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INTEGRABILITY IN AdS/CFTPACS 02.30.Ik

This work provides a detailed review of recent developments in the field of AdS/CFT correspon-
dence for a particular subject of the correspondence between type IIB superstring on AdS5×S5

and the N = 4 super Yang–Mills theory. Through analyzing the bound states of Bethe roots
for the corresponding PSU(2,2|4) spin chain, it is shown how the lattice system of functional
equations, called Y-system, appears.
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1. Introduction

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence found by Maldacena [1] is an intrigu-
ing duality that connects the theory in a strong cou-
pling regime with the theory in a weak coupling
regime and vice versa. This work focuses on a partic-
ular case of the duality between the type-IIB string
theory on AdS5 × S5 and the N = 4 Super Yang–
Mills (SYM) theory. This example is important to be
studшув because of the integrability on both sides of
the duality.

2. Symmetry Analysis

For the beginning, we should check if the theories on
both sides have the same symmetry. This proves, of
course, nothing, but gives a general feelling of how
the whole thing works. On the AdS side, we have
the type-IIB superstring theory on AdS5×S5. It is
obvious that one has at least the same symmetry, as
its target space, AdS5×S5. The symmetry group for
S5 is SO(6), and the symmetry group for AdS5 is
SO(4,2). These groups are isomorphic (up to a dis-
crete subgroup) to SU(4) and SU(2,2), respectively.
But, as usual for the supersymmetry, the symmetry
group of the space is extended by fermion genera-
tors, and the total symmetry of the theory would be
not just SU(4)×SU(2,2), but the whole supergroup
PSU(2,2|4).

On the CFT side, we have N = 4 SYM theory
on R3,1. The R-symmetry for N = 4 is SU(4). Since
N = 4, the SYM theory is superconformal, and
the space symmetry is not just SO(3,1), but the
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full conformal group for R3,1, namely SO(4,2). With
fermion generators, this gives us the already men-
tioned PSU(2,2|4).

3. Integrability on the CFT Side

The beauty of our system manifests itself in the in-
tegrability on both sides. The integrability of the
N = 4 SYM theory was proposed by Minahan and
Zarembo [2] and studied in details by Beisret and
Staudacher [3]. The idea is quite tricky. First of all,
to find the integrability, one should study the anoma-
lous dimensions of long operators, i.e., the correlation
functions

〈DµλβDνX
iλαXk...(0)|DµDνX

iλβλαX
k...(z)〉 = zΔ.

(1)

To compute such correlators by means of perturba-
tive field theory, one should consider Feynman graphs
(see Fig. 1). These Feynman graphs are ribbon
graphs, and they ought to catch the matrix struc-
ture of fields. For a symmetry group of the the-
ory such as SU(N), this matrix structure contribu-
tion decouples and can be easily computed to be
equal to N#loops. It is not hard to see (Fig. 2) that
the planar diagrams have more loops than nonpla-
nar ones on the same level of perturbation theory.
So, if we consider the large N limit, only the pla-
nar diagrams survive. For the planar diagrams, the
interaction is only possible between operators which
are close enough. Such physical systems containing a
long chain of states with local interactions (i.e., inter-
actions between the operators in sites that are close
enough) resemble a well-known class of physical sys-
tems that are spin chains.
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4. Integrability on the String Side

The idea of integrability of a IIB superstring on
AdS5 × S5 comes from considering it as a σ-model
on the coset space

PSU(2, 2|4)
SO(4, 1)× SO(5)

(2)

with the bosonic part

SO(4, 2)× SO(6)
SO(4, 1)× SO(5)

= AdS5 × S5. (3)

The action of the model can be rewritten through the
Z4 graded current

J = J (0) + J (1) + J (2) + J (3) = −g−1dg (4)
as

S =

√
λ

2π

∫
STrJ (2)∧∗J (2)−J (1)∧J (3)+Λ∧J (2). (5)

As was shown in [4], this graded current allows one to
construct a one-parameter family of flat connections:

L(x) = J (0) +
x2 + 1
x2 − 1

J (2) − 2x
x2 − 1

(
∗J (2) − Λ

)
+

+

√
x+ 1
x− 1

J (1) +

√
x− 1
x+ 1

J (3). (6)

The monodromy Ω(x) = P exp
(∫
γ
Lx

)
of this con-

nection over compact string directions gives us the
1-parameter set of integrals of motions. The equa-
tion for the eignvalues of Ω(x),

S det(λ− Ω(x)), (7)

gives an algebraic curve with eight sheets. The cuts
on this curve are quantum excitations of the string.

5. GL (N |M) Spin Chain

In this section and the following ones, we will closely
follow [5] and [6].

The spin chain is a physical system consisting of
a large number of (possibly different) representations
of (possibly different) Lie (super)groups organized as
the sites of a closed or open chain. In what follows, we
will only consider the case of the same representation
of the Lie supergroup GL(N |M) on each site. In par-
ticular, we are interesting in PSU(2,2|4) supergroup,
as a real representation of GL(4|4). As PSU(2,2|4)
is a symmetry group for SYM, the SYM fields form a

Fig. 1. Planar ribbon Feynman graph

Fig. 2. Non-planar ribbon Feynman graph

defining representation of it. The dilatation operator
makes a Hamiltonian for this particular spin chain.
So, the eigenstates for the spin chain would be the
primary fields for SYM.

The usual tool to analyze spin chains is the so-
called Bethe ansatz. First, we have to find the vac-
uum, i.e., the state with minimal energy. For a ferro-
magnetic, this would be the same state at each site.
Then we construct excitations. For a one-particle ex-
citation, we change the state at one particular site.
A particle with defined momentum would be the su-
perposition

|p〉 = |baaaa...〉+ eip |abaaa...〉 +

+ e2ip |aabaa...〉+ ... . (8)

Two-particle excitations are a bit trickier. When two
particles are far one from another, the state is just
like a composition of two one-particle states. When
they are close, the interaction 1 comes to play. When
they are far away in another direction, they are else
a composition of one-particle states, but with some
additional phase. We will call this phase as the S-
matrix. Explicitly, the two-particle excitations state

1 To find the exact behaviour of a state in the interaction zone,
one should use the more advanced technics of the algebraic
Bethe ansatz.
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are

|p1p2〉 = exp(ip1n1 + ip2n2)
∣∣∣∣..a bn1

a..a b
n2
a...

〉
+

+S(p1, p2) exp(ip1n1 + ip2n2)
∣∣∣∣..a bn2

a..a b
n1
a...

〉
. (9)

5.1. Yang–Baxter relations

Up to this moment, the procedure has worked for
any spin chain. However, to construct higher exci-
tations, we must set an additional constraint on the
spin chain. For example, if we have three excitations,
there are six different asymptotic states given by per-
mutations. But we can reach any given state by dif-
ferent sets of pair collisions. So, the higher excitations
can be constructed if the total acquired phase for a
given state does not depend on the specific set of pair
collisions resulting in that permutation. Naturally,
this could be achieved, if and only if we could resolve
triple permutations:

Ŝ (p1, p2) Ŝ (p1, p3) Ŝ (p2, p3) =

= Ŝ (p2, p3) Ŝ (p1, p2) Ŝ (p1, p3). (10)

This equation is noting but the famous Yang–Baxter
relation. If it is satisfied, we can easily construct any
particle number excitation as a superposition over all
possible permutations σ:

|p1p2...pk〉 =
∑
σ

S(σ) exp

i∑
j=1

pknk

×
×
∣∣∣∣a b
nσ1

a..a b
nσ2

a...a b
nσk

a

〉
. (11)

5.2. Nested Bethe ansatz

If the dimension of a representation is greater than
two, all states we build yet do not cover the whole
state space of the spin chain. However, they do cover
a whole part containing the state which we called vac-
uum on the previous step. So, our problem is reduced
by one dimension. Then we can use the Bethe ansatz
once more, by considering excitations from the previ-
ous step as sites of a new spin chain, the previous ex-
cited states as a new vacuum, and making new excited
states, by using the next generator. We should repeat
this procedure, until we use all generators, and this
will also cover the whole state space of the system.
This procedure is called the nested Bethe ansatz.

6. Bethe Equations

For a closed spin chain, the momenta of excitations
cannot be chosen arbitrary. Constraints on them arise
from the particles virtually moving along the whole
circle. If the particles would not interact, this give the
well-known momentum quantization law. However,
the interactions make this condition more interesting.
We have

eipjN =
∏
k 6=j

Ŝ(pj , pk). (12)

As usual, it is useful to introduce a new variable u
instead of the momentum:

p =
1
i

log
(
u+ i/2
u− i/2

)
. (13)

For our particular case of PSU(2,2|4) (and the partic-
ular Dynkin diagram ⊗−�−⊗−�−⊗−�−⊗), the Bethe
equations read∏
k

vi − uk − i/2
vi − uk + i/2

= 1, (14)∏
i 6=j

ui − uj + i

ui − uj − i
∏
k

ui − vk − i/2
ui − vk + i/2

= 1, (15)

∏
k

wi − uk − i/2
wi − uk + i/2

∏
m

wi − zm + i/2
wi − zm − i/2

= 1, (16)∏
i 6=j

zi − zj + i

zi − zj − i
∏
k

zi − wk − i/2
zi − wk + i/2

×

×
∏
m

zi − w̃m − i/2
zi − w̃m + i/2

=
(
zi + i/2
zi − i/2

)L
, (17)∏

k

w̃i − ũk − i/2
w̃i − ũk + i/2

∏
m

w̃i − zm + i/2
w̃i − zm − i/2

= 1, (18)∏
i 6=j

ũi − ũj + i

ũi − ũj − i
∏
k

ũi − ṽk − i/2
ũi − ṽk + i/2

= 1, (19)

∏
k

ṽi − ũk − i/2
ṽi − ũk + i/2

= 1. (20)

6.1. Bound states

In the limit of large L, these equations yield an impor-
tant property of having bound states. If one of zi has
a positive imaginary part, the rhs of (17) is large. So,
the lhs should have a pole, which implies that either
there is some zj = zi − i or some wk = zi + i/2. The
first possibility leads us to a string of z’s, spaced by i,
and second leads to a more complex set of boson and
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fermion roots with the same real part. Actually, there
are important conditions on the number of roots

L > 2#z > 4#w > 8#u > 16#v
#z > 2#w̃ > 4#ũ > 8#ṽ. (21)

Under these conditions, the Bethe equations imply
the following set of bound states: strings of u, ũ, and
z and trapezia consisting of N -strings of w, N − 1
strings of u, and N − 2 strings of v. The set of equa-
tions for the real part of bound states would look
quite complicated (we omit the tilded variables to
avoid further complications):∏
j,n

vi − unj + ni/2
vi − unj − ni/2

vi − tnj + i(n− 1)/2
vi − tnj − i(n− 1)/2

= 1, (22)

∏
j 6=i,m

n+m∏
l=|n−m|/2

uni − umj + li

un − umj − li
uni − umj + (l + 1)i
uni − umj − (l + 1)i

×

×
∏
j

uni − t1j + in/2
ui − t1j − in/2

uni − vj + in/2
ui − vj − in/2

= 1, (23)

∏
j 6=i,m

(n+m)/2∏
l=|n−m|/2

tni − tmj + li

tn − tmj − li
tni − tmj + (l + 1)i
tni − tmj − (l + 1)i

×

×
∏
j

tni − t1j + i(n− 1)/2
tni − t1j − i(n− 1)/2

tni − vj + i(n− 1)/2
tni − vj − i(n− 1)/2

×

×
∏
j,m

n+m−1
2∏

l=
|n−m|+1

2

tni − zmj + li

tni − zmj − li
= 1, (24)

∏
j 6=i,m

(n+m)/2∏
l=|n−m|/2

zni − zmj + li

zn − zmj − li
zni − zmj + (l + 1)i
zni − zmj − (l + 1)i

×

×
∏
j,m

n+m−1
2∏

l=
|n−m|+1

2

zni − tmj + li

zni − tmj − li
=
(
zni + in

zni − in

)L
. (25)

7. Thermodynamic Bethe Ansatz

We now know that all solutions of the Bethe equa-
tion are either real or sets of roots with fixed imagi-
nary parts, parametrized by real parameters. So we
can introduce the densities for roots and each type of
bound states. To obtain the equation for densities,
one should introduce counting functions. For exam-
ple, for Eq. (14), the counting function would be

N(x) =
1

2πi

∑
k

log
x− uk − i/2
x− uk + i/2

. (26)

Fig. 3

If N(x) is an integer for some value of x, Eq. (14) is
satisfied. It could be that x is one of vi‘s or not. In
the second case, we call such x holes. If we introduce
a density for holes ρ̄, it is obvious that

dN

dx
= ρv + ρ̄v =

1
2πi

∞∫
−∞

dy

1/4 + (x− y)2
ρu. (27)

If we apply this technique to (22)–(25), we get the
following set of integral equations:

ν + ν̄ = Kn ∗ sn +Kn ∗ τn, (28)

sn + s̄n = Knm ∗ sm +Kn ∗ ν +Kn ∗ τ1, (29)

τn + τ̄n = Knm ∗ τm + +Kn−1 ∗ ν+

+Kn−1 ∗ τ1 + K̃nmσm, (30)

σn + σ̄n = Knmσm + K̃nmτm (31)

with integral kernels

Kn =
n/2

n2/4 + x2
, (32)

Knm =
(n+m)/2∑
l=|n−m|/2

(1− δl0)K2l +K2l+2, (33)

K̃nm =

n+m−1
2∑

l=
|n−m|+1

2

K2l. (34)
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The set of equations (28)–(31) is not complete, since
we lost some information, while changing to the den-
sity formalism. However, they possess enough infor-
mation to consider the system at finite temperatures.
The partition function of the system is

Z =
∑

states

exp

(
β
∑
i

1
1/4 + z2

i

)
=

=
∫ ∏

DsnDτnDνDσn exp

(∑
n

∫
βσn

n2/4 + x2
+

+ sn log
(
1 +

s̄n
sn

)
+ s̄n log

(
1 +

sn
s̄n

)
+

+ τn log
(
1 +

τ̄n
τn

)
+ τ̄n log

(
1 +

τn
τ̄n

)
+

+ ν log
(
1 +

ν̄

ν

)
+ ν̄ log

(
1 +

ν

ν̄

)
+

+σn log
(
1 +

σ̄n
σn

)
+ σ̄n log

(
1 +

σn
σ̄n

)
dx

)
. (35)

For a large number of particles, one usually uses the
saddle-point method. The appropriate equations are
called the thermodynamical Bethe ansatz equations.
In our case, they are

log
(ν
ν̄

)
= Kn∗log

(
1 +

sn
s̄n

)
+Kn∗log

(
1 +

τn
τ̄n

)
, (36)

log
(
sn
s̄n

)
= Knm ∗ log

(
1 +

sm
s̄m

)
+Kn ∗ log

(
1 +

ν

ν̄

)
+

+Kn ∗ log
(
1 +

τ1
τ̄1

)
, (37)

log
(
τn
τ̄n

)
= Knm log

(
1 +

τm
τ̄m

)
+Kn−1∗log

(
1 +

ν

ν̄

)
+

+Kn ∗ log
(
1 +

τ1
τ̄1

)
+ K̃nm log

(
1 +

σm
σ̄m

)
, (38)

log
(
σn
σ̄n

)
= Knm ∗ log

(
1 +

σm
σ̄m

)
+

+ K̃nm log
(
1 +

τm
τ̄m

)
. (39)

Multiplying the equations with free index n by K−1
nm

and the equations with no free index by K−1
1 + K1,

we get equations without infinite sums. Then, intro-
ducing the notation

Y n+1
0 =

sn
s̄n
, Y −n−1

0 =
s̃n
¯̃sn
, (40)

Y 2
1 =

ν

ν̄
, Y 2

−1 =
ν̃
¯̃ν
, (41)

Y 1
n−1 =

τ̄n
τn
, Y −1

n−1 =
¯̃τn
τ̃n
, (42)

Y 0
n−1 =

σ̄n
σn
, (43)

we get the famous Y -system equation

Y as

(
u+

i

2

)
Y as

(
u− i

2

)
=

1 + Y as+1(u)Y
a
s−1(u)

1 +
(
Y a+1
s (u)Y a−1

s (u)
)−1.

(44)
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IНТЕГРОВНIСТЬ У AdS/CFT ВIДПОВIДНОСТI

Р е з ю м е

У роботi виконаний огляд сучасного стану розвитку теорiї
AdS/CFT вiдповiдностi для часткового випадку вiдповiд-
ностi мiж суперструнами типу IIB у просторi AdS5 × S5 та
N = 4 супертеорiї Янга–Мiллса. Шляхом аналiзу зв’язаних
станiв коренiв Бете для вiдповiдного спiнового ланцюжку
iз групою симетрiй PSU(2,2|4), показано, як саме виникає
система функцiональних рiвнянь на ґратцi, що називається
Y-системою.
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