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FROM BIALGEBRAS TO OPERADS. QUANTUM LINE
AND COOPERAD OF CORRELATION FUNCTIONSPACS 02.40.-k, 05.30.-d

A q-line is a simple example of a braided Hopf algebra. This is just an algebra of polynomials
kq[z] with primitive generator and q-deformed statistics.

The (co)action of a q-line on an algebra is a q-derivation. We construct an operad and a
cooperad from a bialgebra. In the case of a q-line, this construction is related to the cooperad
of correlation functions of I. Kriz et al., which describes vertex algebras.

Modules over the factor-algebra kq[z]/(zN ) are N-complexes. We consider a homotopical
category of N-complexes as an example of the q-analog of Maltsiniotis’ strongly triangulated
category.

The general constructions are considered in the context of iterated monoidal categories
with unbiased lax tensor products described in the terms of the Gray tensor products of 2-fold
categorical operads of sequential trees Tree .

Ke yw o r d s: bialgebra, operad, unbiased tensor products, multitensor category, vertex al-
gebra.

1. Introduction

Vertex algebras where discovered by Borcherds and
Frenkel–Lepowsky–Meurman in the context of the
Monstrous moonshine motivated by the Goddard–
Thorn no-ghost theorem from string theory. They
realized the Fischer–Griess monster or the Friendly
Giant (the largest sporadic finite simple group) as
the automorphism group of a monster vertex algebra.
Now, a vertex algebra is naturally understand as the
holomorphic part of conformal field theory (CFT).
The central axiom is that the generalized Jacobi iden-
tity comes from the locality principle. In particular,
the monster vertex algebra appeared in CFT with 24
free bosons compactified on the torus induced by the
Leech lattice and orbifolded by the two-element re-
flection group.

Today, saying about an “algebra” A of a certain
kind, we usually assume that we can realize it as an
algebra over an operad

{
O(n)

}
n>0

. This means that
each element of a vector space O(n) determines the
n-fold multilinear operation A×n → A, or, equiva-
lently, for each n > 0, there is a linear map

O(n)⊗A⊗n → A. (1)

For example, in three most important cases of asso-
ciative, commutative, or Lie algebras, the component
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O(n) of the corresponding symmetric operad consists
of elements of the free algebra of noncommutative,
commutative, or Lie polynomials, with n generators
with degree 1 in each variable.

But there is no operad of vertex algebras.
There exist the dual notions of a cooperad and a

coalgebra over a cooperad. But it is also possible
to consider algebras over cooperads and coalgebras
over operads. Suppose that components O(n) of an
operad are finite-dimensional vector spaces. Then the
collection

{
C(n)

}
n>0

of dual spaces C(n) = O(n)∗

admits a natural cooperad structure. For an algebra
A over O, one can rewrite (1) in a contra-variant form
and obtain the maps
A⊗n → C(n)⊗A, (2)

which give an equivalent description of A as an alge-
bra over a cooperad C. One can imagine C(n) as a
space of “functions on operations”.

It was recently proved in [1] that the vertex alge-
bras can be described as algebras over a certain co-
operad called a cooperad of correlation functions. A
component C(n) of this cooperad is a graded algebra
of functions on the configuration space of distinct n
points, i.e.,

C(n) := k[z1, ..., zn]
[
(zi − zj)−1

]
i<j

(3)

is a localization of the algebra of polynomials. Note
that the whole C(n) for n > 0 and the graded com-
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ponents of C(n) for n > 1 are infinite-dimensional.
So, there is no an operad dual to C.

We observe that a localization in (3) can be de-
scribed via a tensor product, and the whole construc-
tion of the above cooperad has bialgebraic nature. We
illustrate this in the case of a q-line, a simple exam-
ple of a braided Hopf algebra, which is just an algebra
of polynomials kq[z] with primitive generator and q-
deformed statistics. In the case q = 1, the above
cooperad of correlation functions will be obtained.

The general constructions are considered in the
context of iterated monoidal categories with unbiased
lax tensor products. We reformulate the unified de-
scription of a (symmetric, braided) lax monoidal form
[2] in the terms of the 2-fold categorical operads of
sequential trees Tree . We consider a version of the
Gray tensor product � for Cat-operads and describe
multitensor categories as algebras over Gray tensor
products of the operads Tree and Treeop . In partic-
ular, an algebra over the operad Tree�Treeop is a
(1, 1)-tensor category C with one lax and one colax
monoidal structures. A bialgebra in C is a bilax func-
tor 1 → C. We construct a 2-fold operad and coop-
erad from such type of bialgebras. Operads in n-fold
monoidal categories with strong tensor products were
introduced and studied in [3]. In the case of a lax ten-
sor product, the resulting operadic tensor product is
also lax. The operadic structure in this case is natu-
rally described in terms of sequential trees.

Finally, we discuss another appearance of a q-line:
Modules over a factor-algebra kq[z]/(zN ) are N -
complexes. For the usual complexes (N = 2), the
homotopical and derived categories are examples of
triangulated categories (Verdier, 1963). After a long
story, Maltsiniotis in 2006 defined a strongly triangu-
lated category, where triangle and octahedron axioms
are extended to the list of axioms indexed by hyper-
simplexes ∆n,1. We consider analogs of Maltsiniotis’
axioms for “higher” hyper-simplexes ∆n,k depending
on fixed k and primitive (k + 1)-th root of a unit q.
We observe that the homotopical category of (k+ 1)-
complexes is an example for such axioms.

2. q-Line

Let k be a commutative ring.
Example 2.1. An algebra of polynomials k[z] the

Hopf algebra structure with primitive generator:

∆(z) = z ⊗ 1 + 1⊗ z S(z) = −z.

Then, from the bialgebra axiom,

∆(zn) = (z ⊗ 1 + 1⊗ z)n =
∑

06k6n

(
n

k

)
zk ⊗ zn−k.

This is just a universal envelope U(g) for the one-
dimensional Lie algebra g.

One can consider a graded version.
Definition 2.2. Denote, by gr(k-Mod)q, a cat-

egory (gr(k-Mod),⊗, cq) of graded k-modules X =
=
⊕

n∈Z Xn with tensor product

(X ⊗ Y )n =
⊕
m∈Z

Xm ⊗ Yn−m

and braiding (statistics)

cq(x⊗ y) = qdeg x·deg y · y ⊗ x
for q ∈ k×.

Example 2.3. [q-line or Eulerian Hopf algebra of
Joni and Rota, 1982] An algebra of polynomials ad-
mits the Hopf algebra structure kq[z] in gr(k-Mod)q
with primitive generator z, deg z = 1:

∆(m)(z) =
∑

i+1+j=m

1⊗i ⊗ z ⊗ 1⊗j ,

∆(m)(zn) =
∑

n1+···+nm=n

(
n

n1 · · ·nm

)
q

zn1 ⊗ · · · ⊗ znm .

Here,(
n

n1 · · ·nm

)
q

=
∑

σ∈Sn1···nm

q`(σ) ∈ Z[q]

are Gaussian polynomials; a sum is over shuffle per-
mutations σ ∈ Sn1···nm

; `(σ) is the length of a per-
mutation σ.

Special cases are q-numbers:

[n]q :=
(

n

n−1 1

)
q

= 1 + q + · · ·+ qn−1 =
qn − 1
q − 1

,

[n]q! :=
(

n

1 · · · 1

)
q

= [1]q[2]q · · · [n]q,(
n

n1 · · ·nm

)
q

=
[n]q!

[n1]q! · · · [nm]q!
.

A graded dual is the Hopf algebra kq{z} of divided
powers with basis z(n), deg z(n) = n for n > 0.

z(n) · z(m) =
(
n+m

n

)
q

z(n+m),

∆
(
z(n)

)
=
∑
m

z(m) ⊗ z(n−m).

1034 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11



From bialgebras to operads

There is a bialgebra morphism

ϕ : kq[z]→ kq{z}, zn 7→ [n]q!z(n).

– When all [n]q ∈ k×, then ϕ is an isomorphism.
– When q is a primitive N -th root of unity, i.e.,

[N ]q = 0 and [n]q ∈ k× for 0 < n < N, the image
ϕ
(
kq[z]

)
is the Hopf algebra

kq[z]/(zN ).

Remark 2.4. q-Line is a special case of a gen-
eral construction, when the single variable z is re-
places by an object V ∈ C of a braided monoidal cat-
egory. The free tensor algebra TV :=

∑
n>0 V

⊗n ad-
mits a Hopf algebra structure with shuffle coproduct.
Another Hopf algebra T∨V with the same underly-
ing space is equipped with a shuffle product and cut
coproducts.

The bialgebra morphism ϕ : TV → T∨V is an ana-
log of the (anti-)symmetrizer. The image of this mor-
phism is an analog of the symmetric (external) Hopf
algebra SV (respectively, ΛV ) (see [4]).

Similar universal constructions for categories with
a pair of tensor products in [5] cover a wide variety
of combinatorial Hopf algebras.

– An action of kq[z] is a (q-)derivation d(a) := z.a.
The module-algebra axiom turns into the Leibnitz
rule:

d(ab) = z.(ab) = (z(1).a)(z(2).b) = d(a)b+q|a| ·a ·d(b).

– k[z]/(zN )-modules are N -complexes

· · · → Xn−1
d→ Xn

d→ Xn+1 → · · ·

with dN = 0.
For a fixed primitive N -th root of unity, the cat-

egory of k[z]/(zN )-modules is closed monoidal. This
allow one to consider a q-analog of the homological
algebra: Kapranov [6], Dubois-Violette [7]: homo-
topies, homology, q-dg-categories, etc.

3. Operads from Bialgebras

A (plane) collection is a family
{
C(n)

}
n>0

of objects
of a fixed braided monoidal category (in our case,
graded k-modules).

A tensor product of two collections is a new collec-
tion with

D�C(n) :=
⊕
m>0

⊕
n1+...+nm=n

D(m)⊗C(n1)⊗· · ·⊗C(nm).

A plane operad (respectively, cooperad) is a monoid
(respectively, comonoid) in the category of collec-
tions. This assumes the associative product µ (re-
spectively, coproduct ∆) with components

µn1,...,nm : C(m)⊗ C(n1)⊗ · · · ⊗ C(nm)→ C(n),
∆n1,...,nm : C(n)→ C(m)⊗ C(n1)⊗ · · · ⊗ C(nm).

Given a graded k-module X, there is an operad
(respectively, cooperad) of endomorphisms{

Hom(X⊗n, X)}n>0,

respectively,{
Hom(X,X⊗n)}n>0.

The structure of an algebra over an operad E (re-
spectively, that of a coalgebra over a cooperad C) on
X is a morphism of operads (respectively, coperads)

E(n)→ Hom(X⊗n, X),

C(n)→ Hom(X,X⊗n),

or, equivalently, morphisms compatible with the
product (respectively, coproduct)

E(n)⊗X⊗n → X, respectively, C(n)⊗X → X⊗n.

There are dual notions of the algebra over a cooperad
and the algebra over an operad described by mor-
phisms

X⊗n → C(n)⊗X, respectively, X → E(n)⊗X⊗n.

When all graded components E(n)k (respectively,
C(n)k) of an operad (respectively, cooperad) are
finite-dimensional, there exists a graded dual coop-
erad (respectively, operad) with components E(n)∗k
(respectively, C(n)∗k). The algebras over a cooperad
are algebras over the dual operad, but only when this
dual one exists.

The symmetric (braided) operad (cooperad){
C(n)

}
n>0

assumes, for each n > 0, the action of the
symmetric group Sn (respectively, braided group Bn)
on C(n) compatible with the product (coproduct).

One can consider a cooperad
{
C(n)

}
n>0

in the cat-
egory of graded algebras. This means that each C(n)
is an algebra, and the coproducts

C(n)→ C(m)⊗ C(n1)⊗ · · · ⊗ C(nm)

are algebraic morphisms.
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Similarly, one can consider an operad in the cate-
gory of graded coalgebras.

Both conceptions are the examples of bialgebras in
the category with a pair of tensor products.

Theorem 3.1. Let B be a braided bialgebra. Con-
sider the collection

{
B⊗n

}
n>0

.

– It admits the structure of an operad in coalgebras.
For m =

∑
i∈nmi,

B⊗n ⊗
(
⊗i∈nB⊗mi

) c

∼
→ ⊗i∈n

(
B ⊗B⊗mi

)
⊗i∈n

(
∆(mi)⊗1

)
→ ⊗i∈n

(
B⊗mi ⊗B⊗mi

)
c

∼
→ (B ⊗B)⊗m

µ⊗m

→ B⊗m.

The algebras (respectively, coalgebras) over this
operad are module-algebras (respectively, module-
coalgebras) over B.

– The collection
{
B⊗n

}
n>0

admits the structure of
a cooperad in algebras. We have

B⊗m
∆⊗m

→ (B ⊗B)⊗m
c

∼
→

⊗i∈n
(
B⊗mi ⊗B⊗mi

) ⊗i∈n
(
µ(mi)⊗1

)
→

⊗i∈n
(
B ⊗B⊗mi

) c

∼
→ B⊗n ⊗

(
⊗i∈nB⊗mi

)
.

The algebras (respectively, coalgebras) over this co-
operad are comodule-algebras (respectively, comodule-
coalgebras) over B.

Example 3.2. Consider the bialgebra B = kq[z].
The components of the corresponding cooperad are the
algebras

kq[z]⊗n ' kq[z1, ..., zn], zjzi = qzizj , for i < j.

For a partition presented by a monotone map ϕ : m→
→ n, the coproduct

kq[zi]i∈m → kq[tj ]j∈n ⊗
(
⊗j∈nkq[zi]i∈ϕ−1(j)

)
is determined by its values on the generators (operadic
analog of primitivity)

zi 7→ zi + tϕ(i).

When all q-numbers [n]q are invertible (in particu-
lar, when q = 1, and k is a field of characteristic 0),
kq[x] is isomorphic to kq{x}, and the algebras over

the above cooperad are graded algebras equipped with
a q-derivative.

For each component consider, a localization

kq[z1, ..., zn] ↪→ kq[z1, ..., zn]
[
(zi − zj)−1

]
i<j

.

Theorem 3.3. There exists the unique cooperad
structure on the collection of algebras{
kq[z1, ..., zn]

[
(zi − zj)−1

]
i<j

}
n>0

such that the above algebra of morphisms determine
the morphism of a cooperad of graded algebras.

In the case q = 1, this is a symmetric cooperad
defined in [1] and called a cooperad of correlation
functions. The algebras over this cooperad are vertex
algebras.

A few words about coproducts in the above
cooperad:

Consider an algebra kq[z±1] of Laurent polynomials
as an object in the category gr(k-Mod)q.

Theorem 3.4. The algebra kq[z±1] admits a
unique kq[z] comodule algebra structure such that the
natural embedding kq[z] ↪→ kq[z±1] is a morphism of
comodule algebras.

Proof. The comodule algebra structure on kq[z] is
just the coproduct

∆ : kq[z]→ kq[z1, z2] ' kq[z]⊗ kq[z] z 7→ z1 + z2.

The coaction is a q-deformed version of the power
series extension that maps (z)−(k+1) to the sum∑
j>k

∑
p1,...,pj∈{0,1}
p1+···+pj=j−k

z−1
2 zp11 z−1

2 · · · z
−1
2 z

pj

1 z−1
2 ∈ kq[z1, z

±1
2 ]

or∑
j>0

q−(j+1
2 )
(
j + k

k

)
q

zj ⊗ z−k−j−1 ∈ kq[z] ⊗̂kq[z±1].

How can we put a formal series into the algebraic
context?

Formal series are elements of the product of graded
components (while polynomials are elements of the
direct sum).

Following [1], we hide the formal series in a new
tensor product of graded k-modules:

(V ⊗̂W )n := colimk0

∏
k>k0

Vk ⊗Wn−k.
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An interesting feature of this tensor product is that
the associativity constrains are not an isomorphism
but the embeddings

A ⊗̂(B ⊗̂C) ↪→ (A ⊗̂B) ⊗̂C

in nth graded component:∏
i>i0
j>j0

Ai ⊗Bj ⊗Cn−i−j ↪→
∏
i>i0

i+j>i0+j0

Ai ⊗Bj ⊗Cn−i−j .

Now, we need to consider a cooperad C(n) in a
category with two tensor products. Coproducts for
this cooperad are the maps

C(n)→ C(m) ⊗̂(C(n1)⊗ · · · ⊗ C(nm)).

In our case, for a monotone map ϕ : m → n, the
coproduct

kq[zi]i∈m
[
(zi − zj)−1

]
i<j
→

→ kq[tj ]j∈n
[
(ti − tj)−1

]
i<j
⊗̂(

⊗j∈nkq[zi]i∈ϕ−1(j)

[
(zi − zj)−1

]
i<j

)
zi 7→ zi + tϕ(i),

(zi − zj)−1 7→

7→

{
(zi − zj)−1, ϕ(i) = ϕ(j)
izi,zj (tϕ(i) − tϕ(j) + zi − zj)−1, otherwise.

Here, izi,zj
means the power series expansion in pos-

itive degrees of zi and zj .

4. General Constructions

4.1. Finite sets, finite ordinals, and trees

Let O ↪→ S be the skeletal categories of a finite or-
dinal and of finite sets, respectively. Objects in both
cases are the natural numbers n > 0 considered as
(linear ordered) sets n = {0 < 1 < ... < n − 1};
morphisms in O (respectively, in S) are monotone
(respectively, arbitrary) maps ϕ : m → n. We can
also consider a poset n as a category and morphisms
in O as functors.

For j ∈ n ∈ ObO, the pullback along of ĵ : 1→ n,
0 7→ j determines a functor O/n → O/1 ∼= O,
(ϕ : m → n) 7→ ϕ−1(j). The functor ι : O/n → On,
ϕ 7→

(
ϕ−1(j)

)
j∈n is an isomorphism of categories.

The category O becomes a strict monoidal equipped

with the products
∑n =

(
On ι−1

−−→ O/n dom−−−→ O
)
,

(mj)j∈n 7→
∑j∈n mj . This monoidal category is

freely generated by the terminal nonsymmetric unital
operad O(-,1) = {O(n,1)}n>0.

Finite Cartesian product
∏
i∈m ni of finite ordi-

nals admits a lexicographic linear order: (ji)i∈m <
(j′i)i∈m iff there exists i′ ∈m such that ji = j′i for all
i < i′ and ji′ = j′i′ .

The conventional category Δ is a full subcategory
in O of a nonempty ordinal. The contravariant endo-
functor of ideals on the category of partially ordered
sets can be restricted to the functor [-] : Oop → Δ.
The poset of ideals in n = {0 < ... < n − 1} is
[n] = n + 1 = {0 < ... < n}. For a monotone map
ϕ : n → m, the corresponding map [ϕ] : [m] → [n] is
the preimage:

[ϕ](k) = {i |ϕ(i)∈k} =
{

0 < ... < max{i |ϕ(i)∈k}
}
.

Let NJ : O → Set be the composition of the func-
tor [-] : O → ∆op with the nerve [n] 7→ Cat([n]op,J )
of a small category J . Explicitly, n-th component
NJn is the set of functors

f :
(
[n]op → J , (i 6 j) 7→

(
fj>i : f(j)→ f(i)

)
that are in the one-to-one correspondence with the
sequences of morphisms in J :

f(n)
fn−1→ f(n− 1)→ · · · → f(1)

f0→ f(0),
fi := fi+1>i.

For a monotone map ϕ : n → m, the corresponding
map ϕ∗ : NJn → NJm is the pre-composition with
[ϕ] : [m]→ [n].

We also consider the category el NJ of elements
of the co-pre-sheaf NJ : O → Set . The objects of
el NJ are elements of the nerve f ∈ NJn, n > 0; the
morphism from f ∈ NJn to g ∈ NJm is a morphism
ϕ : n→ m in O such that g = ϕ∗(f).

Let J = O (respectively, J = S). Then the objects
of el NJ are called plane (respectively, symmetric)
sequential forests. A plane (respectively, symmetric)
sequential tree of height n with k leaves is a sequential
forest t : [n]op → J with t(0) = 1 and t(n) = k.

For a forest f : [n]op → J , each element j ∈ f(0)
determines a tree f|j : [n]op → J presented by the top
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row in the following diagram with pullback squares:

f−1
n+1>0(j) → · · · → f−1

1>0(j) → {j}

· · ·

f(n+ 1)
↓

∩

fn → · · · → f(1)
↓

∩

f0 → f(0)
↓

∩

Denote pTree(k) (respectively, sTree(k)) the full
subcategory of el NJ , where the objects are sequen-
tial trees with k leaves. The full subcategory of
bTree(k) ↪→ sTree(k) of braided sequential trees is
determined by the following condition on an object t:

for each n > p > q > r > 0 and a, b ∈ t(p), if a < b
and tp>q(a) > tp>q(b), then tp>r(a) > tp>r(b).

For each Tree = pTree, bTree or sTree, we con-
sider the collection Tree =

{
Tree(k)

}
k>0

.We can also
consider the collection Treeop =

{
Tree(k)op

}
k>0

of
opposite categories. The height of a sequential tree
determines an N-grading on objects of the above cat-
egories. If t : [n]op → J is a tree with t(n) = k, we
write t ∈ Treen(k).

4.2. Cat-operads of Endofunctors
and CatN -operad of Trees

Let CatN be the category of small categories C with
an N-grading on objects deg : Ob C → N, and let
the functors F : C → C′ preserving this grading be
degF (X) = degX.

There is another description of this category. Con-
sider Cat as a symmetric monoidal category equipped
with Cartesian product ×. Then the indiscrete cate-
gory N , whose objects are natural numbers, admits
the structure of a bialgebra in (Cat,×) (inherited
from additive monoid structure on N):

N ×N
µ : (m,n) 7→ m+ n

→←
∆ : n 7→ (n, n)

N ←
η : 0 7→ 0

ε : n 7→ 0
→ 1.

The category CatN can be identified with a category
of comodules C over J with coaction C → C × J ,
X 7→ (X,degX).

There are two monoidal structures on CatN :

N -comodule product: this is the Cartesian prod-
uct of underlying categories ×i∈nCi with grad-
ing deg(Xi)i∈n =

∑
i∈n degXi;

cotensor product over N : this is the categorical
product ×i∈nN Ci in CatN . The forgetful functor
CatN → Cat admits the structure of a colax
monoidal functor. For n > 0, this a full subcat-
egory in the Cartesian product ×i∈nCi with ob-
jects (Xi)i∈n such that all degXi are the same,
and deg(Xi)i∈n := degX0. The terminal object
in CatN is the regular comodule N .

For a family (Cij)i∈n,j∈m of categories, there is the
natural embedding

ηnm : ×i∈n ×j∈mN Cij ↪→ ×j∈mN ×i∈n Cij .

An object (Xij)i∈n,j∈m, Xij ∈ Cij on the left-
(respectively, right-)hand side is characterized by the
following condition: for each i ∈ n, degXij is inde-
pendent of j (respectively,

∑
i∈n degXij is indepen-

dent of j). This turns (CatN ,×,×N , η) into the 2-fold
monoidal category.

The category of the collections {C(k)}k>0 of small
categories admits the ‘operadic’ monoidal structure(
�i∈nCi

)
(k) =

∐
t∈Treen(k)

×i∈n ×j∈t(i) Ci(t−1
i (j)).

A monoid in this category is called a Cat-operad. The
example of a Cat-operad is the operad EndC of endo-
morphisms of a small category C, where EndC(k) is
the category of functors C×n → C.

These monoidal structures on CatN induce an ‘op-
eradic’ monoidal structure on collections {C(k)}k>0

in CatN :(
�i∈nCi

)
(k) =

∐
t∈Treen(k)

×i∈n ×j∈t(i)N Ci(t−1
i (j))

In particular, the n-th tensor power of a collection C
is a collection C�n, where the category C�n(k) is a
disjoint union

∐
t∈Treen(k) C(t). An object in C(t) is

a coloring c of each vertex (i ∈ n, j ∈ t(i)) in t by an
object c(i,j) ∈ C(t−1

i (j)) such that deg c(i,j) = di is
independent of j, and deg c =

∑
i∈n di. The morphism

c→ c′ in C(t) is a family of morphisms c(i,j) → c′(i,j)
in C(t−1

i (j)).
Definition 4.1. A CatN -operad is a monoid C in

the above monoidal category of collections.
In particular, this assumes a product µt : C(t) →

→ C(k) for each t ∈ Treen(k).
The single tree of height 0 is just a root 1. Each

natural number k determines a tree k → 1 of height
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1, which is called an elementary tree or corolla. The
(internal) vertex of a tree t ∈ Treen(k) is an element
(i, j) ∈ ∈

∐
i∈n t(i). The vertex (i, j) determines an

elementary tree ti|j that is a subtree t−1
i (j)→ {j} ' 1

in the forest t(i+ 1)
ti→ t(i).

Given a morphism of trees Treem(k) 3 s ϕ→ t ∈
∈ Treen(k), for i ∈ n, we denote, by ϕi, the for-
est obtained by the restriction of s : [m]op → J to
the subinterval [ϕ−1(i)] ' [[ϕ](i), [ϕ](i + 1)] ↪→ [m],
i.e., ϕi : p 7→ 7→ s(p + [ϕ](i)). Then, for each
j ∈ t(i) = s([ϕ](i)), one can consider the tree
ϕi|j ∈ Treeϕ−1(i) t

−1
i (j). The assignment ti∈nt(i) 3

ϕ 7→ ϕi|j (coloring a tree t) determines an element of
Tree(t).

Lemma 4.2. For each tree t ∈ Tree(k), the
category Tree(t) is isomorphic to the slice category
Tree(k)/t.

Proposition 4.3. The collection Tree is a CatN -
operad. For t ∈ Tree(k), the corresponding product
µt is the domain functor

Tree(t) ' Tree(k)/t
dom→ Tree(k).

4.3. Lax monoidal categories

The monoidal category is a category C equipped with
a tensor product ⊗ : C × C → C, a unit object 1 ∈ C,
and natural isomorphisms (associator and unitors)
satisfying coherence identities, which allow one to de-
fine the n-fold tensor products ⊗n : Cn → C unique
up to an isomorphism. It is essential that the same
notion of unbiased monoidal category (a term of Le-
inster [8]) involves n-fold tensor products ⊗n as a
part of the definition. Two natural ways to omit
the invertibility condition for associators in an un-
biased monoidal category produces the dual notions
of lax and colax (or oplax) monoidal categories. We
choose the term “lax” in the case corresponding to
representable multicategories and suitable to consider
monoids. One can define the lax (colax, strong, strict)
monoidal category as a lax (colax, strong, strict)
monoid in Cat .

The unifying way is to describe the (co)lax (sym-
metric, braided) monoidal category as an algebra
over 2-fold (symmetric, braided) CatN -operad Treeop

or Tree . The underlying 2-fold Set-operad of trees
is freely generated by elementary trees. For each
CatN -operad Tree, the generators and the relations
are morphisms in the category of elements over the
generators and the relations of a monoidal category

O. The lax monoidal category structure on a cate-
gory C is described in terms of these generators and
relations. This assumes a functor ⊗n : Cn → C for
each n ∈ N that is a natural transformation λϕ =
λt : ⊗i∈nXi → ⊗j∈m ⊗i∈ϕ

−1(j) Xi for each tree t =
=
(
n

ϕ→ m → 1
)

such that two ways to construct

a morphism λt for a tree t =
(
n

ϕ→ m
ψ→ p→ 1

)
coincide:

⊗i∈nXi → ⊗k∈p ⊗i∈(ψϕ)−1(k) Xi

⊗j∈m ⊗i∈ϕ
−1(j) Xi

↓
→ ⊗k∈p ⊗j∈ψ

−1(k) ⊗i∈ϕ
−1(j)Xi.

↓

The lax (symmetric, braided) monoidal functor is
a lax morphism of Treeop-algebras. We can again
describe it only on the generators of an operad. This
is a functor F : C → D and a natural transformation

φn : ⊗i∈nF (Xi)→ F
(
⊗i∈nXi

)
for each n ∈ N, (4)

such that, for each tree t =
(
n

f→ m → 1
)
, the

morphisms λ(−) entwine φ in C and D:

⊗i∈nFXi
φn

→ F ⊗i∈n Xi

⊗j∈m ⊗i∈f
−1(j) FXi

λf

↓
φt
→ F ⊗j∈m ⊗i∈f

−1(j)Xi.

Fλf

↓

The natural transformation (F, φ) → (G,ψ) be-
tween lax (symmetric, braided) monoidal functors is a
natural transformation t : F → G entwining φ and ψ.

The terminal category 1 is a lax monoidal in the
unique obvious way. An algebra in the lax monoidal
category (C,⊗, λ) is a lax monoidal functor 1 →
→ (C,⊗, λ), 0 7→ A. The natural transformations (4)
turn into the algebra multiplications µ(n)

A : ⊗nA→ A;
the compatibility with λ(−) turns into the associativ-
ity of multiplications.

In the dual case: a coalgebra in the colax monoidal
category (C,�, ρ) is a colax monoidal functor 1 →
→ (C,�, ρ).

4.4. Multitensor categories
and the Gray product of operads

One can consider a lax monoidal category in the
2-category of lax monoidal categories. In such a way,
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∗ → ∗

======================
((−)s, (−)t)

⇒

∗ →

→

∗ ⇐====================
((−)r, (−)t)

→

∗
↓

⇐=====================
((−)r, (−)s)

∗
↓

→ ∗
↓

→

=

∗ → ∗

⇐=====================
((−)r, (−)s)

∗ ⇐====================
((−)r, (−)t)

→

∗
↓

→ ∗
↓

======================
((−)s, (−)t)

⇒

∗
↓

→

→

∗

→

Fig. 1. Cubic relations in the Gray product

the duoidal (or 2-monoidal) categories of [5] are ob-
tained. One can iterate this procedure and obtain a
multitensor category with tensor products ⊗p, p ∈ N.
For p < q, the tensor product ⊗q is a lax monoidal
functor with respect to ⊗p. This assumes the inter-
change natural transformation

ηnmpq : ⊗i∈np ⊗j∈mq Xij → ⊗j∈mq ⊗i∈np Xij

compatible with λ’s. Moreover, for p < q < r, they
satisfy the braid relation

ηqrηprηpq = ηpqηprηqr : ⊗p ⊗q ⊗r → ⊗r ⊗q ⊗p. (5)

The Gray tensor product turns the category of
strict 2-categories and strict 2-functors into a closed
monoidal category, where the inner hom is a 2-cat-
egory of 2-functors, pseudonatural transformations,
and modifications. We propose to extend a lax ver-
sion of the Gray tensor product to the case of mul-
ticategories enriched in Cat . The Cat-operad is a
Cat-multicategory E with a single object ∗. As a
special case, we obtain the lax Gray tensor prod-
uct Cat-operad �k∈pEk of Cat-operads Ek, k ∈ p.
We consider the Cartesian product of underlying sets

of the cells of Cat-operads Ei. The dimension of the
product cell (ci)i∈p is

∑
i∈p dim ci. One can com-

pose product cells in each fixed direction j ∈ p, i.e.,
(ci)i∈p · (c′i)i∈p = (c′′i )i∈p, when cj · c′j = (c′′i )i∈p in the
category Ej(m) for some m ∈ N, and ci = c′i = c′′i for
i 6= j and similarly for the operadic composition. The
cells of dimension > 2 are assumed to be identical;
hence, the cells of dimension 3 describe the relations
in the product operad, and the cells of dimension > 3
can be ignored. For each r ∈ p, there is a morphism
of Cat-operads

(−)(r) : Er → �k∈pEk,
c 7→ c(r) :=

(
∗, ..., ∗︸ ︷︷ ︸

r

, c, ∗, ..., ∗︸ ︷︷ ︸
p−r−1

)
;

the images are a subject of relations that come from
Er. For each r < s in p and objects c ∈ Er(m), d ∈
Es(n), there is a morphism

(c(r), d(s)) :=
(
∗, ..., ∗︸ ︷︷ ︸

r

, c, ∗, ..., ∗︸ ︷︷ ︸
s−r−1

, d, ∗, ..., ∗︸ ︷︷ ︸
p−s−1

)
between the operadic compositions

c(r) ◦ (d(s))m → d(s) ◦ (c(r))n

in �k∈pEk(mn), which can be presented by the dia-
gram

∗
(d(s))m → ∗

∗

(c(r))n

↓

d(s)

→

(c(r), d(s))�
wwwwwwwww

∗

c(r)

↓

These squares respect operadic compositions of two
types, horizontal and vertical. For r < s < t in p, such
squares satisfy the relation in Fig. 1 corresponding to
a cubic 3-cell.

With small modifications, one can define the Gray
product of CatcN -operads.

Proposition 4.4. Multitensor (n-oidal) categories
are algebras over the lax Gray product CatN -operad
�n Treeop .

The natural transformations ηkmpq come from the
morphism

(
(t)p, (s)q

)
, where t and s are elementary

trees with k and m inputs, respectively. The braid
relations (5) come from the cubic relations in Fig. 1.
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4.5. 2-Fold bialgebras

The most general 2-fold monoidal category suitable to
consider bialgebras can be described in the following
equivalent ways:

– colax monoid in the 2-category of lax monoidal
categories;

– lax monoid in the 2-category of colax monoidal
categories;

– algebra over the lax Gray product CatN -operad
Tree�Treeop;

– category equipped with the lax monoidal struc-
ture (⊗, λ), colax monoidal structure (�, ρ), and nat-
ural transformations

ηnm : ⊗i∈n �j∈m Xij → �j∈m ⊗i∈n Xij

compatible with λ and ρ.
We use the name “(1, 1)-tensor” or “(1, 1)-oidal”

for such a category. A bilax monoidal functor be-
tween (1, 1)-tensor categories is a functor F : C → D
equipped with natural transformations

φn : ⊗i∈nF (Xi)→ F
(
⊗i∈nXi

)
,

ψn : F
(
�i∈nXi

)
→ �i∈nF (Xi)

for each n ∈ N compatible with λ and ρ, respectively,
and satisfying the hexagon identities

F ⊗i∈n �j∈mXij

⊗i∈nF �j∈m Xij

φ
n

→

F �j∈m ⊗i∈nXij

η nm

→

⊗i∈n �j∈m FXij

ψm

↓
�j∈mF ⊗i∈n Xij

ψm

↓

�j∈m ⊗i∈n FXij

φ
n

→
η nm

→

A bialgebra in the (1, 1)-tensor category C is a bilax
functor 1 → C, 0 7→ B with products µn : ⊗nB →
B and coproducts ∆n : B → �nB. The hexagon

identities turn into the bialgebra axioms:

⊗nB
µn

→ B

⊗n �m B

⊗n∆m

↓
�mB

∆m

↓

�m ⊗n B

�
m µ
n

→
η nm

→

4.6. Unbiased version of 2-fold (co)operads

We consider two contexts dual each to another and
suitable for operads (respectively, cooperads). In
both cases, (C,⊗,�, η) is a category with two lax
(respectively, colax) monoidal structures and natural
transformations ηnm : ⊗n◦�m → �m◦⊗n compatible
with λ’s (respectively, with ρ’s). We can additionally
suppose that the monoidal structure � (respectively,
⊗) is braided or symmetric.

Suppose that the category C admits countable cate-
gorical coproducts (respectively, products). Then the
category of collections in C admits the new (braided,
symmetric) lax monoidal structure(
�i∈nCi

)
(k) =

∐
t∈Treen(k)

⊗i∈n�j∈t(i) Ci(t−1
i (j)) and,

respectively, the colax monoidal structure(
�i∈nCi

)
(k) =

∏
t∈Treen(k)

�i∈n ⊗j∈t(i) Ci(t−1
i (j)).

In particular, the n-th tensor power C�n(k) of a col-
lection C is the coproduct (respectively, product) over
t ∈ Treen(k) of

C(t) := ⊗i∈n �j∈t(i) C(t−1
i (j)) and,

respectively,

C(t) := �i∈n ⊗j∈t(i) C(t−1
i (j)).

A (braided, symmetric) operad (respectively, co-
operad) is a monoid (respectively, comonoid) in
this (braided, symmetric) lax (respectively, colax)
monoidal category of collections. More generally,
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one can explicitly define, without assumptions about
categorical (co)products, an operad (respectively, a
coperad) as a collection

{
C(n)

}
n>0

equipped with
products µt : C(t) → C(k) (respectively, coproducts
∆t : C(k)→ C(t)) for each tree t ∈ Tree(k) such that

µt = µs ◦ µϕ, respectively, ∆t = ∆ϕ ◦∆s

for each morphism Treen(k) 3 t ϕ→ s ∈ Treem(k).
Here, µϕ : C(t) → C(s) (respectively, ∆ϕ : C(s) →
C(t)) is defined via the composition

C(t) := ⊗i∈n �j∈t(i) C(t−1
i (j))

λλ→ ⊗i∈m ⊗i
′∈ϕ−1(i) �j∈s(i) �j

′∈s(i′)t−1
[ϕ](i)+i′(j

′)
η→ ⊗i∈m �j∈s(i) ⊗i

′∈ϕ−1(i) �j
′∈s(i′)t−1

[ϕ](i)+i′(j
′) =

= ⊗i∈m �j∈s(i) C(tϕi,j)

⊗i∈m�j∈s(i)µ
t
ϕ
i,j

→ ⊗i∈m �j∈s(i)C(s−1
i (j)) =: C(s)

or, respectively,

C(s) := �i∈m ⊗j∈s(i) C(s−1
i (j))

�i∈m⊗j∈s(i)∆
t
ϕ
i,j

→ �i∈m ⊗j∈s(i)C(tϕi,j)

= �i∈m ⊗j∈s(i) �i
′∈ϕ−1(i) ⊗j

′∈s(i′) t−1
[ϕ](i)+i′(j

′)
η→ �i∈m �i

′∈ϕ−1(i) ⊗j∈s(i) ⊗j
′∈s(i′)t−1

[ϕ](i)+i′(j
′)

ρρ→ �i∈n ⊗j∈t(i)C(t−1
i (j)) =: C(t).

The axioms of a (co)operad imply that we have a
functor

µ(−) : Tree(k)→ C, respectively, ∆(−) : Tree(k)op → C

for each k ∈ N.

4.7. From bialgebras to operads

Again, we consider two contexts from the previous
section for operads (respectively, cooperads) with the
additional assumption that the monoidal structure �
(respectively, ⊗) is strong. So in both cases, we can
consider a bialgebra (B,µ,∆) in (C,⊗,�, η). Under
these assumptions, we have two dual theorems in the
operadic (respectively, cooperadic) context:

Theorem 4.5. There exists an operad B� with
components B�(n) = �nB. Hence, for t ∈ Treen(k),

B�(t) = ⊗i∈n �j∈t(i) �t
−1
i

(j)B ' ⊗i∈n �t(i+1) B.

The product µt is the composition

⊗i∈n �t(i+1) B
⊗i∈n�j∈t(i+1)∆

t
−1
n>i+1

(j)

→

⊗i∈n �j∈t(i+1) �t
−1
n>i+1(j)B

ρ

'
→

⊗n �k B ηnk

→ �k ⊗nB �kµn

→ �k B.

Theorem 4.6. There exists a cooperad B⊗ with
components B⊗(n) = ⊗nB. Hence, for t ∈ Treen(k),

B⊗(t) = �i∈n ⊗j∈t(i) ⊗t
−1
i

(j)B ' �i∈n ⊗t(i+1) B.

The coproduct ∆t is the composition

⊗kB ⊗k∆n

→ ⊗k �nB ηkn

→ �n ⊗kB
λ

'
→ �i∈n ⊗j∈t(i+1) ⊗t

−1
n>i+1(j) B

�i∈n⊗j∈t(i+1)µ
t
−1
n>i+1

(j)

→ �i∈n ⊗t(i+1)B.

Proof. For a morphism

Treen(k) 3 t ϕ→ s ∈ Treem(k),

∆ϕ : B�(s)→ B�(t) is given by the composition

B�(s) := �i∈m ⊗s(i+1) B
�i∈m⊗s(i+1)∆ϕ−1(i)

→

�i∈m ⊗s(i+1) �ϕ
−1(i)B

�i∈mηs(i+1) ϕ−1(i)

→

�i∈m �ϕ
−1(i) ⊗t([ϕ](i+1))B

�i∈m�ϕ−1(i)λ→

�i∈m �j∈ϕ
−1(i) ⊗k∈t(i+1) ⊗t

−1
[ϕ](i+1)>j

(k)
B

�i∈m�j∈ϕ−1(i)⊗k∈t(i+1)µ
t
−1
[ϕ](i+1)>j

(k)

→

�i∈m �j∈ϕ
−1(i) ⊗t(i+1)B

ρϕ

→
�i∈n ⊗t(i+1) B =: B�(t).

The identity ∆t = ∆ϕ ◦∆s is verified directly. �
In the cooperadic context, we suppose that the

monoidal structure ⊗ is braded or symmetric. Then
each component B⊗(t) ' �i∈n ⊗t(i+1) B admits a
natural algebra structure.

Proposition 4.7. Under the above assumptions,
the operadic coproducts ∆t are morphisms of this al-

1042 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 11



From bialgebras to operads

gebra, i.e., the following diagram commutes:

⊗`B⊗(k)
µ`B⊗(k)→ B⊗(k)

⊗`B⊗(t)

⊗`∆t
B⊗

↓
µ`B⊗(t)→ B⊗(t).

∆t
B⊗

↓

Proof. ∆t is a composition of two algebra morphisms,
coproduct ∆n

⊗kB

⊗kB ⊗k∆n
B→ ⊗k �nB ηkn

→ �n ⊗kB,

and

�n ⊗k B λ

'
→ �i∈n ⊗j∈t(i+1) ⊗t

−1
n>i+1(j) B

�i∈n⊗j∈t(i+1)µ
t
−1
n>i+1

(j)

→ �i∈n ⊗t(i+1)B. �

5. q-Complexes and Hypersimplices

The (strict) action of a group G on a category C is a
(strict) monoidal functor G→ End(C).

The translation structure is an action of the free
group (Z,+):

X 7→ X[n], n ∈ Z.

The strict translation structure is just an invertible
endofunctor

Σ : C → C, X[n] = ΣnX.

The examples of categories with strict translation
structure are:

– the categories of graded modules gr(k-Mod) and
complexes C(A) with shift

X[n]m := Xn+m;

– partially ordered sets (posets) equipped with au-
tomorphism.

The definition of triangulated category by Verdier
(1963) inspired by Grothendieck and the close defini-
tion of Dold and Puppe (1961) assume the following:

– A category T with (strict) translation structure.
For any such category, one can consider the category
Tri(T ) of triangles

X → Y → Z → X[1]

X → Y

Z
←

←

[1]

– A replete subcategory of distinguished triangles
such that the restriction of a triangle to its base X →
→ Y is a full functor.

– (Octahedron axiom) Each commutative triangle
is a part of octahedra, whose 8 faces are ether com-
mutative or distinguished triangles (in chess order).

For each Abelian category A (say a category of
modules), there are the triangulated categories:

– Category K(A) of complexes up-to-homotopy:

f ∼ g ⇔ f − g = d(h) = [d, h] = dh+ hd,

deg h = −1,

– Derived category D(A) (which is a localization
K(A)

[
qiso−1

]
of the above homotopical category by

quasiisomorphisms).
In both cases, a triangle is distinguished if it is

isomorphic (in T ) to the principal one

X
f→ Y → C(f)→ X[1],

where C(f) :=
(
X[1]⊕ Y,

(
dX[1] 0
f dY

))
is a cone of

the morphism.
The triangulated categories have a little defect.

The cone construction is a functor in the category
of complexes, but is not a functor in the homotopi-
cal and derived categories. The octahedron axiom
improves the non-functoriality of the cone. Is there
a better improvement? Omitting a long history, we
mention the definition of Maltsiniotis [9].

The hypersimplex ∆n,k is a convex hull of barycen-
ters of

(
n+1
k+1

)
k-dimensional faces of an n-dimensional

simplex ∆n. A triangle and an octahedron are the
first members of the sequence ∆n,1 of hypersimplices
(with k = 1).

For a category T with translation structure, one
can define an n-triangle as a translation preserving
the functor k∆n,1 → T , where ∆n,1 is a poset with
the translation “unfolding” a hypersimplex ∆n,1 =
= ∆n,1/Z.

The strongly triangulated category is a category T
with translation structure equipped with a “coherent
family” of the replete subcategories of distinguished
n-triangles for each n > 0 such that the restrictions
of triangles to the base are full functors.

A strongly triangulated category is triangulated in
the sense of Verdier. There is the (artificial) example
of a triangulated category, which is not strongly tri-
angulated. On the other hand, one can expect that
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the naturally obtained triangulated categories should
be strongly triangulated.

In particular, the cohomological categoryH0(C) for
a pre-triangulated A∞-category C is strongly triangu-
lated [2].

In the rest of the paper, we consider a “q-analog”
of the strongly triangulated category, where q = −1
is replaced by the N -th primitive root of unity.

5.1. Unfolding of hypersimplices Δn,k

By ∆n, we denote the set Z of integers with the usual
linear order and translation

r[q] = r + q(n+ 1).

One can imagine ∆n as a linear ordered sum of Z
copies of the interval [n] = {0 < 1 < ... < n}:

... < n[−1] < 0[0] < 1[0] < ... < n[0] < 0[1] < ...

Let Δ be a category with objects ∆n, n > 0, and
monotone translation preserving maps ∆m → ∆n.

The famous category ∆ consists of linear ordered
sets [n] = {0 < 1 < ... < n} and monotone maps.

There is a faithful functor ∆ ↪→Δ(
ψ : [m]→ [n]

)
7→
(
ψ : ∆m → ∆n

)
,

ψ(r[q]) = ψ(r)[q], r ∈ [m].

For n > 0, let τ : ∆n → ∆n be an automorphism
i 7→ i+ 1.

Proposition 5.1. Any morphism ϕ in Δ admits
the unique factorization ψ◦τk, where ψ is a morphism
in ∆, and k ∈ Z.

Hence, the category Δ is a realization of Loday’s
crossed simplicial group ∆Z with Aut∆Z(∆n) ' Z.

The crossed simplicial group ∆G is an extension
of the category ∆ by automorphism groups Gn =
Aut∆G([n]). The famous cyclic category Λ is a factor-
category of Δ by relations τn+1 = 1 for τ : ∆n → ∆n

A geometric realization of the corresponding sim-
plicial set is |∆Z| = R. This is related to the Poincare
construction of real numbers via slopes.

Let ∆n,m be the set of morphisms (preserving the
order and the translation)

x : ∆m → ∆n, i 7→ xi,

equipped with pointwise order and translation struc-
ture

x[n]i = xn+i.

Such morphism is determined by its segment
(x0, ..., xm) ∈ Zm+1. Thus, ∆n,m can be identified
with a subposet in Zm+1 determined by the condi-
tions

x0 6 x1 6 · · · 6 xm 6 x0 + n+ 1

with the translation

(x0, x1, · · · , xm) 7→ (x1, · · · , xm, x0 + n+ 1).

One can identify ∆n with ∆n,0.

The interior ∆
◦
n,m is a subset of strictly monotone

maps x : ∆m → ∆n, i.e.,

x0 < x1 < · · · < xm < x0 + n+ 1.

A geometric simplex ∆n is the intersection of a hy-
perplane z0 + ... + zn = m + 1 in Rn+1 with an or-
thant zi > 0, 0 6 i 6 n + 1. We index the basis
vectors ei of Rn+1 by elements i ∈ Zn+1. Denote, by
k ∈ Zn+1, the remainder of k ∈ Z. Then, to each
x ∈ ∆

◦
n,m, one can assign a vertex of the hypersim-

plex
∑
i∈[m] exi

∈ ∆n,m.

5.2. Distinguished (n, m)-triangles

Let T be a category with zero object and translation
structure. An (n,m)-triangle in T is a translation
preserving the functor

F : ∆n,m → T

such that F (x) = 0 for x ∈ ∂∆n,m = ∆n,m\∆
◦
n,m.De-

note, by Trin,m(T ), the category of (n,m)-triangles.
Let Δm be a category with objects ∆n,m for n > 0,

and let the morphisms be generated by
(i) postcompositions with morphism in Δ,
(ii) precompositions with τk : ∆m → ∆m, k ∈ Z.
Let q be the primitive (m+ 1)-th root of unity.
The categories of triangles form Cat-presheave

on Δm:

Δ
op

m → Cat, ∆n,m 7→ Trin,m(T ).

For h : ∆n,m → ∆n′,m, the inverse image functor

h∗ : Trin′,m(T )→ Trin,m(T )

is a precomposition with h and with a translation
“twisted” by q.

We consider the following q-analog of Maltsiniotis’
axioms for a family of distinguished triangles

Tri
X

n,m(T ) ↪→ Trin,m(T ), n > 0:
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TR0: Every Tri
X

n,m(T ) is a replete subcategory in
Trin,m(T ).

TR3 (coherence): For each morphism h in Δm,
the inverse image of the distinguished triangle is a
distinguished triangle. In other words, we have a sub-
presheave of distinguished triangles.

TR1-2: The restriction of a triangle to the base is
a full functor.

We recall ([6]) that a morphism of N -complexes
f : X → Y is null-homotopic if it lies in the image of
the operator dN−1 in Hom(X,Y ).

Theorem 5.2. The category KN,q(A) of N -
complexes up-to-homotopy admits a family of distin-
guished triangles satisfying the above axioms.

A q-analog of the cone construction C = C(A), for
x : N → ∆n in Δ and for a translation preserving
A : N→ T , is as follows:

Cx =
⊕
i∈N

Axi [N−i−1], dx,ij =


0, xi > xj ,

qxidxi
, xi = xj ,

axixj
, xi < xj .

This paper is an extended version of the talk at
the Conference “Quantum groups and quantum inte-
grable systems”, June 18–21, 2013, Kyiv, Ukraine.
We would like to thank the organizers and the partic-
ipants of this conference. The commutative diagrams
in this paper are typeset with the diagram package cre-
ated by Paul Taylor. The author is partially supported
by the grant SFFR No. 54.1/019.

1. R. Hortsch, I. Kriz, and A. Pultr, J. of Algebra 324, 1731
(2010).

2. Yu. Bespalov, V.V. Lyubashenko, and O. Manzyuk, Pretri-
angulated A∞-Categories (Institute of Mathematics of the
NAS of Ukraine, Kyiv, 2008).

3. S. Forcey, J. Siehler, and S. Sowers, J. of Homotopy and
Rel. Str. 2, 1 (2007).

4. Y. Bespalov and B. Drabant, in Quantum Groups and
Quantum Spaces, edited by W. Pusz, R. Budzyński, and
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Ю.М. Беспалов

ВIД БIАЛГЕБР ДО ОПЕРАД.
КВАНТОВА ПРЯМА ТА КООПЕРАДА
КОРЕЛЯЦIЙНИХ ФУНКЦIЙ

Р е з ю м е

q-пряма – простий приклад заплетеної алгебри Гопфа. Це
алгебра полiномiв kq [z] з примiтивним генератором та q-де-
формованою статистикою.

(Ко)дiя q-прямої на алгебрi – це q-диференцiювання. Ми
будуємо операду та коопераду на основi бiалгебри. У випад-
ку q-прямої ця конструкцiя пов’язана з кооперадою кореля-
цiйних функцiй I. Крiза та спiвавторiв, яка описує вертекснi
алгебри.

Модулi над фактор-алгеброю kq [z]/(zN ) – це N -ком-
плекси. Ми розглядаємо гомотопiчну категорiю N -компле-
ксiв як приклад q-аналога сильно триангульованої категорiї
Мальцiнiотiса.

Загальнi конструкцiї розглядаються в контекстi iтерова-
них моноiдальних категорiй з розслабленими тензорними
добутками, що описуються в термiнах тензорного добутку
Грея категорних операд Tree дерев з рiвнем.
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