Quantum Mechanics of a Spin 1 Particle
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QUANTUM MECHANICS

OF A SPIN 1 PARTICLE IN THE MAGNETIC
MONOPOLE POTENTIAL, IN SPACES

OF EUCLID AND LOBACHEVSKY:
NON-RELATIVISTIC APPROXIMATION

A spin-1 particle is treated in the presence of a Dirac magnetic monopole in the non-relativistic
approximation. After the separation of variables, the problem is reduced to the system of three
interrelated equations, which can be disconnected with the use of a special linear transformation
making the mizing matriz diagonal. As a result, there arise three separate differential equations
which contain the roots of a cubic algebraic equation as parameters. The algorithm permits
the extension to the case where external spherically symmetric fields are present. The cases
of the Coulomb and oscillator potentials are treated in detail. The approach is generalized to
the case of the Lobacheuvsky hyperbolic space. The exact solutions of the radial equation are
constructed in terms of hypergeometric functions and Heun functions.

Keywords: magnetic monopole, the Duffin—Kemmer—Petiau equation, non-relativistic ap-

proximation, space of constant curvature, Coulomb field, oscillator potential.

1. Introduction

Spin significantly influences the behavior of quantum-
mechanical particles in the field of a Dirac monopole
(in particular, see [1] and references therein). In the
literature, the cases of scalar and spin-1/2 parti-
cles are mainly treated. We turn to a spin-1 par-
ticle described by the usual 10-component Duffin—
Kemmer—Petiau (DKP) equation in the presence
of the Dirac monopole potential. Then we add the
Coulomb and oscillator potentials, as well as a curved
background of the hyperbolic Lobachevsky geome-
try. Since the radial systems turn out to be very
complex, we use the non-relativistic approximation
for them, so that the problems can be solved ex-
actly. The extension to a non-Euclidean geometry is
performed, and the case of Lobachevsky space is spec-
ified in detail.
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2. Separation of the Variables

A spin-1 particle in the Dirac monopole potential is
treated on the base of the tetrad formalism [2]

[lﬂoat +i (ﬁ3ar + % (B + 52j32)) N
+omh, - M} ®(z) =0
r 0,4 )

where the angular operator 257 ¢ is given by [2]

5 10y + (i 12 — k) cos

sin 6

She=18"0p+ 0
k = eg/hc,

’ 2)

and the explicit expressions for three projections of
the total angular momentum are

kL CoS®,. 19 B
Jr=04L+ ) (iJ K),
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sm(b( 12 _

Jr =1 JF =1;.
2 2+sm K), 3 3

They are of Schrodinger’s type [2]. Therefore, the
10-component wave function with quantum numbers
(e, 4, m) is constructed as

Dejm(x) = e[ f1(r) Dy, fa(r) Dp—1, f3(r) D
Ja(r) Digr, fs5(r) Di—1, f6(r) Di, fr(r) Dig1,

J8(r) D1, fo(r) Dy, fio(r) Disal; (3)

D, stands for Wigner functions Dfm -(0,6,0). The
parameter k = eg/hc is quantlzed according to
Dirac [3]:

| k|=0, 1/2, 1, 3/2, 2, 5/2, ... (4)
With the use of the recurrent relations [4]

09 Dy—1 =a Dy—2 — ¢ Dy,

k—1)cosf
(sine ) Dy_1=—-aDy_o—cDy,

09 Dy, = (¢ Dy—1 —d Dgy1),

—m —kcosf )
upk:_cpnfl_dpkﬂ’ ()

—m —

sin 0
09 Diy1 = (d Dy — b Dy42),
—(k+1)cosb
(. ) Dyy1 = —d Dy —bDpyo,
sin 6
where
1
a=5V0i+k-1)0-k+2),
1
b=V k-1 +k+2),
(6)
1 - -
c=5Vi+RG-k+1),
1 - -
A=V =-kG+k+1),

we obtain ten radial equations

(jr >fzzfcf3Mst
z@ )f4+z”f3—Mfwo
ie]%-l—i(i‘ )f8+l\/>cf9—Mf2—0
1074

kﬁ—iGi )ﬁwdeﬁ—Mh—o
—iefy + Qfl Mfs =0,
et Y2 =
(242 fo - Lt dr - ars o,
iefi+ Y2 (—efs + dfio) — Mfs = 0,
P~ (ef —dty) ~ Mfy =0,
—iefg—d%fl—MfG:O. (7)

For the quantum number j, only the following values

are allowed:

k=t1/2, j=|k]|k]+1,. o
8

k=+1,4£3/2,..., j=|k|-1]k|...

The states with j =| k£ | —1 must be treated sepa-
rately.

For instance, let K = +1 and j = 0. Then the
initial substitution is

(I)(O)(t?r) = eiiet(ov f23 Oa 0; f57 07 07 fSa 0; O)a (9)

and we obtain three radial equations

f5=—iﬁf2, fsz—ﬁ (CZ >f27

M2) F, =0. )

Such a state is the same as that in the spin-1/2 case.
The case j =0, k = —1 is treated similarly:

(I)(O)(t,T) = eiiet(ov 07 07 f4a 07 0> f77 07 Oa flO)a

and so on.

Let us consider the case j =| k | —1 with half-
integer k: k = +3/2,42,.... First, let k be positive.
Then we must start with the substitution

k> 3/2,

) = e=0, fD5_1,0,0, fsDg_1,0,0fsDy,_1,0,0].
(11)
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With the use of the recurrent relations [4]

k—1
09 Dy—1 =1/ 5 Dy, 2,
—(k—1)cos0 k-1
(. ) Dy ==\ —— Dr-2,
sin 6 2

—iet

—m

we obtain (the factor e™* is omitted)

—ifs Dp—2
0
+fs Di_2
0
k-1 0
140 _
0" @Y =1 —5 0 ,
0
0
—f2 Dy_2
0
—f5 Di—2
0
—ifs Dy
0
ﬁ218¢+( k‘)cosﬁq)oz k-1 0
sin @ 2 0 ’
0
0
+ifo Dy o
0

and then we get 294)@(0) = 0. Therefore, the radial
system for fo, f5, fs will coincide with (10). The case
j = |k| — 1 for negative k can be treated similarly:

k< —3/2,

(D(O) — eiid(o, 07 O7 f4 Dk+17 O? 07

f7 Di+1, 0, 0, fi0 Dy1).

Again, we have the identity 24 ,®©) = 0.

3. Non-Relativistic Approximation

To proceed with the radial system, let us pass to the
non-relativistic approximation (we will use the well-
elaborated technique exposed in [5]). First, we ex-
clude the non-dynamical components

Y

(5 + ) f- Pt ar = Mn
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—<;; >f2—l\[cf3—Mf87
Z?(Cfé —dfs) = M fo,
i (jr + i) fat Z\fd = M fio (13)

and then translate the equations to the more sym-
metric notation

(f2, f3, fa)
(f57 fﬁa f7)

Thus, we arrive at

d 1 (d 1 V2¢
Z(m* hr) _Z<dr+shr>¢)1_lshr(b2]+

B ((I)l7 @2) (I>3)7

— (Ela E27 E3)

LY ['\f(apl d®s)| +ieME; — M2®, =0,
Yshr |"r
V/2i d 1 V2e
; by — o
shr| € (dr * > ! Zshr 2]+

d d
+d (i +— 0+ V25 |
dr sh r

+ieMEy — M?*®y = 0,

[ d 1 d zfd
"(w*w) (dr+s,11)(1) Y

\[d f( —d®3)| +ieMEs — M*®3 =0,

shr shr
V2¢ d 2 V2
~Z (= 4+ =) By — ~=(cEy +dE3)| —
sh r <dr+shr> 2 shr(C 1+ dEy)
—ieM®; — M?E; =0,

d d 2 V2
—— |- (=+-—")E Ey + dEs)| —

dr (dr+shr> > shr ooy (CPn+dEs)
—ieM®y — M?Ey =0,
V2d d 2 V2

(= + =) By — 2 (cEy + dE3)| —

sh r (dr+shr) ? shr<c 1+ dEs)

—ieM®3 — M*FE3 = 0. (14)

Big ¥; and small ¢); components are introduced by
the linear combinations

U, =, +iE;, b=, —iE;. (15)
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Then we regroup Eqgs. (14) in pairs and separate
the rest energy by the formal change e = (M + E).
So, we get

d 1 d 1 V2
i|l—+—]|—i|l—+—]P1 —i—
+Z<dr+shr>l Z<alr+shr) L %hr 2
\/76 f
‘shr |"shr

+i(M + EYME; —

V2¢ d 2 V2

=+ =) Ey— E) +dE
sh r <dr+shr> 2 (B +dEy)
—i(M + EYM®, — M*FE, =0,

shr
V2i d 1 V2c
—c|—i|{— oy —i——@
sh r ¢ Z<dr+shr) L % 2 *
d 1 iv2d
+d (i o+ 5 <I>3+Z\f o,
dr shr
+i(M + E)YMEy — M?®, = 0,
d d 2 2
- l ( + > Ey — L(CE1 + dEs)

(Cq)l d @3)

M? ®, =0,

+

dr dr ~ shr shr
—i(M + EYM®; — M*F, =0,

(d 1 (d zfd
_Z<dr+shr>lz<dr+shr>q)3+sh 2]‘
AR

“shr Z@(Cq)lidq)g) *

+(M + E)YME3 — M?®3 = 0,
2d d 2 2
v2d <+ >E2f(cE1+dE3)

shr dr  shr sh
—i(M 4+ EYM®3 — M*E5 = 0.

From whence, we derive the system of radial equa-
tions in the Pauli approximation:

& 24 2V/2¢ 4c?
(dr2 + d 2EM> \Ill - 7‘72@2 - Tqul = 0,
2 2 2(2+d?+1
<52 + ,di + 2EM> U, — M\I}Q_
A
2v/2c 2v/2d
- 7’2 ‘Ill - 7"2 \IIS =Y,
2 24 2v/2d 4d?
2EM | @ Uy — — W3 =0.
<dr2 T rdr + ) 2T 8
1076

4. Solving the Radial Equations
With the notation

1,(d> 2d .
= — +-——+2EM) =A
" (dr2+rdr+ ) ’

[\

the problem takes the form

q(r)
AVU(r) = AU(r), U= |Uy(r)|,
Us(r
3(7) an
2¢2 ﬂc 0
A=|V2¢ (2+d>+1) V2d|
0 V2d 2d?

The non-relativistic wave function is given by
. \Ifl(r)Dk_l
Djm(z) = 7' | o (r) Dy,
W3(r) Dy

By a special similarity transformation, we can re-
duce the problem to the diagonal form

Uy
SO = |,
U3
, , (18)
Ul A, 0 0|,
AlULI =10 Ay 0|V,
N4 0 0 Asz||v)

and can construct three independent solutions explic-
itly:

o 0 0
01, ||, |0} (19)
0 0 A

and after that turn back to initial basis

o, 0 0
U =50 Uy=8|W,|, W3=5|0|
0 0 A

The diagonal elements A1, Ao, and A3 are solutions
of the cubic equation

(2 +d 1) 43 + A [-4Pd —2(2 + &)°] +
+ A% [(+d*+1)+2(2+d%)] - A =0.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11

(20)



Quantum Mechanics of a Spin 1 Particle

With the notation

Ry 17k2
c2+d2:%:M>0,

—k2 . 12—k2
4c2d2:j . (J+)2 ~“N>0

Eq. (20) reads
A3+ rA2+sA+t=0, r=—-(3M+1),
s=(N+2M2), t=—(M—1)N.

The identity
M2 sA+t=A=A)A—=X)A—X3)=0
yields

—(A1+ Ay + A3) =

—3M+1=A,+ A+ A3 >0,
s=A1As + A1As + As A3 —
= N +2M? = A1 Ay + A1 As + Ay Az > 0,
t=—A1AyAs = (M —1)N = A; Ay A5 > 0.

(22)

Let us specify some first numerical solutions
Al, AQ, and Ag:

k=%1/2 j=3/2 j=5/2 j=T/2 j=9/2

031 179 428  7.77
173 424 775 1225
421 772 1223 17.73
k=+1 j=2 j=3 j=4 j=5
068 262 559 957
245 548 949  14.49
536 940 1442  20.43
k=43/2 j=5/2 j=7/2 j=9/2 j=11/2
1.09 349 694  11.40
317 671  11.23  16.73
649  11.05 16.59  23.12
k=42 j=3 j=4 j=5 j=6
1.53 438 830 1325
380  7.94 1296 18.97
757  12.68 18.74  25.78

The roots are real and positive. These roots can
be described analytically as well. To this end, let us
change the variable

.
B=aA+l.
"3

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11

(23)

So, we get the reduced cubic equation

3s —r? 2r3  rs

B3 +pB =0 =
+pb+q ; 3 97 3

p:

Further, we obtain

3 1
p— ] y ]_ —*k2 —
D <j(]+ ) 1 + 3> <0,

1. 2

As is known, the discriminant

Py | (aY
p=(5)+(3)
3 + 2
determines the nature of three roots of the cubic equa-

tion. When D < 0, all roots are real. The quantity
D is given by

.. 3
_ (G -k R
D= ( - +5+5)
. 1 12
+(J(J+>+)_

6 27 (26)

The sign of D can be established explicitly, if one uses
the following substitutions:

j=k+n, (k>0) n=1,23,..,
1 17 17 11
D=——k’n— —k*n? - —k*'n— —=kn°—
727 T T 144 o7
11 17 17 2 5
7]{3 2_7k_2 4_7k2 3—*k 5_7]{ 4_
18" " T 3" " Tt T gt
1 1 11 1
——kn——n%— Zkn 7 k:2 2 Zk*n—
54 108 54 9
_Ek 3 ,k 2 ik‘l_ﬁ 4_
27 132 108
1 3 1 6 1 5 1 6 1 5
Sl SS: R X i N: S ) 0:
18" 1728 144"~ a7" 9" <%
j=—k+n, (k<0) n=1,23,.
1 17 17
szks 7}64 2_7]64 7]63 3
72" T T Taa” g
11 17 17 2
—l——kgnz — %kjn4 — —k’zn?’ + fkn5—|—
—|— k:n + —kzn - in + 7]{:3 lenQ—
54 108 54 12
13 1 13
gy By k e
T 132 108
1 1 1 1 1
n3 — k+—k5——n6—fn < 0.

T 144 27 9
1077
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According to the conventional method, we can con-
struct the expressions for roots as follows:

= P cos = — L
p 277 2p7
B —2p1/3(zos§:2 —gcosg,
2
Foe(5%).

3 3 2"y
L[PGy -k R, Y
P=\N "7~ 3 TRty o
¢/2 GG+ +5)
cosp = ——— = 375"

P G+ —k2 | k2 1
@%T*+ﬁ+ﬁ

5. Particle in the Coulomb
Field in the Presence of a Magnetic Charge

Let us consider the Coulomb attractive force

(‘F+2d+2M(E+‘;‘)—L(L+1)>f(r>=O,

dr? d r2
L(L+1) =2A = {24, 24, 243}, (27)
1 1
L=—4+4/-+2A
or
v=voaMEr, -2VTHME 5oy
E (28)
d72_|_gi M 1+§ f—()
dx?  xdx 2 T o

Using the substitution f = zLe~*F(z), (at positive
L) for the variable z = 2z, we get the hypergeometric
equation

d’F dF (B
—+@2L+2-2)—+(=—-L-1) F=
zd2—|—( + Z)dz+<2 ) 0,

which gives the energy spectrum

1 a®?M
=— =0,1,2,..., FE=— ———.
o n? n O? b ) ) 2 (n+ L+ 1)2
Ultimately, we have three series of energy levels:
1 M
B =— c (29)

2 (n+ Li(j, k) + 1)

1078

6. Particle in the Oscillator Potential
in the Presence of a Magnetic Charge

Let us consider the oscillator potential

(d2+2d+2M< _"”2>_M>f:0.

dr? ~ rdr 2 2
(30)
In the variable z = v Mk r?:
¢  3d 1 E L(L+1
L 2 L) s,
dx?2  2xdx 4 2\/>x A2
L(L+1) =2A = {24,,24,,2A3},
1 1
L=—5+4/;+24
Leyieaaso
with the substitution f(z) = z%~*/2 F(z); at a =

=+L/2, we get the confluent hypergeometric equa-
tion

d2F dF 3 L EV
+(L+3/2—2)— — | = F=0.
Taa? +(L+3/2-2) dx (4 T3 2 2k )

The quantization rule gives the energy spectrum

1 /k /3

We have three series of energy levels

1 [k /3
E,==\/— =+ L;(§ 2
i =5 M<2+ (7, k) + n)

1 1
Li(j7k):_7i Z+2Az(]ak)

2

(31)

7. Separation of Variables in the Lobachevsky
Space in the Presence of a Mlagnetic Monopole

In spherical coordinates and tetrads
dS? = 2dt* — dr® —sh?r (d6” + sh®0d¢?)

e(o‘o) = (1,0,0,0), 3?3) = (0,1,0,0),
1
*y=1{0,0,—,0 (32)
6(1) <a ’shr’)’
1
a — (1 -
‘@ < 0,0, sh rsin 9) ’
the DKP equation looks as
[zﬁoat +1 <ﬁ38 + — (51]31 1 3% 32)) i
1
i 0g + (ij'? — k) cos
— i3 2 ¢
Sho=i0'96 + e :
k = eg/hc.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11



Quantum Mechanics of a Spin 1 Particle

Then the radial equations are

_(CZ" shr) fﬁ_i(CfS‘i‘df?)_Mfl:O,
i6f5+i<j +1>f8+lf fo—Mfs =0,

J3i (34)
i€fe + —— iy (—cfs +dfio) — M fs =0,
Z€f7—l<;i Sﬁr>f1o— Qfs)—Mfzx—O
—26f2—|— {T‘f Mfo_o
_i€f3_7f1_Mf6:07
*l€f4+ﬁfl M f7; =0,

(35)
—z(j Sﬁr)fz—fcfs—Mfs—o
z£<cf2 —dfa) — Mfy =0,

z<(j+ )f4+l\[df3Mf100
r shr

The quantum number j takes the values

k==1/2, j=|kl, |kl+1,.;

k=41, +3/2,.., j=|kl—1, Ik|,....
Let k=41 and j = 0. Then
‘I)(O)(t,f) = e—iet (07 f2a Oa 07 f57 07 Oa fSa 07 0)7

and we get three radial equations

d? 2 d 1—chr
i T — M? —
<dr2 T srar t sh?r ) =0 (36)
i (d €
fs = M (dr shr) far 5= _leQ'

By a special substitution, we simplify the problem to

1+ch d?
fQZﬂFQ, <_|_6 —M2>F2—0

2shr dr? (37)

which coincides with the equation arising in the flat
space. The case j = 0, k = —1 looks much the same.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11

8. Non-Relativistic
Approximation in the Lobachevsky Space

The general procedure is much the same as in the flat
space. The radial equations in the Pauli limit look as
follows:

d? 4c?
2EM — =
(d 2" h2r> '

1 h
+2C r\/iCFQ,
S hor

S

2 2 2

i +9EM — M Fy=

d 2 Sh27‘ (38)

1+chr
= T (\/§CF1 + F2 + \/Eng),

sh”r
d? 4d? 1+ chr
+2EM — Fy = dV/2dF;.

(d 2 shzr) 3 sh?r 2

Unfortunately, this system turns out to be very dif-
ficult for solving, since the method used in the flat
space cannot be applied here. However, we can solve
exactly the case of the minimal value of j =| k | —1 in
the presence of the additional Coulomb or oscillator
potentials.

9. Minimal Value of j,
Coulomb and Oscillator Potentials

The case of the minimal j in the presence of the
monopole and Coulomb fields is described by the
equation

d2
(i
In the variable z = 1 — e~ 2", with substitution F} =
=21 —z)"f(x), at positive

141 —4a? 1
-5 b=t

Y22 —
+e+ ) M)F2 0. (39)

*(6 + 04)2 + MQ’
we get the hypergeometric equation

(1 —2)f" + [2a — (2a +2b+ 1)z] f'—

2 M2
— b)2 (f — g) | f=0.
[(“ (572 ki
The quantization rule a = —n provides us with the
energy spectrum
{— 042 _|_ V2
27,2 ’
VItar? (40)
1+ +v1—4a?
= +
2
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In usual units, it reads

a?+12). (41

2 K2
JoJ— \/ 1- (
V14 a2/v? m2c?R?
The solutions constructed are good only when the
restriction given below holds
2.2 P2
m°c*R
1/2 S T - a2.
So, the number of bound states is finite.
Now, for the states with minimal j, let us take the
oscillator potential into account:

d? Kth%r
(& oae (5= K0 o

The solutions are found in terms of the hypergeomet-
ric function

(42)

(43)

K 1\ 1 1
E=Ny|— —— [N?24 =
M+(2M) 2M< +4>’ (44)
3
N =2n+ 2.
n+2

In usual units, we have

k h? h 1
=h(Ny/ — — N4+ -],
‘ ( m + 4m2R*  2mR2 ( + 4))
To obtain the solutions tending to zero at infinity, we
must impose the following restriction:

3 1 4km
2 - < z4/1 R4,
n—|—2<2 + 2

The number of discrete energy levels is finite and
governed by the curvature radius.

(45)

10. Spin-1 Particle
in the Absence of a Monopole

In the absence of a monopole, the identity d = ¢ =
%\/j(j + 1) holds, and the task becomes simpler:

2 1+ch 4¢?
<d+2EM>F1—\/§c R R G )

dr? h? sh?r

snr

2 2
<d +2EM> Fy— \@cl +ChrF2 _ e F3 = 0;

dr? sh?r sh?
2 2 ( ) (46)
d 4c 1+chr
— +2EM | Fy — Fy — Fo—
<dr2 ) sl sh’r
2¢(1 h 2¢(1 h
V2 o r) g _ V2 to g —o.
sh”r shr
1080

One can diagonalize the space reflection operator
P:(il)j+1a F2:Oa F3:7F1;

_ (47)
P:(_l)Ja F3:+F1,

so that the system is divided into two ones (1+2):

(;: +2EM — S;fi) Fy = 0; (48)
and

Algl=a fl|R] v=ev2 (19)
V_Vhere sh?r  [(d®>  j(j+1)

A:m (er_ sh? r +2EM>’

In the case of the subsystem of two equations, let
us diagonalize the mixing matrix

F=SF', AF =8S1ASF,

(50)

)

S11 S12
S =
S§21 S22

A |7+1 0.’ ’
AF_‘ 5t o

So, we have two similar equations

d? j(G+1) 1+4chr ,
(dTQ+2EM_ sh2r  shZr U+1) =0,
d? opyy AU+ Lachry o o
W_F ~ sh?r * sh?r 1) F2=0.

The above three equations are of the same type. In
the variable y = (ch r + 1)/2, they read

> 1\ d
— 1) — ) Xt oME-
(y(y )dy2+(y 2) dy+

JG+1) p >
- + F =0, 52
-1 2D o
where p = 0, p = —j — 1, u = +j. Their solu-

tions have been constructed in terms of hypergeomet-
ric functions 1
Y= 2a + 57

F=y*(1-y)"F(a,B,7;y), 5
a=a+b+iV2ME, (=a+b—ivV2ME,
_J+1 / J.
T e— a —

(53)
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. Jj+2 , Jj+1
= —j—1, p=2"Z p=_2"".
K J ) 9 5
. J ’ Jj+1
= bzf b:*i.
p=+7, 9 5

The value y = 1 corresponds to the point r = 0.
So, to get the solutions finite at » = 0, we must take
b > 0. The asymptotic behavior at infinity is given by

rvwr03—a>< d)“”EM
I(y—a)(5) \ 4
r«wr@xﬁ>< a>*“QEM
T(v - B)l(a) '

4
Therefore, we have constructed real standing wave
solutions regular at r = 0.

fly) = +

+ (54)

11. Spin-1 Particle in the Coulomb Potential

In the presence of an external Coulomb field, the
equations in the Lobachevsky space take the form

(d2+2M<E+ a )—j(jH))Fl:o; (55)

dr? tanhr sh?r
d? a jGG+1)
L oM (E ) . .
(dr2 * * fanhr sh?r
1 h
S ’"(j+1)> F =0, (56)
sh”r
d? a jG+1)
L oM (E ) -
(d’/’2 * * tanhr shzr +
1+chr
- J)F,=0. 57
i) my 57

The first equation (55) is much simpler than two
others. It is solved in terms of hypergeometric func-
tions and gives the energy levels (in usual units)

2, o W (j+1+n)?

e T mR2 2

2+ 1+n)? (58)

Two other equations can be reduced to those for
the Heun function (ODE with four singular points).
Applying only the first of the two conditions for poly-
nomial solutions (so, we do not construct polynomi-
als), we have arrived at else two series of energy levels.
Let us specify some details. In these cases, we can use
the variable z = th 5. Respectively, the equations will
read

d? 2z d 1+ 22 1
2= % ism(E -
dz?2 11— 22 dz+ ( ta 2z )(1—22)2
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JU+1) 2+

2 2(1-22) =0 (59)
d? 2z d 1+ 22 1

L = % smlE _
dz? 1—22dz+8 ( ta 2z ) (1—22)2
iG+1) 23 :

T2 TR oo =0 (60)

the singular points are z = 0, 00, +1; two of them are
physical r =0, z = 0; r = 00, z = +1.
In Eq. (60), let us use the simplifying substitutions

fi(2)

Fl(z) = ===, fi=2"(1-2)%(-1-2).
z2—1
Then
d*f1 2A 2B 20 | dh
dz? z -2z —1-—2z]| dz
AA-1)—(j '
JAl-n-GenGe,
z
(2B—-1)2+8M (E+a)
4(z—1)2
(2C—-1)2+8M(E—a) —2A(B-C)+4Ma
+
4(z+1)2 z
AB(2A+C)+3+4j —8M (E + a)
+ +
4(z-1)
—4C (2A+ B)—3—4j+8M (E — «) B
* 4(z+1) =0
(61)
At
A=—-(G+1), j+2, B:%i —2M(E + ),
C:%i\/—QM(E—a),
Eq. (61) becomes simpler
d*f1 2A 2B 20 | dh
dz? z -2z —-1-—2z] dz
n —2AB-C)+4Ma
z
4B(2A+C)+3+4j—8M (E+a)
- +
4(1-2)
—4C(2A+B)—-3—-4j+8M(FE — «) f=0
4(z+1) '
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It can be recognized as the general Heun equation for
HeunG(p7 q, a, ba &) da Z),

a?Y (z) {c d _a+b—c—d+1}dY(z)

dz? z 1—2z p—z dz
q ab—q abp — q }
+ |-+ Y(z)=0
[ pz  (p—1)(A—-2) plp-1)(z-p) )
with the parameters
p=-1, ¢g=4Ma—-2A(B-C), c¢=2A, d=2B

1
a:_§+A+B+C+

—%\/(2A—1)2+(QB—1)2+(20—1)2+8(2ME—]'—1),

1
b=—5+A+B+C-

% V(2A-1)2+(2B-1)2+(2C-1)2+8(2ME—j—1).

(62)
Note the identity

%\/(2A—1)2+(2B—1)2+(2C—1)2+8(2ME—j—1):
L

Respectively, the parameters a, b read

a=(-j-1)+A+B+C, b=j+A+B+C.

We will use the quantization condition in the form
(at this, we do not arrive at polynomials) b = —n. It
turns out that the choice

A=j+2, B:%+\/—2M(E+a),
1

0:5— —2M(FE — «).

a=2—

(63)

— (—V/=2ME —2Ma + V—2ME + 2Ma),
b=2j+3—

—(—~V—2ME —2Ma +v—2ME + 2Ma)

is appropriate. The quantization rule takes the form

—V—2ME —2Ma ++vV—2ME + 2Ma =
=2j+3+n,
1082
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which yields the formula for energy levels
o Ma? _(j+3/2+n/2)?
2(5+3/2+n/2)2 2M ’

In a similar manner, Eq. (60) provides us with the

energy levels
S Ve (+1/2+n/2)?
27+ 1/2+n/2)? 2M ’
Thus, we have found three series of energy levels:
(58), (64), and (65). The presence of n’ and n’/2
is due to the use of different variables in solving the

respective differential equations, z = th § and z =

(64)

(65)

=1 — e~ 2" are connected by the quadratic relations:
2th r 2z
Tr = r = ———
1+thr’ 14 2%
4z(1 + 2?) 4(z+ 271

(142224422 44 (242707
12. Spin-1 Particle in an Oscillator Field

In the presence of the oscillator potential, we get three
radial equations

2 2 s
<d+2M<EKth r>](J+1)>F10,

dr? 2 sh?
d? Kth*r\  j(i+1)
=2 som(E - — —
(dT2 * ( 2 > sh?r
1+4chr

m%(rHOH=& (66)

2 2 o
<d+2M(E—Kth r>_3(]—|—1) N

dr? 2 sh2 r
1+chr

smrﬁﬂz0

The first one is solved in hypergeometric functions,
and two others are solved in Heun functions. In this
way, we have found three series of energy levels:

k h? h 1
=h(Ny/ =+ —  — _— (N%24+Z
c=h ( m IR 2mR? ( * 4))’

T h 1
RNy (N2
‘ ( m | ImPR 2mR? ( + 4))’ (67)

N=2n"+j+2,

k h2 h 1
S QY A o R N S
‘ ( m IR 2mR? ( * 4>>’

N=2n"+j+1.

+
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13. Conclusions

Spin-1 particles are treated in the presence of a mag-
netic monopole in the non-relativistic approximation.
After the separation of variables, the problem is re-
duced to a system of three coupled equations, which
can be disconnected with the use of a special linear
transformation making the mixing matrix diagonal.
As a result, there arise three separated differential
equations, which contain the roots of a cubic alge-
braic equation as parameters. This consideration is
extended to the case with the presence of external
spherically symmetric fields, in particular, Coulomb
and oscillator ones. We have found the energy spec-
trum and the exact solutions in terms of hypergeo-
metric functions. In the same manner, a spin-1 parti-
cle is treated against the Lobachevsky geometry back-
ground in the non-relativistic approximation. After
the separation of variables, the problem is reduced
to a system of second-order differential coupled equa-
tions, which cannot be disconnected in the presence of
a monopole. However, in the absence of a monopole,
the equations have been solved exactly, for instance,
in the presence of the Coulomb and oscillator poten-
tials. The energy spectra have been found and the
solutions are constructed in terms of the hypergeo-
metric and Heun functions.
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KBAHTOBA YACTUHKA

3I CIIIHOM 1 B IIOJII MATHITHOTI'O 3APALY
B ITPOCTOPAX EBKJIIJA I IOBAYEBCBKOTI'O:
HEPEJIATUBICTCHKE HABJIM2KEHHA

Peszmowme

YHacruuka 3i crigom 1 ZOCHIIKY€EThCS 3a HASIBHOCTI MarHiTHO-
ro momonoss Jipaka B HepeasTusicrcekoMmy mHabsmkenni. ITi-
CJIsI PO3JIiJIEHHSI 3MIHHUX 3a/1a4a 3BOJIUTHCS JIO CUCTEMU TPHOX
B3a€EMOIIOB’SI3aHUX PIBHSAHB, SIKI MOXKHA PO3IIENUTH, BUKODPU-
CTOBYIOYHM CIleliajibHe JIiHillHe IIePEeTBOPEHHS, sIKE IIPUBOIUTH
3MINIyI09y MaTpHUIO 10 AiarOHAJbHOrO BHIUIALY. B pesymbra-
Ti BUHUKAIOTh TPU OKpeMi audepeHIiajabHl piBHSIHHSA IPYro-
ro MOpsiJIKy, sIKi B POJIi mapamMerpiB MiCTATbH KOpeHi KyOidHO-
ro anrebpaiunoro piBusHHS. J[0JaTKOBO BpaxoBaHO 30BHIIIHI
chepUIHO-CUMETPUYH] €JIEKTPUYHI 110JIs1, IETAIBHO POIVISHY Ti
BUIIAKU KYJIOHIBCHKOIO 1 OCIIUJISITOPHOrO MOTEHIiaIiB. 3a1ada
y3araJibHEHa Ha BUIIAJOK rirepbosiunoro npocropy Jlobaues-
CBKOI'0; TOYHI PO3B’SI3KH PaJiajIbHOrO PIBHAHHS OYIAYIOTHCS B
rinepreomerpudHux pyHKisx i dyHkuisax [oitHa.
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