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Intending to mimicry certain physical features of the Davydov–Kyslukha exciton-phonon sys-
tem, we have suggested four distinct combinations of ansätze for matrix-valued Lax operators
capable to generate a number of semidiscrete integrable nonlinear systems in the framework of
the zero-curvature approach.

Dealing with Taylor-like ansätze for Lax operators, two types of general nonlinear inte-
grable systems on infinite quasione-dimensional regular lattices are proposed. In accordance
with the Mikhailov reduction group theory, both general systems turn out to be underdeter-
mined, thereby permitting numerous reduced systems written in terms of true field variables.
Each of the obtained reduced systems can be considered as an integrable version of two par-
ticular coupled subsystems and demonstrates the symmetry under the space and time reversal
(PT -symmetry). Thus, we have managed to unify the Toda-like vibrational subsystem and the
self-trapping lattice subsystem into the single integrable system, thereby substantially extending
the range of realistic physical problems that can be rigorously modeled. The several lowest con-
served densities associated with either of the possible infinite hierarchies of local conservation
laws are found explicitly in terms of prototype field functions.

When considering the Laurent-like ansätze for Lax operators, we have isolated four new
semidiscrete nonlinear integrable systems interesting for physical applications. Thus, we have
coupled the Toda-like subsystem with the induced-trapping subsystem of PT -symmetric exci-
tations. Another integrable system is set up as the subsystem of Frenkel-like excitons coupled
with the subsystem of essentially nontrivial vibrations. We also have revealed the integrable
system of two self-trapping subsystems coupled together by means of a mutually induced non-
linearity. At last, we have obtained the integrable system, where the Toda-like subsystem and
the self-trapping subsystem are coupled akin to a charged particle with an electromagnetic field.
In so doing, the vector-potential part of the Hamiltonian function is appeared as the density
of excitations in the self-trapping subsystem. Each of the proposed systems admits the clear
Hamiltonian representation characterized by the two pairs of canonical field variables with
the standard (undeformed) Poisson structure. Several general local conserved densities having
been found in the framework of a generalized direct procedure are presented explicitly. These
conserved densities are readily adaptable to any integrable system under consideration.
K e yw o r d s: Davydov–Kyslukha model, Toda lattice, self-trapping system, integrable cou-
pling, PT -symmetry.

1. Introduction

Approximately forty years ago, Davydov and Kys-
lukha proposed the nonlinear model [1–3] suitable to
describe the soliton-like waves supported by the in-
teraction between the exciton (electron) and phonon
(vibration) subsystems on quasione-dimensional reg-
ular lattices both of the synthetic [4, 5] and natural
[6, 7] origin. One of the promising applications of
the Davydov–Kyslukha model was claimed to be the
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transport of energy and charge in biological macro-
molecules [7, 8] invoked to resolve the so-called crisis
in bioenergetics [9].

The Davydov–Kyslukha model is an essentially
classical dynamical system characterized by the
Hamiltonian function [8]

H = −J
∞∑

m=−∞
[ψ∗(m)ψ(m+ 1) + ψ∗(m)ψ(m− 1)] +

+χ
∞∑

m=−∞
[β(m+ 1)− β(m− 1)]ψ∗(m)ψ(m)+
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+
∞∑

m=−∞

{
π2(m)/2M + (w/2)[β(m)− β(m− 1)]2

}
(1.1)

with ψ∗(n) and ψ(n) serving as the complex conju-
gate probability amplitudes to find an exciton on the
n-th site of the lattice while π(n) and β(n) to be,
respectively, the momentum and the coordinate as-
sociated with a displacement of the n-th structural
element (atom or molecule) from its equilibrium po-
sition. In so doing, each pair of the quantities ψ∗(n),
ψ(n) and π(n), β(n) acquires the status of canonical
field variables, inasmuch as having been governed by
the respective pair of Hamiltonian equations

+i~dψ(n)/dt = ∂H /∂ψ∗(n), (1.2)
−i~dψ∗(n)/dt = ∂H /∂ψ(n) (1.3)

and
dπ(n)/dt = −∂H /∂β(n), (1.4)
dβ(n)/dt = +∂H /∂π(n). (1.5)

The Davydov–Kyslukha system is not integrable ei-
ther in the Lax [10–12] or Liuoville [11, 12] sense and,
as a consequence, does not permit a rigorous math-
ematical treatment. In this respect, it would be of
interest to find out some integrable systems resem-
bling the Davydov–Kyslukha one from the physical
standpoint. Our recent numerous attempts of such
findings are collected in the present paper.

As a matter of fact, all proposed integrable sys-
tems can be divided into two large groups depend-
ing on whether the particular system has been ob-
tained in the framework of Taylor-like or Laurent-like
ansätze for auxiliary spectral and evolution operators
responsible for the system zero-curvature representa-
tion. Consequently, the bulk of the paper will be
composed by two essentially autonomous parts (Sec-
tions 2–5 as the first part and Sections 6–9 as the
second one) dealing with two distinct groups of inte-
grable systems.

2. Two Types of Taylor-Like
Ansätze for the Auxiliary Lax Operators

The main tool of our consideration will be a zero-
curvature equation [11]

L̇(n|λ) = A(n+ 1|λ)L(n|λ)− L(n|λ)A(n|λ), (2.1)

which is able, in the case of properly chosen spectral
L(n|λ) and evolution A(n|λ) operators, to provide

the zero-curvature representation for some new inte-
grable semidiscrete nonlinear system on a quasione-
dimensional lattice. Here, the integer n marks the
ordinal number of a unit cell on the regular quasione-
dimensional infinite lattice, and λ stands for the time-
independent spectral parameter. The overdot on the
left-hand side of the zero-curvature equation (2.1) de-
notes the derivative with respect to the time τ .

The three forthcoming sections (Sections 3–5) will
be devoted to the integrable systems arising from
spectral and evolution operators taken as some 3× 3
square matrices given by truncated Taylor series with
respect to the spectral parameter. In due course of
empirical searching, we have managed to discover
two pairs of nontrivial ansätze for the Lax opera-
tors L(n|λ) and A(n|λ) capable to include additional
degrees of freedom as compared with those typical
of the integrable Toda [13–17] or integrable non-
linear self-trapping [18–23] lattice systems and thus
to mimicry some features of the Davydov–Kyslukha
one. These two pairs of ansätze are, respectively, as
follows:

L(n|λ)=

f11(n) + λ2h11(n) λg12(n) f13(n)

λg21(n) f22(n) 0

f31(n) 0 f33(n)

, (2.2)

A(n|λ)=

a11(n) 0 a13(n)

0 a22(n) λb23(n)

a31(n) λb32(n) a33(n) + λ2c33(n)

 (2.3)

and

L(n|λ)=

f11(n) + λ2h11(n) λg12(n) f13(n)

λg21(n) f22(n) 0

f31(n) 0 f33(n)

, (2.4)

A(n|λ)=

a11(n) + λ2c11(n) λb12(n) a13(n)

λb21(n) a22(n) 0

a31(n) 0 a33(n)

. (2.5)

The systems linked with the first two ansätze (2.2)
and (2.3) will be referred to as the primary systems
of the first type, while the systems connected with
the second two ansätze (2.4) and (2.5) will be called
the primary systems of the second type. Here, we
bear in mind the possibility to extend the truncated
Taylor series for either evolutionary ansatz (2.3) or
(2.5) in such a way as to recover any admissible inte-
grable system from an infinite hierarchy initiated by
the respective primary one.
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3. Systems (with Taylor-Like
Ansätze for Lax Operators) of the First Type

Addressing to systems of the first type, we substi-
tute the pertinent ansätze (2.2) and (2.3) for matrices
L(n|λ) and A(n|λ) into the zero-curvature equation
(2.1). The obtained set of equations shows that the
prototype field function f33(n) must be equalized to
zero otherwise the theory acquires an essentially non-
local character.

Therefore, by assuming

f33(n) ≡ 0, (3.1)

the results of calculations are as follows:

ḣ11(n) = a11(n+ 1)h11(n)− h11(n)a11(n), (3.2)

ḟ11(n) = a11(n+ 1)f11(n) + a13(n+ 1)f31(n)−

− f11(n)a11(n)− f13(n)a31(n), (3.3)

ḟ22(n) = a22(n+ 1)f22(n)− f22(n)a22(n), (3.4)

ġ12(n) = a11(n+ 1)g12(n)−

− g12(n)a22(n)− f13(n)b32(n), (3.5)

ġ21(n) = a22(n+ 1)g21(n) + b23(n+ 1)f31(n)−

− g21(n)a11(n), (3.6)

ḟ13(n) = a11(n+ 1)f13(n)−

− f11(n)a13(n)− f13(n)a33(n), (3.7)

ḟ31(n) = a31(n+ 1)f11(n) + a33(n+ 1)f31(n)−

− f31(n)a11(n), (3.8)

where

c33(n) = c33, (3.9)

a13(n) = −f22(n)f13(n)c33/d(n), (3.10)

b23(n) = +g21(n)f13(n)c33/d(n), (3.11)

a31(n+ 1) = −c33f31(n)f22(n)/d(n), (3.12)

b32(n+ 1) = +c33f31(n)g12(n)/d(n), (3.13)

d(n) ≡ h11(n)f22(n)− g12(n)g21(n), (3.14)

while the functions a11(n), a22(n), and a33(n) referred
to as the sampling ones remain arbitrary for the time
being. The arbitrariness of the sampling functions
is typical of other integrable systems [24–27] and ap-
pears to be in lines with the principles of the reduc-
tion group method developed by Mikhailov [28].

The admissible fixation of the sampling functions is
not unique. The most suitable approach to this task is
to rely on some local conservation laws [27] and on the
requirement of physical advisability. In any event, we
have to remember that any fixation of one sampling
function inevitably imposes one constraint onto the
prototype field functions. Thus, our general set of
seven nonlinear evolution equations (3.2)–(3.8) must
be reduced to four truly independent ones. Analyzing
the general system (3.2)–(3.8), one can reveal at least
two possibilities,

ḣ11(n) = 0, (3.15)

ḋ(n) = 0, (3.16)
d

dτ
[f31(n)f13(n)] = 0 (3.17)

and

ḣ11(n) = 0, (3.18)

ḟ22(n) = 0, (3.19)
d

dτ
[f31(n)f13(n)] = 0, (3.20)

to handle such a reduction.
The former variant (3.15)–(3.17) looks as the more

winning one, and we consider it in full details. First
of all due to the specific structure of general evolu-
tion equations (3.2)–(3.8), the constraint ḣ11(n) = 0
ensures that the function h11(n) is able to rescale the
rest of prototype field functions, and, hence, it should
be safely equalized to unity:

h11(n) = 1. (3.21)

The other two constraints (3.16) and (3.17) accompa-
nied by the demand of space uniformity assume the
parametrizations

g12(n) =
√
f22 g−(n), (3.22)

g21(n) =
√
f22 g+(n), (3.23)

f22(n) = f22 [1 + g+(n)g−(n)] , (3.24)

f13(n) = f13 exp[+q(n)], (3.25)

f31(n) = f31 exp[−q(n)], (3.26)

where ḟ22 = 0, ḟ13 = 0 = ḟ31, and the equality
h11(n) = 1 has been taken into account. On the other
hand, the same three constraints (3.15)–(3.17) yield

a11(n) = a11, (3.27)

1094 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11



Semidiscrete Integrable Systems Inspired by the Davydov–Kyslukha Model

a22(n) = a22 + (f13c33f31/f22)g+(n)g−(n− 1)×

× exp[+q(n)− q(n− 1)], (3.28)

a33(n) = a33, (3.29)

where the spatially independent quantities a11, a22,
a33, and c33 can be treated as some functions of the
time τ . The particular choice of these parameters is
dictated by the setting of a physical problem and by
the adopted boundary conditions for the field vari-
ables f11(n), q(n) and g+(n), g−(n).

The reduced semidiscrete nonlinear integrable sys-
tem having been written in terms of the true field
variables f11(n), q(n) and g+(n), g−(n) looks as fol-
lows:

ḟ11(n) = −f13c33f31 [1 + g+(n+ 1)g−(n+ 1)]×

× exp [+q(n+ 1)− q(n)] +

+ f13c33f31 [1 + g+(n− 1)g−(n− 1)]×

× exp [+q(n)− q(n− 1)], (3.30)

q̇(n) = c33 [1 + g+(n)g−(n)] f11(n)+a11−a33, (3.31)

ġ+(n) = (a22 − a11) g+(n) +

+ (f13c33f31/f22) [1 + g+(n)g−(n)] g+(n+ 1)×

× exp [+q(n+ 1)− q(n)], (3.32)

ġ−(n) = (a11 − a22) g−(n)−

− (f13c33f31/f22) [1 + g+(n)g−(n)] g−(n− 1)×

× exp [+q(n)− q(n− 1)]. (3.33)

Evidently, the parameter a11 plays no self-sufficient
part in the structure of the equations and could be
equalized to zero: a11 = 0. Further, at f13f31 < 0
and a33 − a11 = 0, the first two equations (3.30) and
(3.31) of the obtained system describe the Toda-like
subsystem relative to the immovable reference frame.
As to the last two equations (3.32) and (3.33), they
correspond to the self-trapping subsystem, whose in-
tegrable predecessors have been considered by a num-
ber of authors [18–23] in the wake of the Davydov–
Kyslukha soliton model [1–3, 7, 8, 29, 30] and the
Eilbeck–Lomdahl–Scott self-trapping model [31–33].

It is worth noting that the particular choice of the
parameter a22 − a11 in the last two equations (3.32)

and (3.33) seems to be inessential for physical applica-
tions insofar as it does not appear in the concomitant
local conservation law

d

dτ
ln
[
1 + g+(n)g−(n)

]
= (f13c33f31/f22)×

× g+(n+ 1)g−(n) exp [+q(n+ 1)− q(n)]−

− (f13c33f31/f22)×

× g+(n)g−(n− 1) exp [+q(n)− q(n− 1)] , (3.34)

being the discrete-space analog of the continuity
equation. In this respect, the quantity ln[1+ g+(n)×
× g−(n)] can be treated as the density of excitations
in the self-trapping subsystem. As a matter of fact,
the parameter a22−a11 can always be eliminated even
from the basic equations (3.32) and (3.33) by an ap-
propriate gauge transformation.

It is remarkable that, at a11−a22, a11−a33, and c33
being time-independent, the whole coupled system
(3.30)–(3.33) clearly demonstrates the symmetry un-
der the space and time reversal (PT -symmetry) im-
plying that the transformed field variables f ′11(n|τ),
q′(n|τ) and g′+(n|τ), g′−(n|τ) defined as

f ′11(n|τ) = +f11(−n| − τ), (3.35)

q′(n|τ) = −q(−n| − τ) (3.36)

and

g′+(n|τ) = g−(−n| − τ) exp(+α), (3.37)

g′−(n|τ) = g+(−n| − τ) exp(−α) (3.38)

are governed by the same set of equations (3.30)–
(3.33) as the original variables f11(n|τ), q(n|τ) and
g+(n|τ), g−(n|τ).

Presently, the PT -symmetric models become in-
creasingly applicable in physical sciences [34], espe-
cially in nonlinear optics [35–37], inasmuch as they al-
low one to obtain physically meaningful results with-
out invoking the more restrictive condition of Dirac
Hermiticity [34].

Finalizing this section, we briefly present the re-
sults arising from the second variant of admissible
constraints (3.18)–(3.20). Thus, for the functions
h11(n), f22(n) and f13(n), f31(n), we have

h11(n) = 1, (3.39)

f22(n) = f22, (3.40)

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11 1095



O.O. Vakhnenko

f13(n) = f13 exp[+q(n)], (3.41)

f31(n) = f31 exp[−q(n)], (3.42)

where ḟ22 = 0, ḟ13 = 0 = ḟ31, and the uniformity of
space is implied. The same three constraints (3.18)–
(3.20) yield

a11(n) = a11, (3.43)

a22(n) = a22, (3.44)

a33(n) = a33, (3.45)

where the free parameters a11, a22, and a33 can be
thought as arbitrary functions of the time. The re-
duced nonlinear evolution equations for the field vari-
ables f11(n), q(n) and g12(n), g21(n) are easy repro-
ducible from the general ones (3.2)–(3.8) by the use
of the just obtained formulas (3.39)–(3.45) and the
general formulas (3.9)–(3.14).

4. Systems (with Taylor-like Ansätze
for Lax Operators) of the Second Type

In this section, we shall dwell on the integrable sys-
tems of the second kind, i.e., the systems associ-
ated with the second admissible collection of ansätze
(2.4) and (2.5) for the spectral and evolution matri-
ces L(n|λ) and A(n|λ). Having been inserted into the
zero-curvature equation (2.1), these ansätze allow us
to isolate the following set of evolution equations:

ḣ11(n) = a11(n+ 1)h11(n) + b12(n+ 1)g21(n)−
−h11(n)a11(n)− g12(n)b21(n), (4.1)

ḟ11(n) = a11(n+ 1)f11(n) + a13(n+ 1)f31(n)−
− f11(n)a11(n)− f13(n)a31(n), (4.2)

ġ12(n) = a11(n+ 1)g12(n) + b12(n+ 1)f22(n)−
− f11(n)b12(n)− g12(n)a22(n), (4.3)

ġ21(n) = b21(n+ 1)f11(n) + a22(n+ 1)g21(n)−
− g21(n)a11(n)− f22(n)b21(n), (4.4)

ḟ22(n) = a22(n+ 1)f22(n)− f22(n)a22(n), (4.5)

ḟ13(n) = a11(n+ 1)f13(n) + a13(n+ 1)f33(n)−
− f11(n)a13(n)− f13(n)a33(n), (4.6)

ḟ31(n) = a31(n+ 1)f11(n) + a33(n+ 1)f31(n)−
− f31(n)a11(n)− f33(n)a31(n), (4.7)

ḟ33(n) = a33(n+ 1)f33(n)− f33(n)a33(n), (4.8)

where
c11(n) = c11, (4.9)

b12(n) = c11g12(n)/h11(n), (4.10)

a13(n) = c11f13(n)/h11(n), (4.11)

b21(n+ 1) = g21(n)c11/h11(n), (4.12)

a31(n+ 1) = f31(n)c11/h11(n), (4.13)

with the free parameter c11 being some arbitrary
function of the time.

The sampling functions a11(n), a22(n), and a33(n)
remain arbitrary for the time being. As we already
know, any procedure of their fixation reduces the
number of field variables. In accordance with the to-
tal number of sampling functions, we must impose
three differential constraints linked with underdeter-
mined local conservation laws.

However, in the case where the determinant of the
spectral operator depends on several powers of the
spectral parameter λ, there may appear at least one
constraint of purely algebraic form. In order to prove
this statement, let us take advantage of the universal
local conservation law
d

dτ
ln detL(n|λ) = SpA(n+ 1|λ)− SpA(n|λ) (4.14)

following directly from the zero-curvature equation
(2.1) provided the matrix L(n|λ) taken at arbitrary
λ is not degenerate: detL(n|λ) 6= 0. For the adopted
ansatz (2.4) for the spectral matrix L(n|λ), we have
detL(n|λ) =

= f11(n)f22(n)f33(n)− f31(n)f22(n)f13(n) +

+λ2[h11(n)f22(n)f33(n)−g21(n)f33(n)g12(n)]. (4.15)

This expression when combined with the universal
local conservation law (4.14) yields the equations
d

dτ

[
f11(n)f22(n)f33(n)− f31(n)f22(n)f13(n)

]
=

=
[
a11(n+ 1) + a22(n+ 1) + a33(n+ 1)−

− a11(n)− a22(n)− a33(n)
]
×

×
[
f11(n)f22(n)f33(n)− f31(n)f22(n)f13(n)

]
, (4.16)

d

dτ

[
h11(n)f22(n)f33(n)− g21(n)f33(n)g12(n)

]
=

=
[
a11(n+ 1) + a22(n+ 1) + a33(n+ 1)−

− a11(n)− a22(n)− a33(n)
]
×

×
[
h11(n)f22(n)f33(n)− g21(n)f33(n)g12(n)

]
, (4.17)
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which supports the equality

A(n)
[
f11(n)f22(n)f33(n)− f31(n)f22(n)f13(n)

]
=

= B(n)
[
h11(n)f22(n)f33(n)− g21(n)f33(n)g12(n)

]
.

(4.18)

Here, the coefficients A(n) and B(n) are time-
independent: Ȧ(n) = 0 = Ḃ(n). We will ignore also
the possibility of their spatial dependence and assume

A(n) = A, (4.19)

B(n) = B, (4.20)

thus asserting the uniformity of space. The obtained
equality (4.18) is nothing but the natural constraint,
which stays apart from the constraints necessary to
fix the sampling functions.

Altogether, we will deal with four constraints and
should come to one or another closed set of four non-
linear evolution equations.

As the first step common for either of the particular
systems under forthcoming consideration, we adopt
the constraint

ḣ11(n) = 0. (4.21)

In so doing, we immediately obtain

a11(n) = a11 − c11g12(n)g21(n− 1)/h11(n)h11(n− 1).
(4.22)

Then, by repeating the arguments of the previous sec-
tion, we put

h11(n) = 1 (4.23)

without any loss of generality.
Appealing to the natural constraint (4.18) at ar-

bitrary nonzero values of parameters A and B, it is
conceivable to exclude any of the following five com-
binations f11(n), f22(n), g21(n)g12(n), f33(n), and
f31(n)f13(n) from consideration and thereafter to im-
pose two lacking differential constraints. However,
all ramifications of such possibilities could produce
a quite long list of integrable systems, and the task
of their classification goes beyond the scope of our
present report. Therefore, we will restrict ourselves
with two limiting cases arising from the natural con-
straint (4.18) at A 6= 0, B = 0 and A = 0, B 6= 0,
respectively.

Thus, atA 6= 0 andB = 0, we come to two variants.
The first one is characterized by the constraints

f22(n) = 0, (4.24)
d

dτ
[g21(n)g12(n)] = 0, (4.25)

ḟ33(n) = 0 (4.26)

yielding

a22(n) = a22 − a11 + g21c11g12 exp[+q(n)− q(n− 1)],
(4.27)

a33(n) = a33 (4.28)

and

g12(n) = g12 exp[+q(n)], (4.29)

g21(n) = g21 exp[−q(n)], (4.30)

f33(n) = f33 (4.31)

with ġ12 = 0 = ġ21 and ḟ33 = 0.
The second variant is characterized by the con-

straints

f11(n) = f13(n)f31(n)/f33(n), (4.32)

ḟ22(n) = 0, (4.33)

ḟ33(n) = 0 (4.34)

yielding

a22(n) = a22, (4.35)

a33(n) = a33, (4.36)

and

f22(n) = f22, (4.37)

f33(n) = f33 (4.38)

with ḟ22 = 0 = ḟ33.
At A = 0 and B 6= 0, we also come to two variants.
The first one is determined by the constraints

f33(n) = 0, (4.39)

ḟ22(n) = 0, (4.40)
d

dτ
[f13(n)f31(n)] = 0 (4.41)
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yielding

a22(n) = a22, (4.42)

a33(n) = a33 − a11 + c11g12(n)g21(n− 1) (4.43)

and

f22(n) = f22, (4.44)

f13(n) = f13 exp[+q(n)], (4.45)

f31(n) = f31 exp[−q(n)], (4.46)

with ḟ22 = 0 and ḟ13 = 0 = ḟ31.
The second variant is determined by the constraints

g12(n)g21(n) = f22(n), (4.47)

ḟ22(n) = 0, (4.48)

ḟ33(n) = 0 (4.49)

yielding

a22(n) = a22, (4.50)

a33(n) = a33 (4.51)

and

g12(n) =
√
f22 exp[+q(n)], (4.52)

g21(n) =
√
f22 exp[−q(n)], (4.53)

f22(n) = f22, (4.54)

f33(n) = f33 (4.55)

with ḟ22 = 0 = ḟ33.
In all variants considered in this section, the

adopted parametrizations have been performed in
such a way as to preserve the uniformity of space.
We do not write down explicitly either of four par-
ticular integrable systems linked with the just listed
reductions, by assuming that the interested reader
can readily fill in this gap relying upon the already
prepared formulas.

One can always fit all these nonlinear integrable
systems to be invariant under the space and time
reversal.

5. Local Conserved Densities for the Systems
with Taylor-Like Lax Operators

By definition, any local conservation law linked with
some semidiscrete integrable system given on infinite
quasione-dimensional lattice can be written in the
form

ρ̇(n) = J(n|n− 1)− J(n+ 1|n), (5.1)

where the quantities ρ(n) and J(n+ 1/2|n− 1/2) are
referred to as the local density and the local current,
respectively. According to the previous section, some
of the lowest local conservation laws are obtainable di-
rectly from the universal local conservation law (4.14)

However, there exists the generalized procedure
[26] allowing one to develop an infinite set of local con-
servation laws recursively without any reference on
the scattering data of an auxiliary spectral problem.
The approach [26] generalizes the ideas suggested
by Konno, Sanuki, Ichikawa, and Wadati [38, 39] to
the case of multicomponent integrable systems linked
with a spectral operator of arbitrary order R.

Omitting rather tedious calculations having been
performed in the framework of the generalized proce-
dure [26], we will present several lowest local densities
written in terms of prototype field functions. They
look as follows:

ρ(n|0) = lnh11(n), (5.2)

ρ+(n|1) =
f11(n)
h11(n)

+
g12(n+ 1)g21(n)
h11(n+ 1)h11(n)

, (5.3)

ρ−(n|1) =
f11(n)
h11(n)

+
g12(n)g21(n− 1)
h11(n)h11(n− 1)

, (5.4)

ρ+(n|2) =
f13(n+ 1)f31(n)
h11(n+ 1)h11(n)

−

− 1
2

[
f11(n)
h11(n)

+
g12(n+ 1)g21(n)
h11(n+ 1)h11(n)

]2
−

− f11(n+ 1)g12(n+ 1)g21(n)
h2

11(n+ 1)h11(n)
+

+ [f22(n+ 1)h11(n+ 1)− g21(n+ 1)g12(n+ 1)]×

× g21(n)g12(n+ 2)
h11(n+ 2)h2(n+ 1)h11(n)

, (5.5)

ρ−(n|2) =
f13(n)f31(n− 1)
h11(n)h11(n− 1)

−

− 1
2

[
f11(n)
h11(n)

+
g12(n)g21(n− 1)
h11(n)h11(n− 1)

]2
−
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−g12(n)g21(n− 1)f11(n− 1)
h11(n)h2

11(n− 1)
+

+
[
f22(n− 1)h11(n− 1)− g21(n− 1)g12(n− 1)

]
×

× g21(n− 2)g12(n)
h11(n)h2

11(n− 1)h11(n− 2)
. (5.6)

Having been rewritten in terms of appropriate true
field variables, these formulas are applicable equally
well to any relevant integrable systems taken among
the two types of systems considered in two previous
sections (Sections 3 and 4). This statement is based
on the fact that the general form of a local conserved
density is dictated exclusively by the general form of
a spectral operator, which turns out to be common
for both types of the suggested systems (see formulas
(2.2) and (2.4) for comparison).

As for the local currents, they are essentially de-
pendent on the type of a system dictated by the type
of an ansatz for the evolution operator. The formulas
for the local currents turn out to be very cumbersome,
and we do not write them down.

6. Two Types of Laurent-Like
Ansätze for Auxiliary Lax Operators

This section opens the second part of the paper distin-
guished from the first one by the more constructive
choice of ansätze for the Lax operators L(n|z) and
A(n|z) in the zero-curvature equation

L̇(n|z) = A(n+ 1|z)L(n|z)− L(n|z)A(n|z). (6.1)

Here, for the sake of convenience, we adopted the new
notation z for the time-independent spectral param-
eter.

The three forthcoming sections (Sections 7–9) will
be devoted to the integrable systems arising from
spectral and evolution operators taken as some 3× 3
square matrices given by the truncated Laurent se-
ries with respect to the spectral parameter. Our
consideration will be based upon two pairs of nontri-
vial ansätze for the Lax operators L(n|z) and A(n|z),
which have been sorted out as

L(n|z)=

f11(n)+h11(n)(z2+z−2) g12(n)z f13(n)

g21(n)z−1 f22(n) 0

f31(n) 0 f33(n)

,
(6.2)

A(n|z)=

a11(n) 0 a13(n)

0 a22(n) b23(n)z−1

a31(n) b32(n)z a33(n)+c33(n)(z2+z−2)


(6.3)

and

L(n|z)=

f11(n)+h11(n)(z2+z−2) g12(n)z f13(n)

g21(n)z−1 f22(n) 0

f31(n) 0 f33(n)

,
(6.4)

A(n|z)=

a11(n)+c11(n)(z2+z−2) b12(n)z a13(n)

b21(n)z−1 a22(n) 0

a31(n) 0 a33(n)


(6.5)

respectively.
The systems linked with the first two ansätze (6.2)

and (6.3) will be referred to as primary systems of
the first type, while the systems connected with the
second two ansätze (6.4) and (6.5) will be called as
primary systems of the second type. Here, of course,
we should remember that now we classify the systems
originated by the Lax operators written as the trun-
cated Laurent series in contrast to the early consid-
ered systems originated by the Lax operators written
as the truncated Taylor series.

7. Systems (with Laurent-Like Ansätze
for Lax Operators) of the First Type

In order to generate the systems of the first type, we
substitute the pertinent ansätze (6.2) and (6.3) for
the Lax matrices L(n|z) and A(n|z) into the zero-
curvature equation (6.1). The straightforward calcu-
lations yield the following general equations:

ḣ11(n) = a11(n+ 1)h11(n)− h11(n)a11(n), (7.1)

ḟ11(n) = a11(n+ 1)f11(n) + a13(n+ 1)f31(n)−

−f11(n)a11(n)− f13(n)a31(n), (7.2)

ġ12(n) = a11(n+ 1)g12(n)−

−g12(n)a22(n)− f13(n)b32(n), (7.3)

ġ21(n) = a22(n+ 1)g21(n) + b23(n+ 1)f31(n)−

− g21(n)a11(n), (7.4)

ḟ22(n) = a22(n+ 1)f22(n)− f22(n)a22(n), (7.5)
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ḟ13(n) = a11(n+ 1)f13(n) + a13(n+ 1)f33(n)−
− f11(n)a13(n)− g12(n)b23(n)− f13(n)a33(n), (7.6)

ḟ31(n) = a31(n+ 1)f11(n) + b32(n+ 1)g21(n) +

+ a33(n+1)f31(n)−f31(n)a11(n)−f33(n)a31(n), (7.7)

ḟ33(n) = a33(n+ 1)f23(n)− f33(n)a33(n), (7.8)

where

c33(n) = c33, (7.9)

a13(n) = −f13(n)c33/h11(n), (7.10)

a31(n+ 1) = −c33f31(n)/h11(n), (7.11)

while b23(n) and b32(n) must be determined from the
equations

b23(n+ 1)f33(n)− f22(n)b23(n) =

= −g21(n)f13(n)c33/h11(n), (7.12)

b32(n+ 1)f22(n)− f33(n)b32(n) =

= +c33f31(n)g12(n)/h11(n). (7.13)

Here, the free parameter c33 can be thought as an
arbitrary function of the time. The sampling func-
tions a11(n), a22(n), and a33(n) must be found from
three suitable differential constraints linked with un-
derdetermined local conservation laws. On the other
hand, the locality of theory so desirable for physical
applications can be achieved by imposing one more
but purely algebraic constraint (namely, f22(n) = 0
or f33(n) = 0).

We begin with the differential constraint

ḣ11(n) = 0, (7.14)

which can be safely replaced by the equality

h11(n) = 1 (7.15)

due to a specific structure of the general equations
(7.1)–(7.13). As a consequence, we obtain

a11(n) = a11, (7.16)

where a11 is some arbitrary function of the time.
The particular choice of other constraints is unable
to change the formulas of this paragraph. Therefore,
they (formulas (7.14)–(7.16)) will be common for ei-
ther of two admissible reduced systems arising from
the general equations (7.1)–(7.13).

The first reduced system is based on the constraints

f33(n) = 0, (7.17)

ḟ22(n) = 0, (7.18)
d

dτ
[f13(n)f31(n)] = 0. (7.19)

These constraints yield

f22(n) = f22, (7.20)

f13(n) = f13 exp[+q(n)], (7.21)

f31(n) = f31 exp[−q(n)] (7.22)

and

b32(n+ 1) = (c33f31/f22) g12(n) exp[−q(n)], (7.23)

b23(n) = (f13c33/f22) g21(n) exp[+q(n)], (7.24)

a22(n) = a22, (7.25)

a33(n) = a33 (7.26)

with ḟ22 = 0 and ḟ13 = 0 = ḟ31, while a22 and a33

being some arbitrary functions of the time.
One can readily verify that the reduced system of

our interest admits the concise Hamiltonian represen-
tation

ṗ(n) = −∂H/∂q(n), (7.27)

q̇(n) = +∂H/∂p(n), (7.28)

ġ+(n) = −∂H/∂g−(n), (7.29)

ġ−(n) = +∂H/∂g+(n) (7.30)

in terms of the canonical field variables p(n), q(n)
and g+(n), g−(n) with the Hamiltonian function H
defined by the expression

H =
∞∑

m=−∞
(a11 − a33)p(m) +

∞∑
m=−∞

c33p
2(m)/2−

−
∞∑

m=−∞
f13c33f31 [1 + g+(m)g−(m− 1)/f22)]×

× exp[+q(n)− q(n− 1)] +

+
∞∑

m=−∞
(a11 − a22)[f22 + g+(m)g−(m)]. (7.31)

Here, the relationships

p(n) = f11(n)− g12(n)g21(n)/f22, (7.32)
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g+(n) = g21(n)/
√
f22, (7.33)

g−(n) = g12(n)/
√
f22, (7.34)

between the old and new field variables f11(n), g21(n),
g12(n) and p(n), g+(n), g−(n) have been adopted.
From the physical point of view, the most reasonable
choice of the free parameters a11 − a33 and a11 − a22

is given by the formulas

a11 − a33 = 0, (7.35)

a11 − a22 = f13c33f31/f22. (7.36)

The obtained evolution equations (7.27)–(7.30) (with
H given by (7.31)) describe the unified nonlinear dy-
namics of two coupled subsystems. Thus, the first two
equations (7.27) and (7.28) correspond to the Toda-
like vibrational subsystem. The second two equations
(7.29) and (7.30) can be treated as equations for the
induced-trapping subsystem, inasmuch as their non-
linearities are entirely induced by the Toda-like sub-
system. In so doing, the conserved quantity

N =
∞∑

m=−∞
g+(m)g−(m) (7.37)

should be understood as the total number of excita-
tions in this induced-trapping subsystem.

Similarly to the integrable nonlinear system con-
sisting of the coupled Toda-like and self-trapping sub-
systems (3.30)–(3.33), the present nonlinear system
(7.27)–(7.31) taken for the time-independent free pa-
rameters a11 − a22, a11 − a33, and c33 is also PT -
symmetric. In other words, it is invariant under the
space and time reversal. This fact opens the broad
possibilities for the system applications in various
branches of physics [34–37]. For example, we ex-
pect that the proposed semidiscrete integrable system
(7.27)–(7.31) could support some physical features
of the Davydov–Kyslukha exciton-phonon nonlinear
model [1–3, 7, 8, 29, 30], in particular, the formation
of stable solitary waves so valuable for the transport
of energy and charge through the low-dimensional re-
gular lattice structures [7, 8].

Let us now formulate the second reduced system.
It is based on the constraints

f22(n) = 0, (7.38)
d

dτ
[g21(n)g12(n)] = 0, (7.39)

ḟ33(n) = 0. (7.40)

These constraints yield

f33(n) = f33, (7.41)

g12(n) = g12 exp[+q(n)], (7.42)

g21(n) = g21 exp[−q(n)] (7.43)

and

b23(n+ 1) = −(g21c33/f33)f13(n) exp[−q(n)], (7.44)

b32(n) = −(c33g12/f33)f31(n) exp[+q(n)], (7.45)

a22(n) = a22, (7.46)

a33(n) = a33 (7.47)

with ḟ33 = 0 and ġ12 = 0 = ġ21, while a22 and a33

being some arbitrary functions of the time.
Then, introducing the substitutions

p(n) = f11(n)− f13(n)f31(n)/f33 (7.48)

and

f+(n) = f31(n)/
√
f33, (7.49)

f−(n) = f13(n)/
√
f33, (7.50)

we reveal that the required reduced system acquires
the standard Hamiltonian form

ṗ(n) = −∂H/∂q(n), (7.51)

q̇(n) = +∂H/∂p(n), (7.52)

ḟ+(n) = −∂H/∂f−(n), (7.53)

ḟ−(n) = +∂H/∂f+(n) (7.54)

with the Hamiltonian function H given by the expres-
sion

H =
∞∑

m=−∞

[
a11 − a22 + c33f+(m)f−(m)

]
p(m) +

+
∞∑

m=−∞

(
g21g12c33/f33

)
f+(m)f−(m− 1)×

× exp[+q(m)− q(m− 1)] +

+
∞∑

m=−∞
(a11 − a33)f+(m)f−(m)−

−
∞∑

m=−∞
c33f33f+(m)f−(m+ 1) +

+
∞∑

m=−∞
(c33/2)f2

+(m)f2
−(m) (7.55)
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and the quantities p(n), q(n) and f+(n), f−(n) serv-
ing as two pairs of canonical field variables.

To maintain the PT -symmetry of this integrable
system (7.51)–(7.55), we must assume the time inde-
pendence of the free parameters a11 − a22, a11 − a33,
and c33.

Considering the second and fourth terms in the
obtained Hamiltonian function (7.55), the question
arises whether there exists some sort of a canonic
transformation converting them into the quantities of
equal status. We will try to resolve this problem by
addressing once again directly to the early adopted
constraints (7.38)–(7.40), but inventing a new para-
metrization of the prototype field functions. In or-
der to avoid the unnecessary misunderstanding, we
shall carefully list all new formulas, although some
of them will formally be found among the old ones
(7.41)–(7.54).

First of all, we introduce the intermediate functions
F13(n) and F31(n) by the substitutions

f13(n) = F13(n) (iη
√
g12g21/f33)

n exp[+q(n)], (7.56)

f31(n) = F31(n) (f33/iη
√
g12g21)

n exp[−q(n)], (7.57)

where η2 ≡ 1. This step in combination with the
reducing constraints (7.38)–(7.40) predetermines the
following list of formulas:

f33(n) = f33, (7.58)

g12(n) = g12 exp[+2q(n)], (7.59)

g21(n) = g21 exp[−2q(n)] (7.60)

and

b23(n+ 1) = −(g21c33/f33)F13(n) (iη
√
g12g21/f33)

n×
× exp[−q(n)], (7.61)

b32(n) = −(c33g12/f33)F31(n) (f33/iη
√
g12g21)

n×
× exp[+q(n)], (7.62)

a22(n) = a22, (7.63)

a33(n) = a33. (7.64)

Here as previously, ḟ33 = 0 and ġ12 = 0 = ġ21, while
a22 and a33 are time-dependent free parameters.

The proper analysis of the basic evolution equa-
tions (7.2)–(7.8) rewritten in terms of the functions
f11(n), q(n) and F13(n), F31(n) allows us to grope
the most justified rearrangements

f11(n)− F13(n)F31(n)/2f33 = ip(n)/2, (7.65)

F31(n) =
√
f33 f+(n), (7.66)

F13(n) =
√
f33 f−(n). (7.67)

As a result, the desired reduced system is convertible
into the standard Hamiltonian form

ṗ(n) = −∂H/∂q(n), (7.68)
q̇(n) = +∂H/∂p(n), (7.69)
+iḟ+(n) = ∂H/∂f−(n), (7.70)
−iḟ−(n) = ∂H/∂f+(n) (7.71)

with the Hamiltonian function H given by the for-
mula

H =
∞∑

m=−∞
(c33/2)f+(m)f−(m)p(m)−

−
∞∑

m=−∞
ηc33
√
g12g21 exp[+q(m)− q(m− 1)]×

× [f+(m)f−(m− 1) + f+(m− 1)f−(m)] +

+
∞∑

m=−∞
(a11/2− a22/2)p(m)−

−
∞∑

m=−∞
i(a11/2 + a22/2− a33)f+(m)f−(m), (7.72)

which is seen to be symmetric against the permu-
tation f+(n)�f−(n).The quantities p(n), q(n) and
f+(n), −if−(n) serve as two pairs of canonical field
variables.

For Im c33 = 0, Im
√
g12g21 = 0 and Im(a11−a22) =

= 0, Re(a11 + a22 − 2a33) = 0 the Hamiltonian func-
tion (7.72) becomes a purely real one, H∗ = H. In
so doing, the functions f+(n) and f−(n) are obliged
to be complex conjugate, f∗−(n) ≡ f+(n), whereas
the functions p(n) and q(n) must be the real ones.
Under these circumstances, the obtained integrable
system (7.68)–(7.72) can be associated with the sub-
system of Frenkel-like excitons [40] interacting with
the pseudovibrational subsystem of a pretty unusual
origin. The density of excitations f+(n)f−(n) in the
exciton subsystem is governed by the discrete-space
analog of continuity equation
d

dτ
[f+(n)f−(n)] =

= iηc33
√
g12g21 [f+(n+ 1)f−(n)− f+(n)f−(n+ 1)]×

× exp[+q(n+ 1)− q(n)]−
− iηc33

√
g12g21 [f+(n)f−(n− 1)− f+(n− 1)f−(n)]×

× exp[+q(n)− q(n− 1)] (7.73)

and has the meaning of a conserved density.
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The latter equation (7.73) is valid irrespective
whether or not the requirements of Hamiltonian rea-
lity are satisfied.

8. Systems (with Laurent-Like Ansätze
for Lax Operators) of the Second Type

According to our agreement, the integrable systems
of the second type arise from the zero-curvature equa-
tion (6.1), when being inserted by the second perti-
nent combination (6.4) and (6.5) of ansätze for the
Lax matrices L(n|z) and A(n|z). The general form of
such equations (i.e., the form with the unfixed sam-
pling functions a11(n), a22(n), and a33(n)) looks as
follows:

ḣ11(n) = a11(n+ 1)h11(n)− h11(n)a11(n), (8.1)
ḟ11(n) = a11(n+ 1)f11(n) + b12(n+ 1)g21(n) +
+a13(n+ 1)f31(n)− f11(n)a11(n)−
−g12(n)b21(n)− f13(n)a31(n), (8.2)
ġ12(n) = a11(n+ 1)g12(n) + b12(n+ 1)f22(n)−
−f11(n)b12(n)− g12(n)a22(n), (8.3)
ġ21(n) = b21(n+ 1)f11(n) + a22(n+ 1)g21(n)−
−g21(n)a11(n)− f22(n)b21(n), (8.4)

ḟ22(n) = a22(n+ 1)f22(n)− f22(n)a22(n), (8.5)

ḟ13(n) = a11(n+ 1)f13(n) + a13(n+ 1)f33(n)−
−f11(n)a13(n)− f13(n)a33(n), (8.6)
ḟ31(n) = a31(n+ 1)f11(n) + a33(n+ 1)f31(n)−
−f31(n)a11(n)− f33(n)a31(n), (8.7)

ḟ33(n) = a33(n+ 1)f33(n)− f33(n)a33(n), (8.8)

where

c11(n) = c11, (8.9)

b12(n) = c11g12(n)/h11(n), (8.10)

a13(n) = c11f13(n)/h11(n), (8.11)

b21(n+ 1) = g21(n)c11/h11(n), (8.12)

a31(n+ 1) = f31(n)c11/h11(n), (8.13)

while the free parameter c11 can be understood as an
arbitrary function of the time.

Noticing that the determinant of the matrix L(n|z)
depends on several powers of the spectral parameter
z and assuming that the matrix L(n|z) taken at arbi-
trary z is nonsingular, we are capable to analyze the
universal conservation law

d

dτ
ln detL(n|z) = SpA(n+ 1|z)− SpA(n|z) (8.14)

and to reveal the following natural constraint:

A(n)
[
f11(n)f22(n)f33(n)−

−g21(n)g12(n)f33(n)− f31(n)f13(n)f22(n)
]

=
= B(n)h11(n)f22(n)f33(n). (8.15)

Here, the free coefficients A(n) and B(n) must be
time-independent: Ȧ(n) = 0 = Ḃ(n). To preserve
the uniformity of space, we should eliminate also the
possibility of their spatial dependence: A(n) = A and
B(n) = B. In what follows, we will consider the most
representative variants of reduced integrable systems
ignited by the natural constraint (8.15) at two sim-
plest choices of its coefficients: A 6= 0, B = 0 and
A = 0, B 6= 0, respectively.

We start with the differential constraint

ḣ11(n) = 0 (8.16)

and adopt it to be common for all feasible variants
of reductions considered later. Then we immediately
obtain

a11(n) = a11. (8.17)

As we might have already got accustomed, the struc-
ture of the remained general equations (8.2)–(8.13)
must tolerate the equality

h11(n) = 1. (8.18)

Now, let us concentrate on the case where A 6= 0
and B = 0. Due to the symmetry of the general
equations (8.1)–(8.8) with respect to the permuta-
tions g12(n)�f13(n), g21(n)�f31(n), f22(n)�f33(n),
and a22(n)�a33(n), the only reasonable use of the
natural constraint (8.15) is to exclude the function
f11(n) from the further consideration. As a conse-
quence, we come to the variant characterized by the
constraints

f11(n) = g12(n)g21(n)/f22(n) + f13(n)f31(n)/f33(n),
(8.19)

ḟ22(n) = 0, (8.20)

ḟ33(n) = 0. (8.21)

These constraints yield

f22(n) = f22, (8.22)

f33(n) = f33 (8.23)
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and

a22(n) = a22, (8.24)
a33(n) = a33 (8.25)

with ḟ22 = 0 = ḟ33, while a22 and a33 being some
arbitrary functions of the time.

Then, introducing the definitions

g+(n) = g12(n)/
√
f22, (8.26)

g−(n) = g21(n)/
√
f22, (8.27)

and

f+(n) = f13(n)/
√
f33, (8.28)

f−(n) = f31(n)/
√
f33, (8.29)

we reveal that the reduced integrable system of our
interest can be written in the standard Hamiltonian
form

ḟ+(n) = −∂H/∂f−(n), (8.30)
ḟ−(n) = +∂H/∂f+(n), (8.31)
ġ+(n) = −∂H/∂g−(n), (8.32)
ġ−(n) = +∂H/∂g+(n) (8.33)

with the Hamiltonian function H given by the for-
mula

H =
∞∑

m=−∞
(a33 − a11)f+(m)f−(m) +

+
∞∑

m=−∞
(a22 − a11)g+(m)g−(m)−

−
∞∑

m=−∞
c11f33f+(m)f−(m− 1)−

−
∞∑

m=−∞
c11f22g+(m)g−(m− 1) +

+
∞∑

m=−∞
(c11/2)[f+(m)f−(m) + g+(m)g−(m)]2 (8.34)

and the quantities f+(n), f−(n) and g+(n), g−(n)
serving as two pairs of canonical field variables.

This integrable system (8.30)–(8.34) can be treated
as a sort of two self-trapping subsystems coupled to-
gether by an additional mutual-trapping nonlinearity.
In so doing, the conserved quantities

Nf =
∞∑

m=−∞
f+(m)f−(m) (8.35)

and

Ng =
∞∑

m=−∞
g+(m)g−(m) (8.36)

should be understood as the total numbers of excita-
tions in the f -th and g-th subsystems, respectively.

As usual, the time independence of the free param-
eters a11−a22, a11−a33, and c33 ensures the obtained
nonlinear system (8.30)–(8.34) to be PT -symmetric.

At last, it is the time to switch-over our attention
onto the case where A = 0 and B 6= 0. Analyzing
the natural constraint (8.15) and the general equa-
tions (8.1)–(8.13), we may specify the two seemingly
distinct variants of reduced systems. They are cha-
racterized by the two following sets of constraints:

f33(n) = 0, (8.37)
d

dτ
[f31(n)f13(n)] = 0, (8.38)

ḟ22(n) = 0 (8.39)

and

f22(n) = 0, (8.40)
d

dτ
[g21(n)g12(n)] = 0, (8.41)

ḟ33(n) = 0, (8.42)

respectively. However, owing to the permu-
tation symmetry, g12(n)�f13(n), g21(n)�f31(n),
f22(n)�f33(n), a22(n)�a33(n), of the general equa-
tions (8.1)–(8.13), these two reduced systems turn out
to be physically indistinguishable. For this reason, we
will isolate only one of them. To be definite, we will
rely upon the first set (8.37)–(8.39) of constraints.
These constraints yield

f13(n) = f13 exp[+q(n)], (8.43)

f31(n) = f31 exp[−q(n)], (8.44)

f22(n) = f22 (8.45)

and

a33(n) = a33, (8.46)

a22(n) = a22 (8.47)

with ḟ13 = 0 = ḟ31 and ḟ22 = 0, while a33 and a22

being some arbitrary functions of the time.
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The next step consists in the proper adjustment of
field variables. Thus, introducing the substitutions

p(n) = g12(n)g21(n)/f22 − f11(n) (8.48)

and

g+(n) = g12(n)/
√
f22, (8.49)

g−(n) = g21(n)/
√
f22, (8.50)

we achieve that the reduced integrable system under
study can be embedded into the standard Hamilto-
nian form

ṗ(n) = −∂H/∂q(n), (8.51)

q̇(n) = +∂H/∂p(n), (8.52)

ġ+(n) = −∂H/∂g−(n), (8.53)

ġ−(n) = +∂H/∂g+(n) (8.54)

with the Hamiltonian function H defined by the ex-
pression

H =
∞∑

m=−∞
(a11 − a33)p(m) +

+
∞∑

m=−∞
(a22 − a11)g+(m)g−(m) +

+
∞∑

m=−∞
(c11/2)[p(m)− g+(m)g−(m)]2 −

−
∞∑

m=−∞
f31c11f13 exp[+q(m)− q(m− 1)]−

−
∞∑

m=−∞
c11f22g+(m)g−(m− 1) (8.55)

and the quantities p(n), q(n) and g+(n), g−(n) mak-
ing sense of the canonical field variables for two in-
teracting subsystems.

The subsystem described by the variables p(n) and
q(n) can be treated as some Toda-like subsystem,
while the subsystem described by the variables g+(n)
and g−(n) can be understood as some self-trapping
subsystem with the total number of excitations

N =
∞∑

m=−∞
g+(m)g−(m) (8.56)

being a conserved quantity. As to the highly nontriv-
ial interaction between the subsystems, it appears to
find some remote likeness with the interaction be-
tween a charged particle with the electromagnetic
radiation [41, 42]. Another interesting reminiscence
concerning the nontrivial term

∑∞
m=−∞(c11/2),×

× [p(m) − g+(m)g−(m)]2 in the Hamiltonian func-
tion (8.55) can be awaked by the famous Lee–Low–
Pines Hamiltonian function [43–45] in the theory of
polarons.

The integrable system (8.51)–(8.55) as a whole is
proved to be PT -symmetric provided the free pa-
rameters a11 − a22, a11 − a33, and c33 are time-
independent.

9. Local Conserved Densities for the Systems
with Laurent-Like Lax Operators

Inasmuch as each semidiscrete nonlinear system ob-
tained in this (second) part admits the zero-curvature
representation, it is possible to generate the respec-
tive hierarchy of local conservation laws by the gen-
eralized recursive procedure [26].

Several first conserved densities found in the frame-
work of the generalized recursive scheme [26] for the
general (unreduced) systems (systems (7.1)–(7.13)
and(8.1)–(8.13)) isolated in the second part of the
present work are as follows:

ρ(n|0) = lnh11(n), (9.1)

ρ(n|1) = f11(n)/h11(n), (9.2)

ρ+(n|2) =
g12(n+ 1)g21(n)
h11(n+ 1)h11(n)

+

+
f13(n+ 1)f31(n)
h11(n+ 1)h11(n)

− f2
11(n)

2h2
11(n)

(9.3)

ρ−(n|2) =
g12(n)g21(n− 1)
h11(n)h11(n− 1)

+

+
f13(n)f31(n− 1)
h11(n)h11(n− 1)

− f2
11(n)

2h2
11(n)

. (9.4)

In order to apply these general formulas (9.1)–(9.4)
for local densities to any particular reduced system
taken among the listed ones in two previous sections,
they must be rewritten in terms of the pertinent true
field variables.

Moreover, except for the unessential linear terms,
the general form (9.3) or (9.4) of the second local con-
served density ρ+(n|2) or ρ−(n|2) is convertible into
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the Hamiltonian density for any system of the second
type (see formulas (8.34) and (8.55) in Section 8).
On the other hand, such a conversion turns out to be
impossible for the systems of the first type listed in
Section 7 (see formulas (7.31), (7.55), and (7.72) for
the respective Hamiltonians).

The latter fact indicates strictly that at least the
first-type integrable systems have a good chance
to become the bi-Hamiltonian ones. This conjec-
ture is in lines with the fundamental property of
the bi-Hamiltonian or multi-Hamiltonian presentabil-
ity demonstrated by a majority of already known
semidiscrete integrable systems [46–55].

10. Conclusion

In this paper, we have presented two large classes
of integrable nonlinear dynamical systems on regular
quasione-dimensional lattices obtained in the frame-
work of a matrix-valued semidiscrete zero-curvature
equation. The first class is characterized by the
Taylor-like ansatz for a spectral operator of the third
order and consists of two subclasses distinguished by
the ansatz for the evolution operator. The second
class is characterized by the Laurent-like ansatz for
a spectral operator of the third order and consists
of two subclasses distinguished by the ansatz for the
evolution operator.

Each system from the second class demonstrates a
clear Hamiltonian structure with the standard Pois-
son brackets and includes two interacting subsys-
tems of the sufficiently understandable physical ori-
gin. Each system from the first class also includes two
interacting subsystems, but their physical interpreta-
tion is not simple, inasmuch as the respective Hamil-
tonian structure must be supposedly linked with the
essentially nonstandard Poisson brackets.

Due to the interaction between the constituent sub-
systems, each particular system as a whole must ex-
hibit a richer dynamical behavior as compared with
the dynamics of its noninteracting constituents. Such
an enrichment of the integrable dynamics is expected
to find its natural applicability to the rigorous mod-
eling of interesting physical problems feeded by the
complex phenomena on quasione-dimensional lattice
structures of a widely diversified origin.
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НАПIВДИСКРЕТНI IНТЕГРОВНI СИСТЕМИ,
НАВIЯНI МОДЕЛЛЮ ДАВИДОВА–КИСЛУХИ

Р е з ю м е

У спробi вiдтворити деякi фiзичнi риси екситон-фононної
системи Давидова–Кислухи ми виявили чотири рiзнi ком-
бiнацiї анзацiв для матричнозначних операторiв Лакса, зда-

тних в рамках представлення нульової кривини згенерувати
цiлу низку напiвдискретних iнтегровних нелiнiйних систем.

Спираючись на тейлорiвську форму анзацiв для опера-
торiв Лакса, запропоновано два типи загальних нелiнiйних
iнтегровних систем на безмежних квазiодновимiрних ре-
гулярних ґратках. Вiдповiдно до теорiї редукцiйних груп
Михайлова обидвi загальнi системи виявилися недовизна-
ченими, що дозволяє започаткувати численнi редукованi
системи в термiнах справжнiх польових змiнних. Кожну з
одержаних редукованих систем слiд вважати iнтегровною
версiєю певних двох пiдсистем, причому системi в цiлому
властива симетрiя iнверсiї простору та часу (PT -симетрiя).
Так, вдалося об’єднати коливну пiдсистему, подiбну до то-
дiвської, з ґратчастою пiдсистемою самозахоплення в єдину
iнтегровну систему, тим самим суттєво розширивши пере-
лiк реалiстичних фiзичних систем, придатних для строгого
моделювання. В термiнах прототипних польових функцiй
явно знайдено декiлька перших густин, пов’язаних з будь-
якою з можливих iєрархiй локальних законiв збереження.

Звернувшись до лоранiвської форми анзацiв для опера-
торiв Лакса, знайдено чотири новi напiвдискретнi нелiнiйнi
iнтегровнi системи, цiкавi для фiзичних застосувань. По-
перше, пiдсистему, подiбну до тодiвської, вдалося пов’язати
з пiдсистемою PT -симетричних екситонiв з наведеною не-
лiнiйнiстю. Iнша iнтегровна система виникла як пiдсистема
екситонiв типу френкелiвських, пов’язаних з суттєво нетри-
вiальною коливною пiдсистемою. Виявлено також iнтегров-
ну систему, що складається з двох самозахопних пiдсистем,
поєднаних за допомогою взаємно-iндукованої нелiнiйности.
Нарештi, одержано iнтегровну систему, де Тода-подiбна пiд-
система та самозахопна пiдсистема взаємодiють на кшталт
зарядженої частинки з електромагнiтним полем. При цьо-
му, частина гамiльтонiна з вектор-потенцiалом виявилася
пропорцiйною густинi збуджень в самозахопнiй пiдсистемi.
Кожна з запропонованих iнтегровних систем допускає чiтке
гамiльтонiвське представлення, що характеризується двома
парами канонiчних польових змiнних зi стандартною (не-
деформованою) пуасонiвською структурою. В рамках уза-
гальненої прямої процедури явно знайдено декiлька густин
iз загальних локальних законiв збереження. Цi густини лег-
ко адаптувати до будь-якої iнтегровної системи, пов’язаної
з операторами Лакса лоранiвської форми.
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