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OF OSCILLATOR AND HYBRID OSCILLATOR ALGEBRAS
AND TWO-DIMENSIONAL CONFORMAL FIELD THEORY

The unified multiparametric generalizations of the well-known two-parameter deformed oscilla-
tor and hybrid oscillator algebras are introduced. The basic versions of these deformations are
obtained by imputing the new free parameters in the structure functions and by a generaliza-
tion of defining relations of these algebras. The generalized Jordan—Schwinger and Holstein—
Primakoff realizations of the Ul‘f‘qvl(su(2)) algebra by the creations and annihilations operators
of the basic versions of these deformations are found. The (p,q;,~,1)-deformation of the
two-dimensional conformal field theory is considered. The pole structure of the (p,q; o, v,1)-
deformed operator product expansion (OPE) of the holomorphic component of the energy-
momentum tensor with primary fields is found. The two-point correlation function of the
(p, ¢; v, v, 1)-deformed two-dimensional conformal field theory is calculated.
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1. Introduction

The important tool in the study of universal envelop-
ing algebras of the simple Lie algebras is their re-
alization by the creation and annihilation operators
(Jordan—Schwinger, Holdstein—Primakoff, and other
constructions) of the oscillator algebra. In order to
generalize these constructions to the quantum al-
gebras (the deformations of the universal envelop-
ing algebras of simple Lie algebras), Biedenharn [1]
and Macfarlane [2] introduced independently the ¢-
deformed creation and annihilation operators.

Long before, another g-deformation of the canoni-
cal commutation relations has been used by Arik and
Coon [3] for the operator description of the gener-
alized Veneziano amplitude obtained by the replace-
ment of the I'-function by the I',-function. The oscil-
lator algebras generated by these operators belong to
the general class of generalized oscillator algebras [4].

A generalized oscillator algebra is an associative
algebra generated by the generators {1,a,a™, N},
where a, a™ are Hermitian conjugate operators, and
N is the self-adjoint operator, whose defining rela-
tions are as follows:
aa+:f(N+1)v a+a:f(N)7 1

[N,a] = —a, [N,a*]=a". (1)
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A positive analytic function f(x) = [z] with f(0) =0
is called a structure function [4]. This function de-
fines a deformation scheme and, along with defin-
ing relations, the deformed oscillator algebra. The
well-known example of a structure function is the (at
p = ¢, one-) two-parameter function [5]

Pt —q°
(@) =lalpg = —=—+, (2)
[%]pq P —
where p, ¢ € R, of the (one-)two-parameter deformed
oscillator algebra. The structure function and the
defining relations

wt —qlata=p", [N.a]=-a, 3
[N,at] =a™, ®)
or

aat —qata=p~ N, [N,a] = —a, A
[N,at] =a™ @

define the (p,q)-deformed oscillator algebra [5-7].
This algebra describes the Arik—Coon (p = 1,q) [3],
Biedenharn-Macfarlane (p = ¢%, ¢7), [1,2], Kwek-Oh
(p = q%,¢"7) [8] deformations of oscillator algebras in
the unified framework.
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In [9, 10], a modification of the oscillator algebra
with the defining relations
aat —ata=1+2v(1 - K), )

5

K= (71)N7 [Naa] = —a [NvaJr] :aJra veR
underlying the two-particle Calogero model has been
introduced. This oscillator algebra belongs to the ge-
neralized oscillator algebras with the structure func-
tion

f(z) =[z], = n+v(l+(-1)") (6)

and, in the case where 2v integer > 1, is equivalent to
the one-mode oscillator algebra of a para-Bose system
with the commutation relations

WV,a] = —a,[N,a] =a™, (7)

where ' = 1 (a*a+aa™) — £ and 2v = p — 1, where
p=1,2,... is the para-Bose oscillator order.

In [11], the ¢g-deformed “hybrid” version of the os-
cillator algebra (4) with deformation parameter ¢ and
the modified oscillator algebra (5) with parameter v
have been constructed.

The structure function of this deformation,

—n n n —n n
‘"~ Lo, VT —a
=

Fn) = gy = =% —

)

where ¢,v € R, and the commutation relations

aat —qgata=q¢ V(1 + 2wK),

[N, a*] = a*, (9)
Ka=—-aK, Ka'=a"K, [N,K]=0

define the new deformation of the oscillator algebra.

This deformation breaks down ¢+« ¢ ! symmetry
of the Biedenharn—Macfarlane oscillator algebra ob-
tained from (4) at p = ¢. This algebra has been
generalized to the deformed C)-extended oscillator
algebra [12].

Naturally, it would be desirable to generalize a par-
ticular mathematical structure as much as possible.
In particular, this concerns the generalization of the
g-deformed universal enveloped of the Lie and hybrid
oscillator algebras.

In [13], this oscillator algebra has been generalize
to the (p, ¢)-hybrid two-parameter algebra.

A generalization of the traditional scheme for the
deformed algebras to the multiparametric case has
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been done in [14-16]. In this approach, only the struc-
ture functions are changed, but a part of the defining
relations was kept invariable.

We generalize the defining relations (3) (or (4)) to
obtain the various generalized deformed versions of
the oscillator algebras at a fixed structure function
(10). We consider only the generalized Daskaloy-
annis (GD), generalized Chakrabarti-Jagannathan
(GCh-J), and generalized Hong Yang (GHY) versions
of these algebras.

In this article, we include the short review of
our publication [19] on the construction of the uni-
fied (p, ¢; v, 7y, 1)-deformation of the oscillator algebras
which envelop, as particular cases, the well-known de-
formations [1-3, 5, 17, 18]. The structure functions
(“generalized (p, q; v, 7, l)-numbers”) of these defor-
mations [19] generalize the (p, ¢; a7, )-deformation
of the oscillator algebra:

—Qax x

flo) = el = L =0

pq p—l/'y _ ql/a' (10)

Here, a,7,l € R, contain the additional deformation
parameters as compared with (2).

We also study the generalization of this construc-
tion to the (p, ¢; a,y,1)-deformed hybrid oscillator al-
gebras with the structure functions

(_l)np—om —
pfl/'y _ ql/a

—an n
— q’Y

fn) =l = &

Py = Uy _ gl +2v

(11)

where p,q,v,a,7,l € R, in the case of the broken
(p < ¢, < —v) symmetry and

—a(n+v(1-(-1)") _ qv(n-l-l/(l—(—l)")

r3 _ ayl _ p
f(n) - [n]pqu - p—l/'y _ ql/a ’

(12)

where p,q, v, a,7,l € R, in the case of the conserved
(p < ¢, — —v) symmetry of the deformed oscillator
algebra.

2. Oscillator Algebra
and Its Unified Deformations

At the fixed structure function (10), we will consider
the basic versions of the generalized deformed oscil-
lator algebras.

The generalized (p, q; v, 7y, 1)-deformed Daskaloyan-
nis version of the oscillator algebra. In this case, the

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11
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defining relations (1) take the form

wat — pfaNfl/v _ quJrl/a e — pfaN _ qu
pfl/'y _ ql/a ? pfl/'y _ ql/a ’
13)
l l
[N,a] = ——a, [N,a"]=—a".
ary ay

The generalized (p,q;a,v,1)-deformed Chakrabarti—
Jagannathan version of the oscillator algebra. In [19],
we have generalized the two-parameter deformed os-
cillator algebra [5] by introducing the additional pa-
rameters «,<,l in the structure function. This is
a generalization of the well-known deformations [1-
3, b, 8, 17, 18] of these algebras. The generators

{I,a,a*, N}, the structure function (10), and the
defining relations
aat — Z/Va a= q"’N
l l 14
[N,a] = ——a, [N,a*]=—at, (14)
ary ary
or
aat — ¢/*ata =p VN,
l l 15
[N,a] = ——a, [N,at]=—a", (15)
ary ary
define  the  generalized (p,q;«,,!)-deformed

Chakrabarti-Jagannathan version of the oscilla-
tor algebra. It is easy to see that this algebra is
represented in the Hilbert space H with the basis

{In)}zo by
l
)

- P — g 1/2
a‘n> - —l/y _ ql/a
N B pfanfl/'y _ q'ynJrl/a 1/2
a |Tl> - =1/ I/
p —q

)

Nin) = nln),

where p, q,a,v € R and ai € 7Z. The other version of
this generalized deformed oscillator algebra is

The generalized (p, q; ,7y,1)-deformed Hong Yan
version of the oscillator algebra. The Hong Yan ver-
sion of the oscillator algebra [20] is generalized to a
deformed algebra as follows.

The generators {I,a,a™, N}, structure function
(10), and the defining relations

1 —aN-55 + "N+
aa® — (p%¢") > a*a = £ L qi ;

l D 2y + ql'za (17)
Na—aN =——a, Na® —a™N=—qF

ary ay
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define the generalized (p,q;c«,~,l)-deformed Hong
Yan (GHY) version of the oscillator algebra. The
first relation in (17) can be rewritten in the form

aat — (pfo‘q'y)‘%” ata=
(18)

Relations (13)—(15), (17) define three versions of the
generalized (p, ¢; a,7,1)-deformed oscillator algebra.
It is easy to see that (13)—(15), (17) at the corre-
sponding values of the deformation parameters are
reduced to (1), (3)—(5), respectively.

3. The Generalized (p, q; o, 7, l)-Deformed
Analog of the Harmonic Oscillator

The generalized (p, ¢; «,7,1)-deformed oscillator is
described by the Hamiltonian

hw
H= %(acﬁ +ata), (19)

where a,a™ are the corresponding deformed creation
and annihilation operators,

[N]avl [N + aw]ggl (GD) OSCiH.7
o |l v+ e
H= o —(p N Cy (1 + pt/7¢*) (GHY) oscill.,
mw +IN+ 5k -

g N1 +p e (GChJ) oscill.,

(20)

where C7,Cy are the Casimir operators of the corre-
sponding oscillator algebras.

The spectrum of the Hamiltonian H in the Fock
space is

By ="+ (14 p77) [n]g! (21)

or

Bo=p~ " + (14 7°) gy (22)

Apart from this, we have the relation

P OmE, — p O, —

= pi_}/j l_/jl 7™ —pT "), (23)
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The generalized (p, ¢; @, 7y, [)-deformed oscillator al-
gebras with the structure function (10) conserve the
(p < q¢,a < —v) symmetry. Under the transition
to the (p, ¢; a, 7, 1)-hybrid oscillator algebras with the
structure function (11), this symmetry breaks down.

4. Some Aspects of (p, g; a,,1)-Hybrid
Oscillator Algebras with Broken
(p < ¢, < —v) Symmetry

We consider the basic versions of these (p, q; @, ,1)-
hybrid oscillator algebras.

The replacement of the structure function (10) by
the structure function (11) leads to the (p, ¢; «, v, 1)-
hybrid oscillator algebras with broken symmetry.
We consider the basic versions of these (p, q; «,~,1)-
hybrid oscillator algebras.

The Daskaloyannis wversion of the (p,q;a,7,1)-
hybrid oscillator algebra. In this case, the defining
relations (1) can be written as

pfaNfl/'y _ q'yNJrl/a

+ _
aa = p—l/'y _ ql/a +
—1)N(=1 L _—aN-l/y _ ~AN+l/a
1y, CDV DT ALY
p—l/'y_|_ql/(x (24)
pro o N =™, DM - g
p—l/’y_ql/a p—l/'y+ql/o¢ ’
l l
[N,a] = ——a, [N,aﬂ =—at.
ay ary
The  Chakrabarti-Jagannathan  version of  the

(p, q; , v, 1)-hybrid oscillator algebra. The relations

(1+2vK), for L odd;
aa+ _ ql/(x + —aN ay

a’ a= p
(1-2vKX), for L
oy

even.

[N, a+] = Lcﬁ

[Na a] =——a,
ay ary

(25)
define the generalized (p, ¢; o, 7, 1)-hybrid Chakrabar-
ti-Jagannathan version of the oscillator algebra. The
Casimir operator of this algebra is

Cs=q N (p

—aN _ AN
P__—9 .
p—l/’y _ ql/a

+ 2v

(26)

-1 N, ,—aN _ N
( p)—zl/jv_ql/aq —a'al.
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The generators of algebra (25) in the Hilbert space H
with the basis {|n)}52, are represented by the rela-
tions

N|n) = n|n),
—an yn 1)np—an yn 1/2
aln) = pl 7ql —|—21/(7)lp :q X
p_/’Y—q/Oé p_/"/-|-q/0¢
xln— 2 >
n——,
ay (27)
N B pfom,fl/'y _ q'ynJrl/a
a |’I7,> - p—l/’y _ ql/oz
l 1/2
(_1)n(_1)j,yp—an—l/'y _ q'yn+l/a l
2 DA
M p=lr 4 gl "

where p,q,a,7 € R and a%y € 7.

The Hong Yan version of the (p,q;a,~y,1)-hybrid
oscillator algebra. The generators {I,a,a™, N} sat-
isfy the relations

aat — (p_o‘q'Y)ﬁ ata=

p—(XN—l/(2’7) 4 q’YN-H/(QOt)
0§ giee) l
FwK(p N7 4+ N tem) if ——  odd;
=90 o —aN—1/(2 N+1/(2 “ (28)
poN=1/(27) | YN+ (20)
p~t/(27) 4 ¢t/ () l
- QVK(p_O‘N_% + q”NJri), if — even.
ay

l
[Na a] = —-—a,
ary

l
[N , aﬂ = —at,
ay
and define the generalized (p,q;«,~,[)-deformed

Hong Yan (GHY) hybrid version of the oscillator al-
gebra.

5. Some Aspects of (p, g; a,,1)-Hybrid
Oscillator Algebras with Preserving
(p < q,a < —v) Symmetry

At the fixed structure function (12), we will consider
the basic versions of the generalized deformed oscil-
lator algebras.

The Daskaloyannis wversion of the (p,q;a,~y,l)-
hybrid oscillator algebra. In this case the defining

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11
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relations (1) are as follows:

p—a(N+u(1+<—1>N> _ qv(N+u(1+(—1)N)

+ _
aa” = pfl/v_ql/oz ’
N N
b poeWHr(A=(=17) _ (y(N+r(1=(=17) (29)
a a —y o ;
p~7 —q
l l
Na—aN =——a, Na™—a"™N=—a".
ay ay
The Chakrabarti-Jagannathan wversion of the

(p,q; a,v,1) -hybrid oscillator algebra. The genera-
tors of this algebra (a, a+, N) satisfy the relations

aa™ — g N FA=(DV VK g

[/ (o) + 2vK]5g,

pqv>

_ pa(NJru(lK)){ if Z/(OKY) odd;

1, if 1/(ary) even,

l

l
Na—aN =——a, Na™ —a™N=—a".
ay

(80

6. Generalized (p, ¢; a, v, 1)-Deformed
Ug‘:l(su@)) Algebras

Generalized (p, q; a, vy, 1)-deformed Jordan—Schwinger
realization of the Usy'(su(2)) algebra. The classi-
cal Lie algebra su(2) is defined by the generators
(Jo, J+, J—) and the commutation relations

o, Ji] = o, [Jo, J_] = —J_, [J4,J_] = 2Jo. (31)

In this section, we will consider the generalized
Jordan—Schwinger and Holstein—Primakoff realiza-
tions of the U3 (su(2)) algebras by the creation and
annihilation operators of the generalized (p, ¢; o, 7, 1)-
deformed oscillator algebras.

Two independent basis collections (I, a,a™N,) and
(I,b,b%, Ny) of the generalized (p, ¢; o, 7, [)-deformed
oscillator algebras define the generalized Jordan—
Schwinger realization of the US (su(2) algebra:

1 ~ 1
Jo = §(Na—Nb), C= i(Na—&-Nb).

Jy= @) " ath, Jo =bTa(p¥q7) (32)
In the case of collections of the generalized
(p, q; @, v, 1)-deformed Chakrabarti-Jagannathan

type oscillator algebra (14) (or (15)), we obtain

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11

l . .
the Up (su(Z)) generalized algebra with the
commutation relations

o, Ju) = +Ju,  Jod — (pOg ) J_Jy =

= (1- ¢ (' = ) Al (33)

where the Casimir operator C; of the oscillator alge-
bra (14) is defined by

—aN _ AN
_ _aN pe q +
C; =p° e @ al
p q

In the case of collections of the (p,q;a,7,l)-
deformed Hong Yan type oscillator algebra (17), the

ug! (su(Z)) generalized deformed algebra is defined

by the commutation relations

(34)

[Jo, J+] = £J+,

L
J+J_ — (paqfv) o J_J+ =

o ) ;
= [2Jolp7" + (Paq_w)c Gy ({C —Jo+ 047} -

2C
o~ _ N l
- (p‘“q”)y [C —Jo] —p "q”) [C + Jo + av} +
+ (pq")*7 [C + Jo), (35)

where Cs is the Casimir operator of the oscillator al-
gebra (17),

o — N «
Gy = ()" (NI — a*a). (36)
Generalized  (p,q; a7y, 1)-deformed ~ Holstein—

Primakoff realization of Usy'(su(2)) algebra. The
algebra su(2) is realized by the one basis collection
(a,a™, N,) of the operators of the ordinary harmonic
oscillator. It is defined by the Holstein—Primakoff
transformations

Jp=at(2j-N)"?, J_=(2j-N)"*a, Jo=N—j,
(37)
where j is a c-number. The g-deformed Holstein—Pri-

makoff analog of the algebra su(2) has been studied
in [21].
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The generalized Holstein—Primakoff realization of
the UI?‘qu(su(Q)) algebra defined by the one collec-
tion of the (p, ¢; «,y,)-deformed oscillator algebra is
given by

Jo = (pq )N ?aty/12j — N3,

. a o —~\N/2
J_ =1\/[2j — Nlpq'a (p°q™) ? (38)
JO =N — ja

where j is some c-number. For the collection of the
generalized Chakrabart—Jagannathan oscillator alge-

bra (14) we obtain the U (su(2)) algebra with the

defining relations
[Jo, J+] = £J4,
Jed_ — (g ")F J_Js = [~2Jo] + Crq” . (39)

7. The (p, g; , 7, l)-Deformation
of the Two-Dimensional Conformal
Field Theory

The different deformation schemes of oscillator alge-
bras have been considered, in parallel, to the con-
struction of the two-dimensional conformal field theo-
ries [22-25]. We study some properties of the primary
fields of the two-dimensional deformed conformal
field theory with the employment of the (p, ¢; «, v, 1)-
deformation scheme. Let ¢(z,Zz), be the primary
field of conformal weights (h, h) of the (p,q;a,~,1)-
deformed conformal field theory. Its generalized in-
finitesimal (p, ¢; @, v, l)-transformations are defined
by the relation

527 6(2) = £(2) " DI (e(2)) " 4(2)), (40)
where
Do) = 28 T AL
—az0 __ yz0
- ji_l/a_qus(z) = ~[20157"6(2). (41)

Henceforth, we will restrict ourselves by the consid-
eration of the holomorphic terms. We have

S5 pg®(2) = 2"[20 + h(n + 1)]52"6(2)

n,pq rq

1118

(42)

for the (p, ¢; a, 7, 1)-deformed primary field ¢(z) with
the conformal weight h. As in the classical case, the
variation of a conformal field ¢(z) is given by the
“equal-time” commutator

5ot 5(z) = | ¢ L), pw)| =

211

Co
= o @z (1G0w)
Cp

p.q

(43)

where T'(z) is the holomorphic component of the
energy-momentum tensor, and Cy and Cp are con-
tours encircling the origin and the all poles in the
OPE of (T(z)¢(w)ggl, respectively. The notation of
the time ordering on the z plane is replaced by that
of radial ordering

A(z)B(w),

R(A(z)B(w)) = {B(w)A(Z)

if [2] > fwl,
it |z < |w|.

Defining the product of two field operators by the
formula

(A(z)B(w)) " = A(zq") B(wp™)

we see that

(T()(w))pn' =
1 P(wp™®) d(wq™)
- w(p=t/7 — gt/e) {Z —wp~eh z— quh} (44)

leads to the correct variation (42) in ¢(z) with the
help of the evaluation of the integral in (43) with Cp

taken as a contour encircling the points wp=*" wq".
Introducing the modes
d
L, = ?f L2 mHT(), nez (45)
27
Co
of a holomorphic component of the energy-
momentum tensor 7'(z) and the modes
d
bu = oo (46)
2m

Co

of a primary field ¢(w) of the conformal weight h, we
obtain
pemt) o=yt p o pa(nt2) g =y(mth) g p

= [(h = 1)n — m]p dmn.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11
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If we set ¢,, = L,,,, h = 2 in this equation, we obtain
the centerless (p, ¢; @, v, 1)-deformed Virasoro algebra

pa(m+2))q_7("+2)Lan . pa(n+2)q—7(m+2)Lan =

=[n— m]g;Lerm (48)

which coincides at the @« = v =1 and p = g with the
algebra obtained in [26].
The generalized Uz?qw (su(l, 1)>—deformed subalge-

bra of the (p,q;a,,l)-deformed Virasoro algebra
U;‘q“’l(Vir) is defined by the commutation relations

e
K_K, —(p°q™ ")~ Ky K == [2Ko]20", (49)
[Ko, Ki] = K4, [Ko, K_]=—-K_,
where
72QK0 _ 2'YK0
a'yl _ p q
[QKO]P(I - p—l/'y _ ql/a

It is convenient to define the generators M = p~ Ko,

N = ¢g7Ko,

There exists the following representation of this al-
gebra on the conformal fields ¢(z) with conformal
weights h

Lo(p~@z) — ¢(q"2)

K—1¢(Z) = ; p_l/,y — ql/a ’
—2ah —a 2vh
po(p"2) — "oz
K+1¢(Z) ==z ( —l/'y) o ( )7 (50)
p —q

M¢(z) =p~“"¢(p~*2), N =q"¢(q"2).

The co-algebra structure of this algebra is defined on
the generators of this algebra by the expressions

AKy)=M®Ky+Ki®N, AM)=M®e M,
(51)
A(N)=N® N.

By the analogy with [23, 24], the (p,q;a,~,l)-
deformed Ward-Takahashi identities for the n-
point correlation functions of the primary fields
d1(21), P2(22), ..., Pn(zn) can be written as

N—-1

(A®id...®id) (A®id...®id) ..(A ®id) A(KL)

N-2

{(¢1(21)-0n (2n))pg" = 0.
ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11

(52)

The two-point correlation function (¢1(21)@2(22))57"

of the primary fields ¢1(z1), ¢2(22) is defined from the
equations

A(K_1)(p1(21)p2(22))07" = 0,
A(K+1)<¢1(zl)¢2(22)>ggl =0.

If hy = hy = h, the solution of this system can be
represented in the form [19]

(53)

_ o (ezi7)e

<¢1(21)¢2(Z2)>g;/l =z (2700 ) (54)

where a = (p°q7)*",z = (p*q") " 2,1 = p°¢", (see
the notations in [31]).

8. Summary and Conclusions

In this article, we have presented the construc-
tion of the generalized (p, q; @, 7, )-deformed oscilla-
tor and (p,q; a,~y,l)-hybrid algebras. This unifica-
tion conserves the basic properties of the well-known
deformed algebras. We have found the Jordan—
Schwinger and Holstein—Primakoff realizations of the
Ug'(su(2)) algebra by the generalized deformed cre-
ation and annihilation operators. This unification is
an “attempt to introduce some order in the rich and
variable choice of deformed commutation relations”
[27]. We also hope for that it will find the appli-
cations to the solutions of specific physical problems
[28-30].
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1.M. Bypban
OB’€THAHI (p, g; o, v, 1)-TEPOPMATIIIT
OCHUJIATOPHUX TA I'BPUJHUX OCHUJIATOPHUX
AJITEBP I IBOBUMIPHOI KOH®OPMHOI
TEOPII IO

Peszmowme

Metoro mi€l crarTi € Orisj] i JONOBHEHHSI HAINIUX PE3yJIbTa-
TiB 1110/10 106Y10BU y3arajbHeHuxX (p, q; &, v, l)-nedopMoBaHux
ocuuIATOpHUX 1 ribpuaaux ocumisropHux aaredbp. OcHosui
Bepcil nux gedopMaliiii orpuMaHi 3a JIOIOMOTOI0 BBEJIEHHS HO-
BHX BUIBHUX ITapaMeTPiB B CTPYKTYPHI dyHKIIT i y3araJbHeHHs
BU3HAYAJIbHUX CHiBBifHOIIEHb nux ajrebp. Ilobymosani y3a-
ranpaeni VMopnan—Illsinrepa ta Toncreiin-IIpumakosa peasi-
3anil mux anre6p. IoGynosana (p,q; o, 7y, l)-nedopmania gso-
BUMIpHOI KOHPOPMHOI Teopil mosst. 3HaliieHa IOJIIOCHA CTPY-
KTypa rojioMOp(dHOI KOMIIOHEHTH TEH30pa eHepril-iMmysnbcy.
O6Guucsena JBOXTOYKOBA KOpeJsliiHa (DYHKI[A y KOHMDOPM-
Hiil Teopil moss.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11



