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AREA QUANTIZATION OF THE PARAMETER
SPACE OF RIEMANN SURFACES IN GENUS TWOPACS 02.40, 04.60

We consider a model of compact Riemann surfaces in genus two represented geometrically
by two-parametric hyperbolic octagons with an order π/2 automorphism. We compute the
generators of the Fuchsian group and give a real-analytic description of the corresponding Te-
ichmüller space parametrized by the Fenchel–Nielsen variables in terms of geometric data. We
state the structure of the parameter space by computing the Weil–Petersson (WP) symplectic
two-form and analyzing the isoperimetric orbits. Combining these results, the WP area in the
parameter space and the canonical action–angle variables for the orbits are found. Using the
ideas from the loop quantum gravity, we apply our formalism to the description of the classi-
cal geometrodynamics of Riemann surfaces and the WP area quantization. The results of the
paper may be interesting due to their applications to the quantum geometry, chaotic systems,
and low-dimensional gravity.
K e yw o r d s: Riemann surfaces in genus two, geometrodynamics, area quantization.

1. Introduction

The modern concepts of the area quantization of any
manifold is based preferably on the results of quan-
tum gravity/geometry. In both cases, we deal with
the principle when any geometric measurable quan-
tities (length and/or angle) are influenced by quan-
tum fluctuations. On the Planckian scale, one cannot
mention the standards of length and angle nowadays
without accounting for quantum effects. Although
the particle interactions and the temperature effects
play an essential role in our world, the geometry
is universal in the sense that it predicts the trajec-
tory without time and the Hamiltonian. It reflects a
purely gauge nature of this science.

The Riemann surface in genus two serves as a geom-
etry carrier in the great number of models1 of string
theory [1], statistical physics [2,3], chaology [4–6], and
low-dimensional gravity [7, 8]. Problems, in which
the surface geometry is not fixed and is developing
in time, are of a special interest. The changes of
the underlying geometry can be described in different
ways, for instance, by evolution equations, by aver-
aging over surface moduli or parameters, etc. Then
it is naturally to require the surface deformation to
be represented by a continuous smooth trajectory in a

c© A.V. NAZARENKO, 2013
1 Here, we refer to few works but directly related to a given

topic.

some space with properties, which should be carefully
studied.

Although the case of genus two gives us access to
quite explicit calculations, most of the problems can-
not be solved in general. This fact forces us to con-
centrate on a family of surfaces with a reduced num-
ber of geometric degrees of freedom. Using the more
convenient geometric approach, we consider the sur-
faces represented by two-parametric hyperbolic oc-
tagons embedded into a unit disk.

Assuming that an octagon form remains the same
under the rotation by π/2, we firstly construct the
fundamental domain with opposite sides identified
and the associated Fuchsian group, by using the two
real parameters as the “input”: length and angle de-
termining the position of vertices, i.e., the octagon ge-
ometry. Although the general formalism linking the
geometric data and the Fuchsian group is known [9],
we pay a great attention to manifest the dependence
of the octagon boundary segments and the isome-
try group generators on these parameters in order
to make the functions straightforwardly applicable to
the forthcoming calculations.

We aim to investigate a real-analytic structure of
the parameter space, that is dictated by the isom-
etry group of a Teichmüller space, which is usually
called as the mapping class group and essentially de-
termines an initial octagon evolution in various phys-
ical problems. To realize this, we introduce a Te-
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Fig. 1. Symmetric octagon with a = 0.8, α = π/3, and
generators gk of the Fuchsian group

ichmüller space for the surfaces under consideration
as a subset of the total Teichmüller space for all sur-
faces in genus two and compute the Fenchel–Nielsen
variables regarding as the global coordinates on it.

We perform the main analysis (in Section 3) within
the Weil–Petersson geometry allowing us to endow
the parameter space with a symplectic two-form,
which is invariant, by definition, under the action of
the mapping class group. The key tool is Wolpert’s
formula [10] allowing us to express this form in terms
of the Fenchel–Nielsen (FN) variables. As a result,
we shall see that the accessibility domain of geomet-
ric data used is a symplectic orbifold. Furthermore,
the symmetry group of the reduced Teichmüller space
is expected to be wider than the mapping class group
because of geometric constraints imposed. Note that
the involution of the surfaces with an order four auto-
morphism and the associated generators are discussed
in [11] in detail.

We supplement our results by the description of
isoperimetric orbits in the parameter space (Sec-
tion 4), which gives us an additional information
about the structure of this space and reflects a par-
ticular diffeomorphism of the octagon. On the other

hand, the dense set of isoperimetric orbits serves as a
tool for the further geometric quantization indepen-
dent of the octagon automorphisms and the pants
decompositions.

To apply the geometric approach to physics, we
firstly introduce (in Section 5.1) a pair of canonical
action–angle variables for the isoperimetric orbits by
associating the action variable with the WP area in
the parameter space. This is a main point of our
formalism using the global characteristics. Other au-
thors usually operate by the local Fenchel–Nielsen pa-
rameters (e.g., see [12]). Then, in our terms, it looks
natural to quantize the WP area (the action variable).
Such a problem is similar to the one within the loop
quantum gravity/cosmology, where the methods and
the results of area quantization are intensively stud-
ied. However, in order to exploit the gravitational ap-
proach, it is necessary to extend the algebra of observ-
ables, namely, we should replace the pair of action–
angle variables by the generators of the su(1, 1) alge-
bra associated with the Lorentz algebra reflecting the
symmetry of a (2+1)-dimensional space-time. Such
an approach opens also the perspective of describing
the classical geometrodynamics of the Riemann sur-
faces as the canonical transformation generated by a
boost. Its investigation is performed in Section 5.2
and leads to a “big bounce” (see [13]) in the parame-
ter space.

2. Model Surfaces

We concentrate on the properties of a Riemann sur-
face S in genus g = 2, which is understood here as
a compact two-dimensional orientable manifold with
the Riemannian metric of a constant negative curva-
ture. Such a surface is obtained from a hyperbolic
simply connected octagon F embedded into the unit
disk D = {z = x+ iy ∈ C||z| < 1}, via gluing the op-
posite sides formed by eight geodesic arcs, whose in-
tersections serve as vertices.

In our model declared and geometrically described
in [3], we assume that the vertices are at the points
a exp (ikπ/2), b exp [i(α+ kπ/2)], where 0 < α < π/2,
0 < a, b < 1, k = 0, 3 (see Fig. 1, top panel). We
also require the sum of the inner angles of F to be
equal to 2π. This is the same as requiring area(F) =
= 2π(2g − 2) = 4π in accordance with the Gauss–
Bonnet theorem [14].

The octagon we have obtained is stable under the
rotation by π/2. This means that the surface has an
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order four automorphism. Note that the connection
between this geometric model and algebraic curves
was intensively explored in the works of P. Buser and
R. Silhol (e.g., see [11, 15] and references therein).

Actually, the model octagon is two-parametric, and
we choose a pair (a, α) as independent real variables,
while the parameter b together with the parameters
of geodesics (sides) are functions of those. It can be
shown that b = (

√
2a cos α̃)−1, where α̃ = α − π/4.

Therefore, the model octagon F can be viewed as a
“minimal deformation” of the regular hyperbolic oc-
tagon with b = a = 2−1/4, α = π/4, well studied in
the context of the chaology (see, e.g., [5] and refer-
ences therein).

Note that to manifest the dependence of the oc-
tagon parameters on the pair (a, α) is necessary in
the different problems, where geometry is not fixed.
For instance, (a, α) would be dynamical variables in
topological field theory and gravity; it is able to av-
erage over (a, α) in statistical physics, etc.

Due to the Gauss–Bonnet theorem, one can deter-
mine the domain of variety of the parameters (a, α):

−π/4 < α̃ < π/4, (
√

2 cos α̃)−1 < a < 1, (1)

which is sketched in Fig. 3. We denote this parameter
space by A, whose points completely determine the
geometry of the octagon F . Our aim is to investigate
the structure of A and to quantize it.

Since the opposite sides of F have the same lengths
by construction, we have, therefore, a uniquely de-
fined orientation-preserving isometry gk mapping the
geodesic boundary segment sk+4 onto sk for all k =
= 0, 3 (see Fig. 1, bottom panel). For these isome-
tries, we get gk[F ] ∩ F = sk, where gk[F ] means the
set {gk[z]|z ∈ F}. Pasting the sides sk+4 and sk to-
gether by identifying any z ∈ sk+4 with gk[z] ∈ sk,
we obtain a closed surface in genus two that carries
the hyperbolic metric inherited from F .

Four isometries gk and their inverses g−1
k generate

the Fuchsian group Γ (isomorphic to the fundamental
group π1) with a single relation,

g0g
−1
1 g2g

−1
3 g−1

0 g1g
−1
2 g3 = id. (2)

Then the surface S is purely defined as a quotient
D/Γ, and π : D → S is the natural covering map.
This is a Fuchsian model Γ of the Riemann surface S
under consideration.

The isometries gk in the unit disk model are natu-
rally presented by matrices belonging to the SU(1, 1)
group and acting by the following rule:

z 7→ γ[z] =
uz + v

vz + u
, γ =

(
u v
v u

)
, (3)

where |u|2−|v|2 = 1, and the bar symbol means com-
plex conjugation.

For g±1
k ∈ Γ defined via the so-called half turns, let

pk be the mid-point of the k-th side, k = 0, 3. The
generators are then written as gk = H(pk) (see [9]),
where

H(p) =
−1

1− |p|2

(
1 + |p|2 2p

2p 1 + |p|2
)
. (4)

The operation of the matrices H(p) consists of the
composition of the half turn (rotation with angle π)
of a geodesic segment around the origin z = 0 and
the half turn around the point p.

Due to the symmetry of our model, p0 = p+, p1 =
= p−, p2 = ip+, and p3 = ip−, where

p± =
ω±

1 +
√

1− |ω±|2
, (5)

ω± =
beiα(1− a2) + aeiπ(1∓1)/4(1− b2)

1− a2b2
. (6)

Note that the explicit form of the generators gk in
terms of (a, α) is shown in [21].

Since the different octagons may lead to the same
surface, we mark a surface by generators of Γ. Two
marked surfaces (S,Γ) and (S′,Γ′) are called marking
equivalent if there exists an isometry γ : S → S′

satisfying g′k = γgkγ
−1 (k = 0, 3). Then all marking

equivalent surfaces form a marking equivalence class
[S,Γ] representing the Riemann surface S together
with a structure defined on it.

It is useful sometimes to mark a surface by select-
ing a curve system Σ of simple closed geodesics on it.
Then the marking equivalence also means the exis-
tence of the isometry γ : S → S′ sending Σ → Σ′.
In this case, the equivalence class is formed by a
pair [S,Σ].

The set of all marking equivalence classes of the
closed compact Riemann surfaces in genus g forms
the Teichmüller space denoted by Tg. The definition
of Tg depends in general on the choice of a marking
of Riemann surfaces. In any case, the real dimension
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Fig. 2. Top panel: Pants decomposition of the octagon
with a = 0.8, α = π/3. Bottom panel: Two pants glued
along γ3

of Tg like a vector space equals 6g − 6 in accordance
with the Riemann–Roch theorem. We immediately
note that the Riemann surfaces constructed with ge-
ometrical constraints imposed above result only in the
subset of the total T2 of dimension six. In this sense,
we call such a space as the reduced Teichmüller one.

3. Weil–Petersson Symplectic Two-Form

In this section, we firstly introduce the Fenchel–
Nielsen variables by means of the pants decomposi-
tion of the surface. However, we omit the most of
computations, which have been already performed in
[21]. Using these variables, the main aim of this sec-
tion is to write down the Weil–Petersson symplectic
two-form in the parameter space A that is needed for
the further calculations.

A starting point of the following constructions is
the fact that a hyperbolic Riemann surface in genus
g without boundary always contains a system of 3g−3
simple closed geodesics that are neither homotopic to
one another nor homotopically trivial. Regardless of
which curve system we choose, the cut along these
geodesics always decomposes the surface into 2g − 2

pairs of pants (three-holed spheres), playing a role
of natural building blocks for Riemann surfaces (e.g.,
see [16]).

In the case at hand, the surface S constructed is a
two-holed torus, which can be decomposed into two
pairs of pants by a system of three closed geodesics.
Such a surgery allows us to calculate the global
Fenchel–Nielsen (FN) parameters: lengths of these
geodesics and twists, needed for the further investi-
gation and defined as follows.

Let us consider the geodesic arcs from p0 to p1 and
from p5 to p4 on the octagon F (see Fig. 2, top panel).
On the surface S obtained by gluing the sides of the
octagon, these two arcs together form a smooth closed
geodesic γ1. Similarly, a closed geodesic γ2 is ob-
tained from the arcs running from p2 to p3 and from
p7 to p6, respectively. The line p8p9 results in a closed
geodesic γ3.

The triple γ1, γ2, γ3 dissects S into two pairs of
pants determined up to the isometry by the hyper-
bolic lengths `k, k = 1, 3.

Note that hyperbolic distance between the complex
coordinates z and w in the unit disk model is denoted
by distD(z, w) and determined from the relation

cosh distD(z, w) = 1 +
2|z − w|2

(1− |z|2)(1− |w|2)
, (7)

where |z − w| is the Euclidean distance.
Then, the immediate calculations yield

`1,2 ≡ 2 distD(p+, p−) = 2 arccosh
a2

1− a2
, (8)

`3 ≡ 2 distD(0, a) = 2 ln
1 + a

1− a
, (9)

where distD(pn−1, pn)=distD(p+, p−) forn=1, 3, 5, 7.
When the pairs of pants are pasted together again

to recover S, there arise additional degrees of free-
dom at each γk, named the twist parameters τk and
defined as follows. On each pair of pants, one takes
disjoint orthogonal geodesic arcs between each pair
of boundary geodesics. It is known that the feet of
two perpendiculars on each geodesic are diametrically
opposite. Let us paste together two tubular neigh-
borhoods of pair(s) of pants with the boundaries of
closed geodesics γ′k and γ′′k of the same orientation
and hyperbolic length, and let us denote the weld by
γk (see Fig. 2, bottom panel). In principle, the feet of
perpendiculars, arriving at the previously separated
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γ′k and γ′′k , do not coincide on γk. The twist parame-
ter τk is then the hyperbolic distance (shift) along γk
between the feet of perpendiculars on opposite sides
of the weld. Globally, the surfaces arising from dif-
ferent τk are not in general isometric. This fact is
often used for the investigation of Riemann surface
deformations [16–18].

Let us now concentrate on computational aspects.
One of the convenient methods of computation of
geodesic lengths is the matrix formalism. Here, we
have used the algorithms from [9] based on it and
realized in [21].

The twists in terms of model parameters are

τ1,2 = arccosh
[

2a2 − 1
a2(1− b2)

− 1
]
, τ3 = ln

1 + a

1− a
. (10)

It is known that the Teichmüller space of marked Rie-
mann surfaces in genus two forms a manifold home-
omorphic to R6. This fact allows one to identify the
FN variables with global coordinates on it. However,
the Teichmüller space carries an additional structure,
namely, the Weil–Petersson (WP) symplectic two-
form. Actually, it is the imaginary part of a natu-
ral Kählerian metric. Due to the Wolpert theorem
[10, 19] (see also Thm. 3 in [20]), the WP two-form
for compact closed Riemann surfaces in genus g takes
on a particularly simple form in terms of the FN
variables,

ωWP =
1
2

3g−3∑
k=1

d`k ∧ dτk, (11)

with respect to any pants decomposition. This says
in the sense of theoretical mechanics that `k play the
role of the action variables, whereas θk = 2πτk/`k are
the angle variables. Indeed, the simple Dehn twist
θk → θk + 2π gives us isometrically the same surface.

Using the pants decomposition presented in Fig. 2
(top panel) and substituting the functions `k and τk
of (a, α) into (11), the WP symplectic form becomes

ωWP =
8a

(1− a2)(2a2 cos2 α̃− 1)
da ∧ dα̃. (12)

To verify the uniqueness of the last formula, let us
consider another pants decomposition by changing
the connections between the arc mid-points and the
main diagonal of the octagon, which gives us new γ′1,2

and γ′3, respectively. It is easily seen that a performed
decomposition simply leads to the replacements,

a↔ b, α̃↔ −α̃, (13)

in the length and twist functions of the previous de-
composition.

Although we have obtained the set of new func-
tions, the resulting two-form remains the same, that
is, ω′WP = ωWP due to the fact that sgnτk = −sgnτ ′k.

Thus, we can conclude that i) the permission do-
main A of the parameters (a, α) is a non-trivial sym-
plectic manifold (A, ωWP); ii) the Weil–Petersson
symplectic two-form (12) is closed and invariant un-
der the action of the Z2 group represented by trans-
formation (13). Formally, we can treat form (12) as
an area element of the manifold A associated with
the moduli space of Riemann surfaces under consid-
eration.

Furthermore, introducing the quantities

T
(′)
k ≡ cosh

τ
(′)
k

2
, L

(′)
k ≡ cosh

`
(′)
k

2
, (14)

we can establish the following relations among them:

L
(′)
3 ≡ cosh

`
(′)
3

2
= 2L(′)

1,2 + 1, τ
(′)
3 = `

(′)
3 /2, (15)

T ′1 =

√
L2

1T
2
1 + L1T 2

1 − L2
1 + 1

2L1T 2
1 − L1 + 1

,

L′1 = T 2
1

2L1

L1 − 1
− 1.

(16)

These formulas reflect the symmetry of the model in
terms of geometric constraints and correspond to a
special case of the surface with an order four auto-
morphism previously studied in ([11], Lm. 3.5).

4. Isoperimetric Curves in A
We can also obtain additional information about the
structure of A by means of the analysis of principal
geometric characteristics. One of those is an area
fixed by the Gauss–Bonnet theorem and equal to 4π
for genus two. Therefore, the area cannot obviously
be the measure of an octagon deformation (evolution)
preserving genus.

The simplest way to describe changes globally con-
sists in the consideration of the perimeter of a hyper-
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Fig. 3. Orbits of constant perimeter in the plane of oc-
tagon parameters

bolic octagon. Within the present model, the perime-
ter is given by the formula:

P = 8 arccosh
1− a2b2 +

√
(1− a2)2 + (1− b2)2

(1− a2)(1− b2)
.

(17)

In a some sense, this characteristic is a good candi-
date due to the invariance of P under the octagon
automorphisms and the pants decomposition. This
means that P can take on the same value for vari-
ous values of (a, α). In this section, we are aiming to
describe the corresponding orbits.

For the further investigation, it is useful to intro-
duce two auxiliary quantities,

T ≡ tanh (P/16), ε = ±1, (18)

where the latter one reflects the existence of two sym-
metric sheets in A labeled by sign α̃.

For a given T (P ), the maximal and minimal values
of parameter a are found at α̃ = 0, when b = (

√
2a)−1.

We get

a±(T ) =
1
2

√
2 + T 2 ±

√
(2 + T 2)2 − 8. (19)

This means that one can parametrize a as follows:

a(T, ϕ) =
1
2

√
2 + T 2 + cosϕ

√
(2 + T 2)2 − 8, (20)

where the cyclic variable ϕ ∈ [0, 2π) is used.
Let us now solve the algebraic equation (2+T 2)2 =

= 8. We immediately obtain that Treg =
√

2
√

2− 2,
Preg = 8 arccosh

(
5 + 4

√
2
)
, and areg = 2−1/4. At

α̃ = 0, these quantities correspond to the regular hy-
perbolic octagon, as it must be. Thus, the trajectory
in A for Preg is contracted to a point. Moreover,
Preg is a minimal value of P among the possible ones.
Therefore, the maximal symmetry of the regular oc-
tagon explains an extremum of information entropy
observed previously in [3]. This fact could be im-
portant in the description of the physical systems, in
which the geometry carrier (two-holed torus) changes.

Substituting (20) in (17) and resolving the equation
obtained with respect to α̃, we deduce that

α̃(T, ϕ) = arctan
√

2
√

(2 + T 2)2 − 8 sinϕ

2
√

3T 2 − 2− cosϕ
√

(2 + T 2)2 − 8
.

(21)

Equations (20) and (21) allow us to reproduce the
orbits P = const, presented in Fig. 3. The point
corresponds to the parameters of the regular octagon
(Preg ≈ 24.45713); cyclic curves are orbits for P from
P = 25 to P = 41 with step 2.

Since the set of orbits is dense in A, there arises
a possibility to geometrically quantize the symplectic
orbifold A in a spirit of [2]. In order to realize it, it
is necessary to consider a Weil- Petersson (WP) area
AWP(P ) of the domain in A bounded by the isoperi-
metric orbit for some fixed P . Physically, AWP(P )
can be treated as an action variable, that is, the only
integral of motion {a(T, t), α(T, t)|t ∈ R}. Canonical
quantization in terms of AWP(P ) and the conjugate
angle variable has to give us the number of quantum
states inside a domain in A. We develop the quantum
geometry of A and the reduced Teichmüller space in
the next section.

Here, using the WP symplectic form (12) and Eqs.
(20) and (21), we limit ourselves by the introduction
and the analysis of the WP area

AWP(P ) =

P∫
Preg

8a
(1− a2)(2a2 cos2 α̃− 1)

dadα̃. (22)

This double integral is reduced to a single one,

AWP(P ) =

x+(T )∫
x−(T )

8dx
(1− x)

√
2x− 1

arccosh f(x, T ),

(23)
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where x ≡ a2; the functions x±(T ) ≡ a2
±(T ) are de-

termined by (19);

f(x, T ) =
1√

1− T 2

√
2x− 1
x

√
T 2 − x

T 2 − 2x+ 1
, (24)

and convention (18) is applied.
Further calculations are performed numerically,

and the result is demonstrated in Fig. 4. The semi-
analytical analysis shows that the curve AWP(P ) at
relatively small P − Preg can be approximated by a
parabola, c1(P −Preg)2 + c2(P −Preg), with accuracy
of the order O(exp (−P/8)). The best fit in the pre-
sented range of P gives c1 = 0.05622, c2 = 2.62132.
In principle, the parameters c1,2 slowly depend on P,
so that c1 → 1/16 = 0.0625 as P →∞.

5. Quantization of AWP

In this section, we are aiming to quantize a domain
area in the parameter spaceA on the basis of the sym-
plectic form (12) and the idea to cover A by isoperi-
metric orbits. Such an approach requires one to de-
fine the action and the angle variables. The former,
as mentioned above, is the WP area (up to a con-
stant multiplier) as a function of P . At the present
stage, the angle variable is unknown and should be
found. Actually, we need to find a canonical trans-
formation from the local Fenchel–Nielsen parameters
to the global ones like the WP area, ware invariant
under automorphisms and the pants decomposition,
that is, the mapping class group.

Thus, our formalism allows us to describe the dif-
feomorphism preserving the perimeter of a hyper-
bolic octagon and to evaluate the number of quan-
tum “cells” in AWP. It seems to be simple at first
sight. We would like to apply our formalism to quan-
tize a physically reasonable system. Here, we stop at
the model with the SU(1, 1) symmetry corresponding
to the (2+1)-dimensional gravity, inspiring us by the
known results of the area quantization.

Thus, we start from finding the angle variable. To
realize this, let us re-write ωWP in terms of x = a2

and P . We get

ωWP =
√

2ε(1− T 2)
8
√

(x− x−)(x+ − x)(T 2 − x)
×

×
(

1
1− T 2

− 1
1− x

+
1

T 2 − 2x+ 1

)
dx ∧ dP, (25)

where the notation from the previous section is used.

Fig. 4. WP area of a domain bounded by the isoperimet-
ric curve P = const

Now, let us define the function

Q(x, T ) =
√

2
4

1− T 2√
T 2 − x−

×

×
[
F (u, k)
1− T 2

− Π(u, ν1, k)
1− x−

+
Π(u, ν2, k)

T 2 − 2x− + 1

]
, (26)

where F and Π are elliptic integrals of the first and
third kinds, respectively.

The other quantities are

u =
√

x− x−
x+ − x−

, k =
√
x+ − x−
T 2 − x−

,

ν1 =
x+ − x−
1− x−

, ν2 = 2
x+ − x−

T 2 − 2x− + 1
,

(27)

where u is the amplitude; k is the module; ν1 and ν2
are parameters.

Then, it is easy to verify that the symplectic form
becomes

ωWP = εdQ(x, T ) ∧ dP. (28)

On the other hand, the integration over x yields

dAWP =

 ∮
P=const

εdQ(x, T )

 dP =

=

 x+∫
x−

dQ(x, T )−
x−∫
x+

dQ(x, T )

 dP =

= 2Q(x+, T )dP. (29)
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This means that

dAWP

dP
=
√

2
2

1− T 2√
T 2 − x−

×

×
[
K(k)
1− T 2

− Π(ν1, k)
1− x−

+
Π(ν2, k)

T 2 − 2x− + 1

]
, (30)

where the complete elliptic integrals of the first and
third kinds are used.

Note that it is the exact formula, while the value
of AWP(P ) is obtained numerically or by using an
approximation, if we want it in analytic form.

Now, it is easily seen from (28) that the function
Ω(x, T ) = εQ(x, T ) satisfies the relation

{P,Ω}WP = 2, (31)

which defines the Poisson bracket.
Defining the action variable or “angular momen-

tum” as
J(P ) =

1
4π
AWP(P ), (32)

we can find the angle variable Φ from the equation
ωWP = εdQ(x, T ) ∧ dP = 2dΦ ∧ dJ . In other words,
we have

dΦ = 2π
(

dAWP(P )
dP

)−1

εdQ(x, T )

∣∣∣∣∣
P=const

=

=
πε

Q(x+, T )
dQ(x, T )

∣∣∣∣
P=const

. (33)

Using the rule of calculation of the integrals contain-
ing ε, which guarantees the counterclockwise integra-
tion (see (29)), one sees immediately that∮
P=const

dΦ = 2π, (34)

as it must be.
At J(P ) = const, we arrive at the exact expression

for the angle variable:

Φ = πε
Q(x, T )
Q(x+, T )

, Φ ∈ [−π, π]. (35)

Note that {J,Φ}WP = 1.
It is also worth noting that, for any Hamiltonian

function H = H(P ), the angular frequency of “ro-
tation” along the isoperimetric orbit P = const is
given by

Φ̇ = {H,Φ}WP =
2π

Q(x+, T )
dH(P )

dP
. (36)

This means that the frequency does not depend on the
evolution parameter in accordance with the theorems
of mechanics.

Now, it seems trivial to quantize the system with
one degree of freedom in terms of the J and Φ vari-
ables, which leads immediately to the estimation (in
the Planck units)

AWP ∼ 4πn, n ∈ N (37)

for positive and relatively large n.
However, we specify this formula due to the con-

sideration of a physical system closely related to the
low-dimensional gravity.

The geometrodynamics of Riemann surfaces within
the considered model is undefined because of its
purely gauge nature. This means that there were no
time and Hamiltonian having the physical meaning
and generating the evolution of J and Φ simultane-
ously. To resolve this problem, we appeal here to
the ideas from the (2+1)-dimensional quantum grav-
ity, where SO(2, 1) ∼ SU(1, 1) plays the role of the
Lorentz group. We construct a model with the same
symmetry as follows.

First, combining the basic variables J and Φ, we
expand the set of observables up to

J0 = J, J± =
√
J2 − C exp (∓iΦ), (38)

where C > 0 is an arbitrary constant for a moment,
requiring to be J2 > C.

One immediately sees that the Poisson algebra of
these observables is the su(1, 1) Lie algebra:

{J+, J−}WP = 2iJ0, {J±, J0}WP = ±iJ±. (39)

More generally, the generators J0,± may be replaced
by the infinite number of quantities Ln = J exp (inΦ),
n ∈ Z generating the Witt algebra.

Since the evolution is usually described by canon-
ical transformations, let us check that, indeed,
SU(1, 1) transformations are canonical transforma-
tions of a given system. Let us introduce the 2 × 2
matrix

M =
(
J0 J+

J− J0

)
, (40)

whose determinant is the Casimir operator of the
su(1, 1) algebra

C ≡ J2
0 − J+J−. (41)
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The action of a generic SU(1, 1) element,

U =
(
u v
v u

)
, |u|2 − |v|2 = 1, (42)

reads

M→ M̃ = UMU†, (43)

which preserves the Casimir operator, C = detM̃.
Accordingly to the loop quantum gravity concept,

the evolution is simply generated by the boost [13]:

Uτ =
(

cosh (τ/2) sinh (τ/2)
sinh (τ/2) cosh (τ/2)

)
. (44)

Then we can derive the trajectories for J0,± or,
equivalently, for J and Φ, by computing M(τ) =
= UτM(0)U†τ in accordance with (43). The evolution
of J and Φ has to demonstrate the “big bounce” [13] in
the parameter space by construction. If the Casimir
invariant C = 0, the evolution starts at τ = −∞
from (a = 1, α = π/4) and ends at τ = +∞ with
the parameters (a = 1/

√
2, α = π/4). The initial

configuration is realized at τ = 0.
Since J0 describes the WP area AWP, its eigenval-

ues should be discrete and positive. Accordingly to
the loop quantum gravity, we choose the irreducible
representation with the standard basis diagonalizing
the Casimir operator and J0 and with the minimal
positive spin j = 1/2, when C = 1/4. This leads to
the spectrum (in the Planck units)

AWP = 4π
(
n+

1
2

)
, n ∈ N. (45)

We can conclude that, in the classical picture,
AWP ≡ 0 for Preg. At the quantum level, AWP 6= 0
always, i.e., there is a gap of the Planckian scale.

6. Conclusions

We have considered a simple model of the Rie-
mann surface in genus two, represented by the two-
parametric hyperbolic octagon embedded into a unit
disk. We have shown that the parameter space asso-
ciated with the moduli of the surface is not trivial.
This is actually a symplectic orbifold. The funda-
mental symplectic two-form is induced on the base of
Wolpert’s theorems within the Weil–Petersson geom-
etry. Moreover, the parameter space can be densely

covered by a set of isoperimetric orbits. Each orbit
determines a closed domain, whose area plays the role
of a new global variable.

Instead of the local Fenchel–Nielsen parameters, we
have proposed to use the Weil–Petersson area, which
is invariant under automorphisms and the mapping
class group, and the canonically conjugate angle in
order to describe the surface configuration.

We have applied our formalism to the surface ge-
ometrodynamics, using the symmetries of the low-
dimensional gravity. Such an approach allows us to
quantize the Weil–Petersson area of a domain in the
parameter space. It turns out that the area spectrum
is equidistant and reproduces the known results.
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А.В. Назаренко

КВАНТУВАННЯ ПЛОЩI ПРОСТОРУ
ПАРАМЕТРIВ РIМАНОВИХ ПОВЕРХОНЬ РОДУ ДВА

Р е з ю м е

Ми розглядаємо модель компактних рiманових поверхонь
роду два, представлених геометрично двопараметричними
октагонами з π/2 автоморфiзмами. Ми обчислюємо генера-

тори групи Фукса i даємо аналiтичний опис простору Тей-
хмюллера, параметризований змiнними Фенхеля–Нiльсона,
у термiнах геометричних даних. Ми визначаємо структуру
простору параметрiв за допомогою обчислення симплекти-
чної два-форми Вейля–Петерссона (ВП) та аналiзу iзопери-
метричних орбiт. Комбiнуючи цi результати, знаходимо ВП
площу у просторi параметрiв, а також канонiчнi змiннi дiя–
кут. Використовуючи iдеї з петльової квантової гравiтацiї,
ми застосуємо наш формалiзм для опису класичної геоме-
тродинамiки, а також для квантування ВП площi. Резуль-
тати працi можуть бути застосовнi до квантової геометрiї,
хаотичних систем i низько-розмiрної гравiтацiї.
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