacts with many atoms
of the polar medium. It is shown by analytical and
numerical methods that a critical size of clusters com-
posed of polar molecules exists. In a cluster with a
less size than the critical size, the autolocalized state
(polaron state) cannot exist.

Since the polaron effect exists in an ionic crystal,
we can suppose that the effect can occur in an ionic
cluster too (e.g., Na14Cl13), beginning with a some
critical size. In works [7–9], the electron localization
in alkali-halide clusters 𝑀+

𝑛 𝑋−
𝑛−1 and 𝑀+

𝑛 𝑋−
𝑛−2 was
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numerically investigated. It was supposed that the
clusters contain F-center defects and electron local-
ized near a halide ion. Obviously, the localization
of an electron in a cluster takes place in this model,
rather than the autolocalization, because the main
contribution to the binding energy of the excess elec-
tron is a Coulomb-like interaction with the F-center.
In this case, the critical size is not observed. This
problem is analogous to that of the F-center model
of negatively charged metal-ammonium clusters [3].
We will consider the neutral ionic cluster + excess
electron system, where the electron interacts with an
induced polarization only, and the process of autolo-
calization occurs.

The electron + polarization system can be de-
scribed in the quasiclassical approach. This means
that the motion of an electron is quantized; however,
the specific polarization of the medium P(r) is consid-
ered as a classical variable. However, the interaction
of a electron with the polarization field can be de-
scribed in the quantum approach. The borders of a
cluster essentially influence the quantization of opti-
cal oscillations, i.e. the optical phonon confinement
[10]. The influence of a geometry on the quantiza-
tion of optical oscillations and on the interaction of
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an electron with them was investigated in [11–13] for
quantum wells, wires, and boxes. However, it should
be noted that the polaron states in the heterostruc-
tures essentially depend on a confining potential. But
in a nanoparticle, the polaron effect is stipulated by
the interaction with the induced polarization only.
The basic difference of optical and acoustical modes
in a cluster and a heterostructure from the modes in
an infinite crystal is the restriction to possible wave-
lengths of the oscillation and the presence of interfa-
cial phonons. These properties of phonons cause the
difference of the polaron state in a nanoparticle from
that in an infinite crystal.

In Section 2, we will find the energy of a polaron in
a nanoparticle and the critical parameters of nanopar-
ticles as for the formation of a polaron state within
the variational method in the quasiclassical approach.
The variational method, unlike numerical calcula-
tions, aoolw one to obtain analytic expressions for
the connection of autolocalized state’s energy and the
polaron radius with parameters of a cluster. In Sec-
tion 3, the field of deformations of an ionic cluster is
quantized taking the boundary condition on its sur-
face into account. The energy of a polaron state, the
critical size of a nanoparticle, and the polaron radius
are determined by the variational method on the ba-
sis of an electron-phonon Hamiltonian for a spatially
bounded medium.

2. Quasiclassical Approach

In this section, we will consider a quasiclassical de-
scription of electrons’ interaction with a polarization
displacement of ions from their equilibrium positions.
Let us suppose that an electron is localized in the
ionic cluster of a spherical shape with radius 𝑅 and
is described by a wave function Ψ(r). The electron-
created field divD(r) = 𝑒|Ψ(r)|2 induces a polariza-
tion of the cluster. In turn, the electric field of the
polarization acts on the electron. The dipole moment
of cluster’s unit volume P(r) is determined by a dif-
ference of static and high-frequency polarizations:

P(r) = P0(r)− P∞(r) =
(︂

1

𝜀∞
− 1

𝜀

)︂
D ≡ 1̃︀𝜀 D, (1)

where D is an electric displacement, and 𝜀 and 𝜀∞
are static and high-frequency permittivities, respec-
tively. For the medium surrounding the cluster (e.g.,

vacuum), we have 𝜀∞ = 𝜀. Then

1̃︀𝜀 =
𝜀− 𝜀∞
𝜀𝜀∞

for 𝑟 < 𝑅,

̃︀𝜀 = ∞ for 𝑟 ≥ 𝑅. (2)

The polarization of a cluster brings to the appear-
ance of a polarization charge 𝜌 = −divP. Let E =
= −∇𝜙 be an electric field of the polarization, and let
divE = 𝜌/𝜀0 =⇒ D = −𝜀0̃︀𝜀E, where 𝜀0 is an electric
constant. Then the energy of cluster’s polarization is
[15]

𝑈field =
1

2

∫︁
P

D
𝜀0

𝑑𝑉 =
1

2
𝜀0

∫︁ ̃︀𝜀E2𝑑𝑉. (3)

Hence, the energy functional of the electron+
+ polarized cluster system has the form

𝐼(Ψ, 𝜙) =
~2

2𝑚

∫︁
|∇Ψ|2𝑑𝑉 +

+ 𝑒

∫︁
|Ψ|2𝜙𝑑𝑉 +

1

2
𝜀0

∫︁ ̃︀𝜀(∇𝜙)2𝑑𝑉, (4)

where the first term is the kinetic energy of a localized
electron in the state Ψ(r), the second term is the in-
teraction energy of the electron with the electric field
𝜙(r) of the induced polarization. The localized state
of an electron in the cluster is energetically profitable
if 𝐼 < 0.

We note that electron’s energy in vacuum is more
than electron’s energy on the bottom of a conduction
band by the electron affinity 𝜒. Unlike a cluster in
an infinite crystal, the value of 𝜒 can be made zero,
by reckoning the energy from the affinity energy. In
addition, the Coulomb blockade exists: to localize an
electron in the cluster, the work 𝑒2/2𝐶 must be done,
where 𝐶 = 4𝜋𝜀0𝜀𝑅 is the capacity of the cluster. In
an infinite crystal, the Coulomb blockade is absent,
because 𝐶 = ∞. The calculation of these energies
can change the situation basically, because the local-
ization (due to the affinity) and the autolocalization
can exist simultaneously, or the Coulomb blockade
creates a barrier for the autolocalization. However,
we can control the affinity and the blockade with an
applied external potential 𝑉, which changes the elec-
tron energy by −𝑒𝑉 so that

𝑒2

2𝐶
− 𝜒− 𝑒𝑉 = 0. (5)
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Then electron’s energy in vacuum is equal to the
energy in a cluster (without 𝐼(Ψ, 𝜙)). This mecha-
nism is used in a quantum-dot one-electron transistor.
Hence, the interaction of an electron with the cluster
is caused by the induced polarization only, and we
can observe the effect of autolocalization.

Varying functional (4) in Ψ under the condition∫︀
|Ψ|2𝑑𝑉 = 1, we obtain an equation describing the

movement of the electron with energy 𝐸 in a potential
well 𝑒𝜙 created by the electron itself:

− ℎ2

2𝑚
ΔΨ+ 𝑒𝜙Ψ = 𝐸Ψ. (6)

Varying functional (4) in 𝜙 with regard for (2), we
obtain an equation describing the polarization field
induced by the electron:{︃
Δ𝜙 = 𝑒|Ψ|2

𝜀0̃︀𝜀 𝑟 < 𝑅

Δ𝜙 = 0 𝑟 ≥ 𝑅

}︃
. (7)

The boundary conditions on the surface of the cluster
(1) and the environment (2) take the form

𝜙1 = 𝜙2, ̃︀𝜀1 𝜙1

𝜕𝑛
= ̃︀𝜀2 𝜙2

𝜕𝑛
, (8)

where n is a normal to cluster’s surface. In view of̃︀𝜀2 = ∞ and Eq. (7) on the cluster boundary and out
of the cluster, we can suppose

𝜙 = 0 for 𝑟 ≥ 𝑅. (9)

The boundary condition (9) 𝜙(𝑅) = 0 is the main
difference of electron’s autolocalization in a cluster
from the polaron state in an infinite crystal, where
the electrical field of the polarization is equal to
zero only at infinity: 𝜙(∞) = 0. In addition, we
have to calculate the boundary conditions for po-
laron’s wave function at the boundary of a clus-
ter Ψ(𝑟)𝑟=𝑅−0 = Ψ(𝑅−)𝑟=𝑅+0 and 1

𝑚Ψ′(𝑟)𝑟=𝑅−0 =
= 1

𝑚0
Ψ′(𝑅−)𝑟=𝑅+0, because electron’s masses inside

and outside the cluster are different: 𝑚 ̸= 𝑚0. How-
ever, as it will be shown in Appendix 4, the bound-
ary conditions give the insignificant contribution to
system’s energy 𝐼, and we can use the united wave
function Ψ (which is a continuous function and has
continuous derivatives) and the mass 𝑚 on the as-
sumption that the radius of a cluster is bigger than
or equal to the critical radius.

To obtain the energies of polaron states and the
critical size of a cluster, we will use the variational
method because it allows us to find analytic expres-
sions. Let the cluster be characterized by the values
of static 𝜀 and high-frequency 𝜀∞ permittivities and
the effective mass 𝑚 of an electron in crystal’s con-
duction band (for NaCl, 𝑚 = 2.78𝑚0, 𝑚0 is electron’s
mass in vacuum). Obviously, these values have mean-
ing for clusters with sizes, which are much more than
interatomic distances only. However, the method
proposed below can be extrapolated to small clus-
ters. With the help of Eqs. (7) and the condition
𝜙(∞) = 0, functional (4) can be simplified:

𝐼(Ψ, 𝜙) =
~2

2𝑚

∫︁
|∇Ψ|2𝑑𝑉 − 1

2
𝜀0

∫︁ ̃︀𝜀(∇𝜙)2𝑑𝑉. (10)

For a region out of the cluster 𝑟 ≥ 𝑅, we supposẽ︀𝜀𝜙 = 0. The wave function of system’s (electron +
+ polarized cluster) ground state can be taken in the
form [15]

Ψ =
1 + 𝑟/𝑟0√︀

7𝜋𝑟30
exp

(︂
− 𝑟

𝑟0

)︂
, (11)

where the radius 𝑟0 is a variational parameter,
namely, the polaron radius. Substituting the wave
function (11) in Eq. (7) and taking the boundary
condition (9) into account, we obtain the first inte-
gral and the solution as follows:

𝜕𝜙

𝜕𝑟
=

𝑒

𝜀0̃︀𝜀 1

4𝜋𝑟2

[︂
1− exp

(︂
−2

𝑟

𝑟0

)︂
×

×
(︂
1 + 2

𝑟

𝑟0
+ 2

𝑟2

𝑟20
+

8

7

𝑟3

𝑟30
+

2

7

𝑟4

𝑟40

)︂]︂
for 𝑟 < 𝑅, (12)

𝜙 =
𝑒

𝜀0̃︀𝜀 14

56𝜋𝑟

[︂
exp

(︂
−2

𝑟

𝑟0

)︂
×

×
(︂
1 +

19

14

𝑟

𝑟0
+

10

14

𝑟2

𝑟20
+

2

14

𝑟3

𝑟30

)︂
− 1

]︂
−

− 𝑒

𝜀0̃︀𝜀 14

56𝜋𝑅

[︂
exp

(︂
−2

𝑅

𝑟0

)︂
×

×
(︂
1 +

19

14

𝑅

𝑟0
+
10

14

𝑅2

𝑟20
+

2

14

𝑅3

𝑟30

)︂
− 1

]︂
for 𝑟 < 𝑅, (13)

𝜕𝜙

𝜕𝑟
= 0, 𝜙 = 0 for 𝑟 ≥ 𝑅. (14)
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Substituting Ψ (11) and 𝜕𝜙
𝜕𝑟 (12,14) in functional (10),

we obtain the energy of the system as a function of
the polaron radius:

𝐼(𝑟0) =
3~2

14𝑚𝑟20
− 5373

100352

𝑒2

𝜀0̃︀𝜀𝜋𝑟0 ×

×

[︃
1 +

exp
(︁
−2 𝑅

𝑟0

)︁
5373𝑟60𝑅

(︀
34048𝑟60𝑅− 25088𝑟70 +

+17920𝑟50𝑅
2 + 3584𝑟40𝑅

3
)︀ ]︃

+
𝑒2

𝜀0̃︀𝜀𝜋𝑟0
exp

(︁
−4 𝑅

𝑟0

)︁
100352𝑟60𝑅

×

×
(︀
12544𝑟70 + 39421𝑟60𝑅+ 57322𝑟50𝑅

2 + 50152𝑟40𝑅
3+

+28640𝑟30𝑅
4 + 10720𝑟20𝑅

5 + 2432𝑟0𝑅
6 + 256𝑅7

)︀
+

+
12544

100352

𝑒2

𝜀0̃︀𝜀𝜋𝑟0 𝑟0𝑅 . (15)

The following terms give the main contribution to
the energy (15) at 𝑟0/𝑅 > 0.5:

𝐼(𝑟0) ≈
3~2

14𝑚𝑟20
− 5373

100352

𝑒2

𝜀0̃︀𝜀𝜋𝑟0
[︂
1− 12544

5373

𝑟0
𝑅

]︂
≡

≡ 𝐼∞ +
12544

100352

𝑒2

𝜀0̃︀𝜀𝜋𝑅, (16)

where 𝐼∞ is the energy of an infinite crystal with
a localized electron. The autolocalized state of an
electron in a cluster (or in a crystal) is energetically
profitable if 𝐼 < 0. From Eqs. (15), (16), we can
see a limitation 𝐼∞ < 𝐼. From Eq. (16), we can see
that polaron’s radius 𝑟0 does not depend on cluster’s
radius 𝑅:

𝜕𝐼

𝜕𝑟0
= 0 =⇒ 𝑟0 = 8.00

~2𝜀0̃︀𝜀𝜋
𝑚𝑒2

. (17)

Function (15) for various values of cluster’s radius
𝑅 is shown in Fig. 1. We can see that the bound
state of an electron in a cluster consisting of molecules
NaCL can exist, by beginning from 𝑅 ≈ 3𝑎, where
𝑎 = 2.81 Å is the interatomic distance. With in-
crease in cluster’s size, the binding energy increases
and tends to a polaron energy in an infinite crystal
𝐼∞ ≈ −0.265 eV. The radius of electron’s autolocal-
ization 𝑟0 in a cluster minimizes the energy 𝐼. From
Fig. 1, we can see that 𝑟0 does not depend almost on
cluster’s radius. For sodium chloride, the radius is

∞

Fig. 1. Dependences of the energy of the electron + cluster
system (15) on the polaron radius 𝐼 = 𝐼(𝑟0) for an ionic cluster
consisting of molecules NaCL. The curves have been built for
cluster’s radii: 2𝑎, 3𝑎, 8𝑎, 15𝑎, and 40𝑎, where 𝑎 = 2.81 Å is the
interatomic distance. The bold line is the energy of an infinite
crystal with an electron

Fig. 2. Probability distribution for an electron in a clus-
ter. The vertical lines indicate the radii of clusters, for which
the energy of electron’s autolocalized state was calculated (see
Fig. 1). The radius 2𝑎 is subcritical (the bound state is absent),
the radius 3𝑎 is somewhat bigger than the critical radius – the
bound state appears

equal to 𝑟0 = 1.5 Å. The dependence shown in Fig. 1
is well approximated by the simpler dependence (16).

Equations (6), (7) were solved numerically in [2] for
clusters of ammonia and water. It was shown that the
critical size of clusters exists. However, the analytic
method discovers the next pattern. The polaron ra-
dius in a cluster does not depend on the radius of a
cluster. The bound state of an electron in the clus-
ter exists if the polaron radius is less than cluster’s
radius. In other words, the autolocalized electron is
hidden in depth of the cluster always and has a neg-
ligibly low probability to be outside it. If the cluster
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Fig. 3. Energy of the electron + cluster (consisting of NaCL)
system as a function of cluster’s radius 𝐼(𝑅) (solid line). The
doted line is the energy of a polaron in an infinite crystal 𝑅 =

= ∞. 𝑅cr is the critical radius of a cluster

Fig. 4. Energies of electron’s ground state 1𝑠 and the 𝑝-state
in the potential well 𝑒𝜙 as functions of cluster’s radius 𝐸(𝑅)

and 𝐸𝑝(𝑅) (solid lines). The dotted lines show the energies of
an electron in an infinite crystal 𝑅 = ∞. 𝑅cr is the critical
radius, when the polaron state is energetically profitable (see
Fig. 3), 𝑅s

cr and 𝑅𝑝
cr are a critical radii when, respectively, the

1𝑠-state and 𝑝-state of an electron in the potential well (13),
(14) are energetically profitable

is enough small so that the electron can be out of
the cluster, the bound state disappears. The above-
mentioned particulars are illustrated in Fig. 2. Simi-
lar results were obtained in [4], but another functional
𝐼(Ψ, 𝜙) was considered, and the ground-state energy
of an electron in a cluster and the autolocalization
radius were expressed in term of the static dielectric
constant only. Hence, the autolocalization effect in
that model is not the polaron effect, unlike our model.

Since the polaron radius 𝑟0 is independent of clus-
ter’s radius 𝑅, we can obtain the energy of the sys-
tem as a function of cluster’s radius 𝐼(𝑅), by assum-

ing that the polaron radius in formula (15) is equal
to the optimal value (17). The result is shown in
Fig. 3, where we can see that the critical radius of
a cluster determined by the equation 𝐼(𝑅cr) = 0 is
equal to 𝑅cr = 7.0 Å (2 ÷ 3 of the interatomic dis-
tance). With increase in cluster’s radius, the energy
asymptotically tends to its value in an infinite crystal
𝐼(𝑅 → ∞) → 𝐼∞.

The ground state of an electron in the potential
well 𝑒𝜙 is 1s. The energy 𝐼(Ψ, 𝜙) (4,10) is a sum
of the ground state energy of an electron in the po-
tential well and the energy of cluster’s polarization
1/2𝜀0

∫︀ ̃︀𝜀(∇𝜙)2𝑑𝑉 > 0. Then the ground-state en-
ergy of the electron is

𝐸(𝑅) =
~2

2𝑚

∫︁
|∇Ψ|2𝑑𝑉 − 𝜀0

∫︁ ̃︀𝜀(∇𝜙)2𝑑𝑉, (18)

where the wave function Ψ and the field 𝜙 are taken
in the forms (11) and (12)–(14), respectively. The ra-
dius 𝑟0 is equal to its optimal value (17). The energy
𝐸(𝑟) is the energy required to quickly transfer an elec-
tron from the localized state in a free state (e.g., by
the absorption of a photon with an energy ~𝜔 > |𝐸|).
The plot 𝐸(𝑅) is shown in Fig. 4, where we can see
that the 1𝑠-state is energetically profitable, by begin-
ning from cluster’s radius 𝑅𝑠

cr ≈ 4 A < 𝑅cr = 7 Å. In
other words, the metastable autolocalized state of an
electron in an ionic cluster is possible in the interval
𝑅𝑠

cr < 𝑅 < 𝑅cr.
If the potential well (13) is sufficiently deep, then

other discrete energy levels are possible. As cluster’s
radius increases, the 𝑝-state can appear. The 𝑠 − 𝑝
photo-transitions occur without changes of ions’ posi-
tions, according to the Franck–Condon principle. The
polarization field 𝜙 and the polaron radius 𝑟0 are the
same as those in the 𝑠-state: (13) and (17), respec-
tively. However, the wave function of an electron can
be chosen in the form

Ψ =

(︂
𝜁

𝑟0

)︂3/2
𝑟𝜁

𝜋𝑟0
exp

(︂
−𝜁𝑟

𝑟0

)︂
cos 𝜃, (19)

where 𝜁 is a variational parameter, 𝜃 is a polar angle.
Then the energy of an electron in the 𝑝-state is

𝐸𝑝 =
~2

2𝑚*

∞∫︁
0

2𝜋𝑟2𝑑𝑟

𝜋∫︁
0

sin 𝜃𝑑𝜃 |∇Ψ𝑝(𝑟, 𝜃)|2 +

+ 𝑒

∞∫︁
0

2𝜋𝑟2𝑑𝑟

𝜋∫︁
0

sin 𝜃𝑑𝜃 |Ψ𝑝(𝑟, 𝜃)|2 𝜙(𝑟). (20)
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Expression (20) is a function of the variation param-
eter 𝜁. The plots of the dependence 𝐸𝑝 on 𝜁 for clus-
ters’ radii 𝑅 = 2𝑎, 3𝑎, 8𝑎, and ∞ are shown in Fig. 5,
where we can see that the optimal value (it minimizes
𝐸𝑝) of parameter 𝜁 weakly depends on cluster’s ra-
dius, and it can be supposed 𝜁 = 0.65. Then we can
easily find the dependence of the p-state energy on
cluster’s radius 𝐸𝑝(𝑅) (Fig. 4, where we can see that
the 𝑝-state is energetically profitable, by beginning
from the radius of the cluster 𝑅𝑝

cr ≈ 8 Å > 𝑅cr > 𝑅𝑠
cr.

With increase in cluster’s radius, the energy 𝐸𝑝(𝑅)
asymptotically tends to its value in an infinite crys-
tal. In bigger clusters, the 𝑑, 𝑓, and higher states are
possible.

The essential difference of the polaron state of an
electron in a cluster from the polaron state in an infi-
nite crystal is the localization of the electron at clus-
ter’s center as a result of the boundary condition (9).
On the contrary, all points in an infinite crystal are
equivalent (in the continuous representation of a sub-
stance). Therefore, the polaron can move. In this
case, the polaron is characterized by an effective mass
𝑀 ≫ 𝑚.

3. Quantum Approach

The interaction of an electron with the polarization
field can be described in the quantum approach. The
boundaries of a cluster essentially influence the quan-
tization of optical oscillations, which is not considered
in the quasiclassical approach. The basic difference
of optical and acoustic modes in a cluster from the
modes in an infinite crystal is a restriction to the
possible wavelengths of oscillations. In a such situ-
ation, it is necessary to quantize the field of cluster’s
polarization 𝜙. In the harmonic approximation, the
Hamiltonian of the electron + cluster system has the
form

𝐻 = − ~2

2𝑚
Δ+

1

2
𝜀0̃︀𝜀∫︁ [︂

1

𝜔2
(∇�̇�)2 + (∇𝜙)2

]︂
𝑑𝑉 +

+ 𝑒𝜙 ≡ ̂︀𝑇 + ̂︀𝑈𝑓 + ̂︀𝑉int, (21)

where the first term ̂︀𝑇 is the operator of kinetic en-
ergy of an electron, ̂︀𝑈𝑓 is the operator of deforma-
tion energy of a crystal (cluster), ̂︀𝑉int is the operator
of interaction of the electron with the deformation
field. The procedure of quantization of the deforma-
tion field is based on the fact that the electric field
𝜙 must be expressed in terms of the creation 𝑏† and

Fig. 5. Dependence of electron’s energy in the 𝑝-state in a
cluster on the parameter 𝜁 for an ionic cluster consisting of
NaCL. The curves are built for the radii of clusters equal to
2𝑎, 3𝑎, and 8𝑎. The bold line is electron’s energy in the 𝑝-state
in an infinite crystal

annihilation 𝑏 operators of optical phonons, so that

̂︀𝑈𝑓 =
1

2
𝜀0̃︀𝜀 ∫︁ [︂

1

𝜔2
(∇�̇�)2 + (∇𝜙)2

]︂
𝑑𝑉 =

= ~𝜔
∑︁
q

(︂
𝑏†q𝑏q +

1

2

)︂
, (22)

where q is the wave vector of a phonon. For simplic-
ity, we will suppose that the optical oscillations are
dispersionless 𝜔 = const. The field 𝜙 is proportional
to a displacement of atoms 𝜉. The displacement and
the field must satisfy the periodic boundary condi-
tions
𝜉n = 𝜉n+𝑁2a, 𝜙n = 𝜙n+𝑁2a, (23)

where 2𝑎 is the lattice constant of a two-component
ionic crystal. Then the potential of interaction of an
electron with the deformation field (electron-phonon
interaction) can be written as

̂︀𝑉int = 𝑒̂︀𝜙 = 𝑒

√︂
~𝜔

2𝜀0̃︀𝜀𝑉 ∑︁
q

𝑒𝑖qr

𝑞

(︁
𝑏q + 𝑏†−q

)︁
, (24)

where q is taken from the first Brillouin zone
−𝜋/2𝑎 < 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 < 𝜋/2𝑎. The creation and an-
nihilation operators are written in sense 𝑏q → 𝑏q𝑒

𝑖𝜔𝑡,
𝑏†q → 𝑏†q𝑒

−𝑖𝜔𝑡. The cyclic boundary conditions are
ensured with periodic multipliers 𝑒𝑖qr. For an infinite
crystal, we can neglect the discreteness of a substance,
and we can assume the period of a lattice is infinitely
small, i.e., −∞ < 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 < ∞.

Due to the ionic-type connection between atoms,
the shape of an ionic cluster is close to the cubic
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one (e.g., unlike the ball shape of a metallic cluster).
Computer simulations and experimental evidences
[7–9] show that the alkali halide clusters 𝑀+

𝑛 𝑋−
𝑚,

𝑛 ≈ 𝑚 & 14 form stable cuboid structures and have a
cubic microlattice. Clusters can have magic numbers
of atoms, i.e., such numbers, when all shells are filled.
Magic clusters are most stable, and magic ionic clus-
ters have cuboid shape. For large clusters 𝑅 ≫ 𝑎, the
shape can be arbitrary (𝑎 is the interatomic distance).
Obviously, the shape of large clusters 𝑅 ≫ 𝑟0 has no
basic importance, because the excess electron has a
low probability to be near the surface of the cluster.
For convenience, we will consider the large cluster as
cubic in this case too.

Let us have an ionic cluster (e.g., consisting of
NaCL) of the cubic form with sizes −𝐿

2 < 𝑥, 𝑦, 𝑧 <

< 𝐿
2 . The main difference between a cluster and an

infinite crystal is the condition on cluster’s bound-
ary (9) instead of the cyclic boundary condition (23),
which causes the phonon confinement. For a cube,
the boundary conditions read

𝜙

(︂
𝑥 = ±𝐿

2

)︂
= 𝜙

(︂
𝑦 = ±𝐿

2

)︂
= 𝜙

(︂
𝑧 = ±𝐿

2

)︂
= 0. (25)

The field 𝜙 does not satisfy conditions (25). In [11],
a method of construction of the Hamiltonian for the
electron-optical phonon interaction in a dielectric slab
(with the boundary conditions 𝜙

(︀
𝑧 = ±𝐿

2

)︀
= 0) was

proposed. But the method brings to a very cumber-
some expression for a quantum box (cluster). We
propose the following method. The boundary condi-
tion is satisfied by the operator

̂︀𝜙 =
𝐴√
𝐿3

∑︁
𝑞𝑥

∑︁
𝑞𝑦

∑︁
𝑞𝑧

1

𝑞

(︁
𝑏q + 𝑏†−q

)︁
×

×
[︂
cos(𝑞𝑥𝑥), odd 𝑛𝑥
sin(𝑞𝑥𝑥), even 𝑛𝑥

]︂[︂
cos(𝑞𝑦𝑦), odd 𝑛𝑦

sin(𝑞𝑦𝑦), even 𝑛𝑦

]︂
×

×
[︂
cos(𝑞𝑧𝑧), odd 𝑛𝑧
sin(𝑞𝑧𝑧), even 𝑛𝑧

]︂
, (26)

where the projections of the wave vector q of an
optical phonon are 𝑞𝑥,𝑦,𝑧

𝐿
2 = 𝑛𝑥,𝑦,𝑧

𝜋
2 (such that

cos
(︀
𝑞𝑥,𝑦,𝑧

𝐿
2

)︀
= 0, sin

(︀
𝑞𝑥,𝑦,𝑧

𝐿
2

)︀
= 0). The un-

known constant 𝐴 is found from the condition of
secondary quantization of the deformation field (22):
𝐴 =

√︁
~𝜔
2𝜀0̃︀𝜀 . The energy of an electron is minimal,

when it is situated at the center of a cluster, and the

probability amplitude is symmetric about the center
Ψ(r) = Ψ(−r). Then the terms with sine may be
omitted, because they give no contribution to the
electron-phonon interaction energy (and, hence, to
the polarization):

∫︀ 𝐿/2

−𝐿/2
Ψ2(𝑥) sin(𝑞𝑥𝑥) = 0. This is

equivalent to the boundary conditions

𝜕𝜙

𝜕𝑥
(𝑥 = 0) =

𝜕𝜙

𝜕𝑦
(𝑦 = 0) =

𝜕𝜙

𝜕𝑧
(𝑧 = 0) = 0. (27)

The integer number 𝑛 of half-waves of phonons must
be placed on a cube edge 𝐿 = 𝑛𝑎. Moreover, a half
of phonon’s wavelength must not be bigger than the
cube edge length and smaller than the interatomic
distance 𝑎 (between a cation and an anion on a cube
edge): 𝑎 < 𝜆/2 = 𝜋

𝑞 < 𝐿. Hence, the possible pro-
jections of the wave vector q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) must take
the values
𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = ±1,±3,±5...,

(︁ ±𝑛, odd 𝑛
±(𝑛− 1), even 𝑛

)︁
,

𝐿 = 𝑛𝑎.

(28)

Then the Hamiltonian of the electron + cluster sys-
tem can be written as

𝐻 = − ~2

2𝑚
Δ+ ~𝜔

∑︁
q

(︂
𝑏†q𝑏q +

1

2

)︂
+

+
𝑀0√
𝐿3

∑︁
q

cos(𝑞𝑥𝑥) cos(𝑞𝑦𝑦) cos(𝑞𝑧𝑧)

𝑞

(︁
𝑏q+𝑏†−q

)︁
, (29)

where
𝑀2

0 = 𝑒2
~𝜔
2𝜀0̃︀𝜀 ≡ 4𝜋𝛼~(~𝜔)3/2√

2𝑚
,

𝛼 =
𝑒2

4𝜋𝜀0̃︀𝜀~
(︁ 𝑚

2~𝜔

)︁1/2
.

(30)

Here, 𝛼 plays the role of the electron-phonon coupling
constant. We suppose that the optical phonons are
dispersionless, and 𝛼 does not depend on the sizes of
a cluster. Experimental data indicate that the oscil-
latory spectrum 𝜔(𝑞) for clusters (NaCL)𝑁 quickly
approaches that of an infinite crystal, as 𝑁 increases.
𝑁 = 4 is enough to have the characteristics of an
infinite crystal [14]. Since the cluster is situated in
a nonpolarizable substance ̃︀𝜀2 = ∞, the interaction
with interface phonons is absent [16].

It is convenient to transit from the creation and
annihilation operators to new conjugate operators:

𝑄q =
1√
2

(︁
𝑏q + 𝑏†−q

)︁
, 𝑃q =

−𝑖√
2

(︁
𝑏q − 𝑏†−q

)︁
. (31)
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Then the Hamiltonian takes the form

̂︀𝐻 = − ~2

2𝑚*
Δ+

~𝜔
2

∑︁
q

(︀
|𝑄q|2 + |𝑃q|2

)︀
+

+𝑀0

√︂
2

𝐿3

∑︁
q

cos(𝑞𝑥𝑥) cos(𝑞𝑦𝑦) cos(𝑞𝑧𝑧)

𝑞
𝑄q. (32)

System’s wave function Φ(r, 𝑄q) has to contain the
coordinates of an electron r and ions’ displacement
𝑄q. Usually, it is supposeв that the wave function is
a product of two parts depending only on the electron
coordinates and the phonon coordinates, respectively:

Φ(r, 𝑄q) = Ψ(r)𝜑(𝑄q + 𝛿𝑄q) (33)

Ψ(r) =
(︂

1

𝜋𝑟0

)︂3/2

exp

(︂
− 𝑟2

2𝑟20

)︂
, (34)

where the electron wave function is chosen in the
Gauss form to describe a localized electron in a clus-
ter, and 𝑟0 is the polaron radius playing the role of a
variational parameter. The phonon wave function 𝜑
is the wave function of a harmonic oscillator centered
on the equilibrium displacement −𝛿𝑄q (an electron
deforms a cluster, and the ions pass into new centers
of equilibrium), which must be determined. Let us
average Hamiltonian (32) over electron’s coordinates:
𝐻(𝑄q) =

∫︀
Ψ†(r) ̂︀𝐻Ψ(r)𝑑3𝑟:

𝐻(𝑄q) =
~𝜔
2

∑︁
q

(︀
|𝑄q|2 + |𝑃q|2

)︀
+

+
3~2

4𝑚*𝑟20
+
∑︁
q

𝐿q𝑄q, (35)

where

𝐿q = 𝑀0

√︂
2

𝐿3

𝐿/2∫︁
−𝐿/2

𝐿/2∫︁
−𝐿/2

𝐿/2∫︁
−𝐿/2

Ψ2(r)×

×cos(𝑞𝑥𝑥) cos(𝑞𝑦𝑦) cos(𝑞𝑧𝑧)

𝑞
𝑑𝑥𝑑𝑦𝑑𝑧. (36)

The first term in Hamiltonian (35) describes har-
monic oscillations (optical phonons) about equilib-
rium positions 𝑄q = 0 (zero oscillations and excited
phonons if they are). The second term 3~2/4𝑚*𝑟

2
0

is the kinetic energy of an electron in the localized
state. The last term is the potential energy of elec-
tron’s interaction with a deformation field. Following

Fig. 6. Dependences of the energy of the electron + cluster
system (15) on the polaron radius 𝐼 = 𝐼(𝑟0) for an ionic clus-
ter consisting of NaCL. The curves were built for the edges of
cubic clusters 3𝑎, 5𝑎, 7𝑎, 21𝑎, and 49𝑎, where 𝑎 = 2.81 Åis the
interatomic distance. The bold line is the energy of an infinite
crystal with an electron

Fig. 7. Energy of the electron + cluster system (consisting
of NaCl) as a function of the diameter of a cluster 𝐼(𝐿) (solid
line). The energy of a polaron in an infinite crystal 𝐿 = ∞ is
shown by a dotted line. The lengths of edges (in interatomic
distances 𝑎) of cubic clusters 𝑛 = 3, 𝑛 = 5, 𝑛 = 7 are marked
by vertical lines

[17], let us suppose that the equilibrium displacement
is 𝛿𝑄q = 𝐿q/~𝜔. Then the term in electron’s energy
which is linear in 𝑄q disappears. This gives us the en-
ergy of the electron + deformation field system 𝐼(𝑟0):

𝐻(𝑄q) =
~𝜔
2

∑︁
q

(︀
|𝑄q + 𝛿𝑄q|2 + |𝑃q|2

)︀
+

+
3~2

4𝑚𝑟20
+

1

2~𝜔
∑︁
q

𝐿2
q ≡ (37)

~𝜔
2

∑︁
q

(︀
|𝑄q + 𝛿𝑄q|2 + |𝑃q|2

)︀
+ 𝐼(𝑟0). (38)
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The first term in (37) describes the harmonic oscil-
lations about new equilibrium positions −𝛿𝑄q. The
second term is the kinetic energy of an electron in the
localized state. After the transition done in Hamil-
tonian (35), the last term is the potential energy of
electron’s interaction with a deformation field plus
the energy of the deformation field.

The summation over q is equivalent to the sum-
mation over 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 in accordance with Eq. (28).
Since the summation is spreading on odd 𝑛 only, it
is convenient to pass to new variables: ̃︀𝑛𝑥 = (𝑛𝑥 −
− 1)/2, ̃︀𝑛𝑦 = (𝑛𝑦 − 1)/2, ̃︀𝑛𝑧 = (𝑛𝑧 − 1)/2. In ad-
dition, the limits of integration in formula (36) can
be expanded to ±∞, which simplifies the calculation
without a essential error, because restriction (28) on
the wave vectors of phonons does the main contribu-
tion to the effect of finite volume of a cluster. Hence,
the energy can be written as follows:

𝐼(𝑟0) =
3~2

4𝑚*𝑟20
+

𝑀2
0

2~𝜔
2

𝐿3
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑛−1)/2∑︁
̃︀𝑛𝑥=(−𝑛+1)/2

(𝑛−1)/2∑︁
̃︀𝑛𝑦=(−𝑛+1)/2

(𝑛−1)/2∑︁
̃︀𝑛𝑧=(−𝑛+1)/2

for odd 𝑛,

(𝑛−2)/2∑︁
̃︀𝑛𝑥=−𝑛/2

(𝑛−2)/2∑︁
̃︀𝑛𝑦=−𝑛/2

(𝑛−2)/2∑︁
̃︀𝑛𝑧=−𝑛/2

for even 𝑛,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
×

×𝐿2

𝜋2

exp
(︁
− 𝜋2

𝐿2

𝑟20
4 [(2̃︀𝑛𝑥+1)2+(2̃︀𝑛𝑦+1)2+(2̃︀𝑛𝑧+1)2]

)︁
(2̃︀𝑛𝑥 + 1)2 + (2̃︀𝑛𝑦 + 1)2 + (2̃︀𝑛𝑧 + 1)2

.

(39)

For an infinite crystal (𝑛 → ∞), system’s energy and
the polaron radius are⎧⎪⎪⎨⎪⎪⎩
𝐼(𝑟0) =

3~2

4𝑚𝑟20
− 𝑀2

0

2
√
2𝜋(3/2)~𝜔

1

𝑟0
,

𝑟0 =
3
√
2𝜋(3/2)~2~𝜔
𝑚𝑀0

.

⎫⎪⎪⎬⎪⎪⎭ (40)

The results of calculation of 𝐼(𝑟0) for various 𝑛 are
shown in Fig. 6. We can see that the bound state
of an electron exists for clusters with edge’s lengths
𝑛 > 5. Moreover, the polaron radius does not de-
pend almost on cluster’s size and is equal to that in
an infinite crystal (40), 𝑟0 ≈ 2.8 Å. With increase
in cluster’s size, the energy of a polaron tends to its
energy in an infinite crystal 𝐼∞ = −0.26 eV. Com-
paring Fig. 6 with the results in Fig. 1 obtained in

the quasiclassical approach, we can see the quantiza-
tion of cluster’s oscillation brings to the same critical
diameter of a cluster 5𝑎.

The bulky expression (39) containing a triple sum
can be simplified by the continuous approximation.
The polaron radius 𝑟0 nearly does not depend almost
on cluster’s size 𝐿 and is equal to its value in an in-
finite crystal. Then we can suppose that 𝑟0 in ex-
pression (39) equals the optimal value (40). Hence,
the energy of a cluster with an electron is a function
of cluster’s size only: 𝐼 = 𝐼(𝐿). In a cubic cluster
with edge’s length 𝐿, no phonons with wave vectors
𝑞 < 𝜋/𝐿 can propagate. The upper limit of wave vec-
tors’ values, which is determined by the crystal lat-
tice, does not influence the result essentially. Then
the cluster can be supposed spherical with diameter
𝐿, and we can replace the triple sum in (39) by an
integral:

𝐼(𝐿) =
3~2

4𝑚𝑟20
+

𝑀2
0

2~𝜔𝜋2

∞∫︁
𝜋/𝐿

exp

(︂
−𝑞2𝑟20

2

)︂
𝑑𝑞. (41)

The result of calculations of the energy of the elec-
tron + cluster system by formula (41) is shown in
Fig. 7. Comparing it with the exact result shown in
Fig. 6, we can see that the critical sizes of a cluster in
both methods of calculation coincide, 𝐿cr = 4𝑎÷ 5𝑎,
and the energies of the system for the corresponding
sizes of a cluster are almost equal. As cluster’s size
increases to the infinite value, the energy of a polaron
tends to its value in an infinite crystal. These facts
afford ground to use the simplified expression (41)
instead of formula (39).

4. Conclusion

In this article, we have calculated polaron’s energy
in an ionic cluster (by the example of a nanoparticle
consisting of NaCl) and the critical size of a cluster
in view of the formation of the autolocalized state
of an additional electron. The calculation is done
within both the quasiclassical method and the quan-
tum approach (in the meaning of the quantization of
a deformation field).

Like the numerical solution and computer simula-
tions in [2], we have obtained that the bound state
of an electron in clusters from polar substances can
be realized, by starting with a some critical radius in
agreement with the boundary conditions on cluster’s
surface for the polarization field potential 𝜙(𝑅) = 0.
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The neglect of boundary conditions for electron’s
wave function on cluster’s surface does not influence
this phenomenon. With increase in cluster’s size, the
binding energy increases and tends to the polaron en-
ergy in an infinite crystal. The radius of electron’s
autolocalization in a cluster (a polaron size) is such
that the energy of the electron + polarized cluster
system is minimal. Within the analytic variational
method, we have found that this radius does not de-
pend almost on cluster’s radius. The binding energy
increases monotonically with cluster’s size. Moreover,
the following pattern is observed: the bound state ex-
ists, if the polaron radius is less than cluster’s radius.
In other wods, the autolocalized electron is hidden in
depth of the cluster and has a negligibly low probabil-
ity to be outside it. If the cluster is enough small so
that an electron can be outside, the bound state dis-
appears. Unlike the results of numerical simulation
in [2, 5, 6], where the surface states that can be un-
derstood as excited states were found, we have found
that if the polarization well is enough deep (cluster’s
size is enough big), then other discrete levels are pos-
sible except for the 𝑠-state of the autolocalized elec-
tron. We have calculated the energy of the 𝑝-state
and obtained cluster’s critical radius for this state.

The interaction of an electron with the polariza-
tion field is the interaction with longitudinal optical
phonons. Due to the ionic-type coupling of atoms, the
ionic clusters form stable cuboid structures and have
a cubic microlattice. For clusters with a size bigger
than the critical size 𝑅 ≫ 𝑟0, an excess electron has a
low probability to be near the cluster surface. Hence,
the shape has no basic importance. The boundary
condition on cluster’s surface for the polarization field
𝜙(𝑅) = 0 brings to the restriction on the possible
wave vectors of optical phonons 𝜋/𝐿 < 𝑞 < ∞. The
optical phonons are standing waves between opposite
sides of a nanoparticle. We have obtained the po-
laron energy (39) in a cluster with regard for the re-
strictions on the propagation of phonons. The results
for the energy and the radius of a polaron correspond
to those of the quasiclussical approach: the existence
of the critical size of a cluster as for the formation
of the autolocalized state of an electron, asymptotic
tending of the binding energy of an electron in the
cluster to that in an infinite crystal, as cluster’s radius
increases, independence of the polaron radius on clus-
ter’s size, and infinitely low probability for an electron
to be outside the cluster if the electron is in the au-

tolocalized state. It is worth to note that the essen-
tial difference of the polaron state in a cluster from
that in a crystal is the localization of an electron at
the center of the cluster. On the contrary, all points
in an infinite crystal are equivalent (in the continual
representation of a medium); hence, the electron can
move.

APPENDIX A
Boundary conditions for polaron’s
wave function on cluster’s surface

Electron’s effective masses outside, 𝑚0, and inside, 𝑚, of a
cluster are different: 𝑚0 ̸= 𝑚. Thus, the mass difference can
influence the localization energy 𝐼 and the critical size of a
cluster 𝑅cr. Hence, the boundary condition on cluster’s surface
1
𝑚
Ψ′(𝑟)𝑟=𝑅−0 = 1

𝑚0
Ψ′(𝑟)𝑟=𝑅+0 has to be considered, and the

kinetic energy operator has to be written as ℎ2

2𝑚
Δ for 𝑟 < 𝑅,

ℎ2

2𝑚0
Δ for 𝑟 ≥ 𝑅. Let us take electron’s wave function in a

form to be similar to function (11):

Ψ =

⎧⎨⎩𝐴 (1 + 𝑟/𝑟01) exp
(︁
− 𝑟

𝑟01

)︁
for 𝑟 < 𝑅,

𝐵 (1 + 𝑟/𝑟02) exp
(︁
− 𝑟

𝑟02

)︁
for 𝑟 ≥ 𝑅,

⎫⎬⎭ (A1)

where one of the autolocalization radii 𝑟01 is a variational pa-
rameter, the other constants 𝑟02, 𝐴, and 𝐵 are found from the
normalization condition for the wave function Ψ and from the
boundary conditions:

Ψ(𝑟)𝑟=𝑅−0 = Ψ(𝑟)𝑟=𝑅+0 ⇒

⇒ 𝐴

(︂
1 +

𝑅

𝑟01

)︂
exp

(︂
−

𝑅

𝑟01

)︂
=𝐵

(︂
1 +

𝑅

𝑟02

)︂
exp

(︂
−

𝑅

𝑟02

)︂
, (A2)

1

𝑚
Ψ′(𝑟)𝑟=𝑅−0 =

1

𝑚0
Ψ′(𝑟)𝑟=𝑅+0 ⇒

⇒
𝐴

𝑚𝑟201
exp

(︂
−

𝑅

𝑟01

)︂
=

𝐵

𝑚0𝑟202
exp

(︂
−

𝑅

𝑟02

)︂
. (A3)

The kinetic energy of a localized electron takes the form

𝑇 =
~2𝐴2𝜋

2𝑟301𝑚

[︃
3𝑟401 − exp

(︂
−

2𝑅

𝑟01

)︂
×

×
(︀
2𝑅4 + 4𝑅3𝑟01 + 6𝑅2𝑟201 + 6𝑅𝑟301 + 3𝑟401

)︀]︃
+

+
~2𝐵2𝜋

2𝑟302𝑚0
exp

(︂
−

2𝑅

𝑟02

)︂
×

×
(︀
2𝑅4 + 4𝑅3𝑟02 + 6𝑅2𝑟202 + 6𝑅𝑟302 + 3𝑟402

)︀
. (A4)

The normalization condition is as follows:

𝐴2𝜋

𝑟01

[︃
7𝑟401 − exp

(︂
−

2𝑅

𝑟01

)︂(︀
14𝑅2𝑟201 +

+14𝑅𝑟301 + 7𝑟401 + 8𝑅3𝑟01 + 2𝑟401
)︀]︃

+

+
𝐵2𝜋

𝑟02
exp

(︂
−

2𝑅

𝑟01

)︂(︀
14𝑅2𝑟202 +

+14𝑅𝑟302 + 7𝑟402 + 8𝑅3𝑟02 + 2𝑟402
)︀
= 1. (A5)

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 1 67



K.V. Grigorishin

Using the boundary condition (A3), we can rewrite Eqs. (A4
and A5) as

𝑇 =
~2𝐴2𝜋

2𝑟301𝑚
3𝑟401 −

ℎ2𝐴2𝜋

2𝑟301𝑚
exp

(︂
−

2𝑅

𝑟01

)︂
×

×
[︁(︀
2𝑅4 + 4𝑅3𝑟01 + 6𝑅2𝑟201 + 6𝑅𝑟301 + 3𝑟401

)︀
−

−
𝑚0𝑟02

𝑚𝑟01

(︀
2𝑅4 + 4𝑅3𝑟02 + 6𝑅2𝑟202 + 6𝑅𝑟302 + 3𝑟402

)︀]︁
. (A6)

1 =
𝐴2𝜋

𝑟01
7𝑟401 −

𝐴2𝜋

𝑟01
exp

(︂
−

2𝑅

𝑟01

)︂
×

×
[︁(︀
14𝑅2𝑟201 + 14𝑅𝑟301 + 7𝑟401 + 8𝑅3𝑟01 + 2𝑟401

)︀
−

−
𝑚2

0𝑟
3
02

𝑚2𝑟301

(︀
14𝑅2𝑟202 + 14𝑅𝑟302 + 7𝑟402 + 8𝑅3𝑟02 + 2𝑟402

)︀]︁
. (A7)

We can see that the exponential function exp
(︁
− 2𝑅

𝑟01

)︁
sup-

presses the second terms in Eqs. (A6) and (A7) if the polaron
radius is 𝑟01 < 𝑅 similarly to the interaction energy (15). In
addition, the expressions in the square brackets compensate al-
most each other (the difference is not equal to zero if 𝑚 ̸= 𝑚0

only). The energy of the electron + polarized cluster system
is minimized on 𝑟01 < 𝑅 always under the condition that the
energy is negative, 𝐼 < 0. Thus, the second term with the
exponential functions can be omitted, and we have the nor-
malization constant and the kinetic energy as

𝐴 =
1√︁
7𝜋𝑟30

, 𝑇 =
3~2

14𝑚𝑟20
. (A8)

This means that we can use the total wave function (11) for
the description of excess electron’s state and consider electron’s
mass to be equal to its effective mass in a cluster. This approx-
imation has a validity criterion

exp

(︂
−
2𝑅

𝑟0

)︂ (︀
2𝑅4 + 4𝑅3𝑟0 + 6𝑅2𝑟20 + 6𝑅𝑟30 + 3𝑟40

)︀
3𝑟40

×

×
⃒⃒⃒
1−

𝑚0

𝑚

⃒⃒⃒
≪ 1,

exp

(︂
−
2𝑅

𝑟0

)︂ (︀
14𝑅2𝑟20 + 14𝑅𝑟30 + 7𝑟40 + 8𝑅3𝑟0 + 2𝑟40

)︀
7𝑟40

×

×
⃒⃒⃒⃒
1−

𝑚2
0

𝑚2

⃒⃒⃒⃒
≪ 1,

(A9)

where the polaron radius 𝑟0 is determined by formula (17). In
our case where 𝑚 = 2.78𝑚0, 𝑟0 ≈ 1.5 Å < 𝑅cr ≈ 7 Å, the
criterium is well realized. Thus, the main contribution to the
autolocalization energy is caused by the boundary conditions
(9) for the polarization field, rather than the boundary con-
ditions for electron’s wave function. The independence of the
radius 𝑟0 on cluster’s radius 𝑅 is a result of the boundary con-
ditions for the polarization field, rather than the consequence
of the neglect of boundary conditions for electron’s wave func-
tion. This approximation is not correct for the investigation of
surface metastable states of an excess electron near the cluster
surface.
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К.В. Григоришин
АВТОЛОКАЛIЗОВАНI СТАНИ НАДЛИШКОВОГО
ЕЛЕКТРОНА В IОННОМУ КЛАСТЕРI
Р е з ю м е
Запропоновано теорiю спорiдненостi електрона до iонного
кластера як у квазiкласичному подходi, так i з квантуван-
ням електричного поля поляризацiї у наночастинцi. Варiа-
цiйним методом отримано критичний розмiр кластера вiд-
носно утворення автолокалiзованого стану електрона, отри-
мано залежнiсть енергiї та радiуса полярона як функцiї роз-
мiру кластера. Було знайдено, що енергiя зв’язку електро-
на у кластерi залежить вiд радiуса кластера, однак радiус
автолокалiзацiї електрона не залежить вiд розмiру класте-
ра i рiвний поляронному радiусу у нескiнченному криста-
лi. Зв’язаний стан електрона у кластерi можливий, тiльки
якщо радiус кластера бiльший за поляронний радiус.
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