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A new version of the q-deformed supersymmetric quantum mechanics (q-SQM), which is in-
spired by the Tamm–Dankoff-type (TD-type) deformation of quantum harmonic oscillator, is
constructed. The obtained algebra of q-SQM is similar to that in Spiridonov’s approach. How-
ever, within our version of q-SQM, the ground state found explicitly in the special case of
superpotential yielding q-superoscillator turns out to be non-Gaussian and takes the form of
special (TD-type) q-deformed Gaussian.

K e yw o r d s: supersymmetric quantum mechanics, q-deformation, scaling operator, q-super-
oscillator, ground state, q-Gaussian.

Combining the basic ideas of supersymmetry as in-
corporated in supersymmetric quantum mechanics or
SQM (here, in one dimension), on the one hand,
and a q-deformation that has become very popular
after the discovery of quantum algebras and espe-
cially their Schwinger-type realization through the q-
deformed oscillator algebra of Biedenharn and Mac-
farlane [1, 2], on the other hand, is important and
potentially of much interest. Along this root, Spiri-
donov in Ref. [3] has proposed some rather general
deformation of the supersymmetric (SUSY) quantum
mechanics [4, 5] on the Hilbert space H of square
integrable functions. As a result of the explicit def-
inition of factorization operators realized in H, (at
least) two new features appeared. First, the famil-
iar SUSY algebra became a q-SUSY algebra, i.e.,
a q-deformed extension of the SUSY algebra. Sec-
ond, due to a q-deformation of the SUSY algebra,
the conventional degeneracy of the familiar SQM gets
lifted. Namely, the whole spectrum of H+, the sec-
ond of superpartner Hamiltonians, results from that
of the first superpartner Hamiltonian H− (save its
lowest state) merely by a definite scaling applied to
its spectrum.

Here, we present a new version of the q-deformed
supersymmetric quantum mechanics (q-SQM). Its
construction is inspired by the TD-type q-deformed
oscillator, which was introduced in [6, 7] and whose
unusual properties were studied in [8]. The scaling
operator Tq is an important ingredient of our model.
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It is worth to note that Tq appeared in Spiridonov’s
version of q-SQM in such special way that it drops
from the bilinears AA† and A†A of raising/lowering
operators. Unlike, in our version of q-SQM, the scal-
ing operator Tq is present, besides the q-supercharges,
also both in AA†, A†A and in the q-SUSY Hamilto-
nian. An important property of our approach is that
this formulation naturally leads to a non-Gaussian
ground state when the superpotential is chosen as
that corresponding to the q-superoscillator.

Similarly to [3], we define the q-SUSY algebra and
provide its explicit realization on the Hilbert space of
square integrable functions. Is should be noted that,
when a q-deformation is implanted in the SUSY quan-
tum mechanics, there is no degeneracy (natural in
standard SUSY models) anymore, both in our version
and in previous Spiridonov’s one. What concerns the
latter one, however, we should stress that while one
sequence of eigenvalues (corresponding to H−) is in
fact undeformed and coincides with the case of unde-
formed superoscillator, the second one (corresponding
toH+) deforms in such way that all its eigenvalues re-
sult from respective non-deformed eigenvalues of H−
by a uniform q2-scaling.

The raising and lowering operators in [3] entering
the definition of supercharges as mentioned therein,
to generate the q-oscillator algebra of Biedenharn and
Macfarlane. The corresponding operators in our ver-
sion of q-SQM obey a much more involved deformed
oscillator algebra than that of Biedenharn and Mac-
farlane (and hardly known explicitly before). More-
over, we think the model given in [3] implies a more
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complicated (than BM case) q-oscillator algebra as
well, while of course different from ours.

1. SUSYQM (SQM) and Spiridonov’s
version of q-deformed SQM

1.1. N = 2 supersymmetric
quantum mechanics

N = 2 SQM is defined by the superalgebra
{Q,Q†} = H, Q2 = (Q†)2 = 0,
[H,Q] = [Q†, H] = 0

(1)

with the energy of (nondegenerate in case of exact
SUSY) ground state Evac ≥ 0 and twofold degener-
ate spectrum of excited states. The supercharges are
conserved, as implied by their commuting with the
Hamiltonian. Throughout the paper, it is understood
that p̂ ≡ P = 1

i
d
dx .

Recall that the standard representation of SQM is

Q =
(

0 0
A† 0

)
, Q† =

(
0 A
0 0

)
,

A =
p̂− iW (x)√

2
, [x̂, p̂] = i,

H =
(
H+ 0
0 H−

)
=
(
AA† 0

0 A†A

)
=

=
1
2
(
p̂2 +W 2(x) +W ′(x)σ3

)
,

W ′(x) ≡ d
dx
W (x), σ3 =

(
1 0
0 −1

)
.

The superpartner HamiltoniansH± are isospectral,
which follows from the intertwining relations
A†H+ = H−A

†, H+A = AH−. (2)

The choice W (x) = x corresponds to the harmonic
oscillator problem with standard bosonic algebra
[a, a†] = 1, [N̂ , a†] = a†, [N̂ , a] = −a. (3)

1.2. Properties of q-scaling operator

Here and in our main exposition below, we will use
like in [3] an important tool of deformed SQM, namely
the q-scaling operator Tq. Though its presence in our
resulting formulas will be somewhat unconventional,
this will cause no problems since its action on func-
tions is well defined.

So, the q-scaling operator Tq is defined on smooth
functions as
Tqf(x) = f(qx), (4)

where q ∈ R, and q ≥ 1 or 0 < q ≤ 1.

The list of its main properties reads

TqF (x)· = [TqF (x)]Tq·, Tq
d
dx

= q−1 d
dx
Tq,

TqTp = Tqp, T−1
q = Tq−1 , T1 = 1, (5)

T †q = q−1T−1
q , (T †q )† = Tq.

Note that the operator √q Tq is unitary, and the op-
erator √q Tq + 1√

qTq−1 is Hermitian.
The explicit realization of Tq as a pseudo-differen-

tial operator is

Tq =
(
elnq
)x d

dx = qx d
dx . (6)

Obviously, Tqx = qx and Tqx
m = qmxm for any inte-

ger m.

1.3. Spiridonov’s q-deformation of SQM:
defining relations

This deformation is realized by inserting Tq after the
factorization operator A

A 7→ Aq =
1√
2

(p̂− iW (x)) Tq,

A† 7→ A†q =
q−1

√
2
T−1

q (p̂+ iW (x)).
(7)

From their products (index q is dropped here and
below)

AA† =
q−1

2
(
p̂2 +W 2(x) +W ′(x)

)
, (8)

A†A =
q

2
(
p̂2 + q−2W 2(q−1x)

)
− q−1W ′(q−1x)), (9)

one can get the q-deformed Hamiltonian and super-
charges as

H =
(
H+ 0
0 H−

)
≡
(
qAA† 0

0 q−1A†A

)
,

Q =
(

0 0
A† 0

)
, Q† =

(
0 A
0 0

)
.

(10)

1.4. Spiridonov’s q-deformation of SQM:
algebra of q-supersymmetry

The above operators satisfy the q-deformed N = 2
SUSY algebra

{Q†, Q}q = H, {Q,Q}q = {Q†, Q†}q = 0,
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[H,Q]q = [Q†, H]q = 0, (11)

where the commutators and anticommutators are
now replaced by the corresponding q-brackets:

[X,Y ]q ≡ qXY − q−1Y X, [Y,X]q = −[X,Y ]q−1 ,

{X,Y }q ≡ qXY + q−1Y X, {Y,X}q = {X,Y }q−1 .

As we see, the supercharges are not conserved.
The intertwining relations for the HamiltoniansH±

encoded in (11) obviously change:

A†H+ = q2H−A
†, H+A = q2AH−. (12)

This implies that H− and H+ (without the lowest
state of H−) are not isospectral to each other, but
rather q-isospectral: the spectrum of H+ results from
the spectrum of H− (without its lowest state) by ap-
plying the uniform q2-scaling, that is,

H+ ψ
(+) = E(+)ψ(+), H− ψ

(−) = E(−)ψ(−),

E(+) = q2E(−), ψ(+) ∝ Aψ(−), ψ(−) ∝ A†ψ(+).

Special case of q-supersymmetric oscillator

Consider the simplest physical example of a q-super-
oscillator, for which the superpotential is W (x) = −x
(or W (x) = x). In that case, we have

AA† =
q−1

2
(p̂2+x2−1), A†A =

q

2
(p̂2+q−4x2+q−2),

that yields the anticommutator and the commutator

{A,A†} =
q−1

2

(
(1 + q2)p̂2 + (1 + q−2)x2

)
,

[A,A†] =
q−1

2

(
(1− q2)p̂2 + (1− q−2)x2 − 2

)
,

along with such versions of q-commutators:

AA†−qA†A =
1
2

(
(q−1−q2)p̂2+(q−1−q−2)x2−q−1−1

)
,

qAA† −A†A =
1
2

(
(1− q)p̂2 + (1− q−3)x2 − q−1 − 1

)
,

qAA† − q−1A†A =
1 + q−2

2

(
(1− q−2)x2 − 1

)
,

q−1AA† − qA†A =
1
2

(
(q−2 − q2)p̂2 − q−2 − 1

)
.

The Hamiltonian of this q-superoscillator takes the
form (with I2 being a 2×2 unit matrix)

4H =
[
2p̂2 +

(
1 + q−4

)
x2 + 1− q−2

]
I2+

+
[(

1− q−4
)
x2 + 1 + q−2

]
σ3. (13)

It describes a spin-1/2 particle in the harmonic po-
tential and with transverse magnetic field.

Remark. It is important to note that the spec-
trum (it is obviously equidistant) of the superpartner
Hamiltonian H− coincides, up to an overall multi-
plier q−1, with that of the corresponding superpart-
ner Hamiltonian in the usual (non-deformed) SUSY
quantum mechanics (see, e.g., [5]).

Let us comment on the physical meaning of the de-
formation parameter q: it plays a role of some addi-
tional interaction constant. Note also that this model
possesses the exact q-deformed SUSY. As mentioned
in [3], for the value of q2 being a simple rational num-
ber, the spectrum of the q-superoscillator shows an
accidental degeneracy.

2. New version of q-SQM inspired
by the Tamm–Dankoff deformation

2.1. Tamm–Dankoff (TD) deformed oscillator

The “Tamm–Dankoff cutoff” deformed oscillator is
given in terms of a q-bracket of the TD type:

N̂ 7→ {N̂}q ≡ N̂qN̂−1, {N̂}q
q→1−→ N,

a†a = {N̂}q, aa† = {N̂ + 1}q,

with the algebra (denote a ≡ a− and a† ≡ a+)

aa† − qa†a = qN̂ ,
[
N̂ , a±

]
= ±a±, (14)

N̂ being the number operator, and the Hamiltonian

Hoscil. =
1
2
(
{N}q + {N + 1}q

)
.

The energy spectrum of this TD-type q-deformed os-
cillator,

En =
1
2
(
nqn−1 + (n+ 1)qn

)
,

is very special. As noticed in [8], the TD-type q-
deformed oscillator shows various patterns of the
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accidental pairwise energy level degeneracy, always
within a definite single pair of levels.

Below, we will study the q-deformation of SUSY
QM in the spirit of the TD-type q-deformation,

N̂ 7→ N̂qN̂−1 ⇐⇒ p̂ 7→ q−1p̂ Tq, (15)

that is, we will merely adopt the replacement of the
momentum operator just as it is indicated here.

2.2. Tamm–Dankoff type q-deformed SQM

We start by introducing a q-deformation in the mo-
mentum part of undeformed factorization operators
A and A†:

A 7→ B =
1√
2

(Tq p̂− iW (x)),

A† 7→ B† =
1√
2

(
q−1p̂T−1

q + iW (x)
)
.

(16)

Then,

BB† =
1
2q

(q−2p̂2 + qW 2(x) +W ′(qx)Tq +

+ iW (qx)p̂Tq − iW (x)p̂T−1
q ), (17)

B†B =
1
2q

(p̂2 + qW 2(x)−W ′(q−1x)T−1
q +

+ iW (x)p̂Tq − iW (q−1x)p̂T−1
q ). (18)

Setting B†B ≡ H− and BB† ≡ H+ we come to the
q-deformed algebra for H,Q,Q† (see also Eq. (11)):

H =
(
H+ 0
0 H−

)
≡
(
qBB† 0

0 q−1B†B

)
,

Q =
(

0 0
B† 0

)
, Q† =

(
0 B
0 0

)
;

{Q†, Q}q = H, {Q,Q}q = {Q†, Q†}q = 0,

[H,Q]q = [Q†, H]q = 0.

As seen, the supercharges in our model are not con-
served as well.

2.3. Tamm–Dankoff type deformation:
q-deformed supersymmetric oscillator

We consider a q-supersymmetric oscillator with the
superpotential W (x) = −x. In this case,

B=
1√
2

(Tq p̂−iX)), B†=
1√
2

(
q−1p̂T−1

q +iX
)
, (19)

where X ≡ x·. Now (16)–(17) turn into

BB† =
1
2q

(
q−2p̂2 + qX2 + qTq + iXp̂(qTq − T−1

q )
)
,

B†B =
1
2q

(
p̂2 + qX2− q−1T−1

q + iXp̂(Tq− q−1T−1
q )
)
.

From these, different versions of the permutation re-
lation involving different (q-)commutators result:

BB† −B†B =
1
2q

(
(q−2 − 1)p̂2+

+ iXp̂(1− q−1)(qTq − T−1
q ) + qTq + q−1T−1

q

)
,

qBB† − q−1B†B =
1
2q

(
(q2 − 1)X2+

+ iXp̂(q − q−2)(qTq − T−1
q ) + q2Tq + q−2T−1

q

)
,

BB† − qB†B =
1
2q

(
(q − q2)X2+

+ (q−2 − q)p̂2 + +qTq + T−1
q

)
,

qBB† −B†B =
1
2q

(
(q−1 − 1)p̂2 + (q2 − q)X2+

+ iXp̂(q − q−1)(qTq − T−1
q ) + (q2Tq + q−1T−1

q )
)
.

Here we observe the following:
– if we use a usual commutator, the dependence on

X2 drops on the r.h.s.;
– if we use the q-commutator qAB − q−1BA, the

dependence on p̂2 drops on the r.h.s.;
– if we use the q-commutator AB−qBA, the terms

with iXp̂ cancel out.
As a check of consistency, we verify: in the limit
q → 1, each of these relations turns into the stan-
dard commutation relation [B,B†] = 1 for the boson
operators B and B†.
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2.4. TD-type deformation:
relation with deformed Heisenberg algebra

We wish to find explicitly the relation of our deformed
oscillator algebra with some version of the deformed
Heisenberg algebra, say along the lines described in
[12]. For this, we solve Eq. (19) for X and P in terms
of the operators B, B† (and also Tq, Tq−1):

P = q
√

2

(
B

Tq

1 + Tq2
+B†

T−1
q

1 + Tq−2

)
=

= q
√

2(B +B†)
1

Tq + Tq−1
, (20)

X = i
√

2
(
B

1
1 + Tq2

−B† 1
1 + Tq−2

)
=

= i
√

2(BTq−1 −B†Tq)
1

Tq + Tq−1
. (21)

To check once more the Hermiticity of X, it is better
to use another formula for X stemming from (19):

X =
√

2
2i

(B† −B) +
q−1

2i
P (Tq − Tq−1). (22)

Now the Hermiticity follows from the skew-
Hermiticity of B† − B and skew-Hermiticity of the
product operator P (Tq − Tq−1). Likewise, the Her-
miticity of P stems, see (20), from that of B + B†

and the fact that the product P (Tq +Tq−1) is Hermi-
tian.

The operators P and X can be expressed through
q- or q−1-commutators of the operators B and T−1

q

as follows:

P =
√

2
q−1 − q

[B, T−1
q ]q, X =

i
√

2
q − q−1

Tq[B, T−1
q ]q−1 ,

where [A,B]q ≡ AB − qBA. With the equality
[A,B]qA−1 = A[B,A−1]q taken into account, we have
yet another formulas for X:

X =
i
√

2
q − q−1

[Tq, B]q−1T−1
q =

i
√

2
1− q2

Tq[T−1
q , B]q =

=
i
√

2
1− q2

[B, Tq]qT−1
q .

From these expressions after some algebra, we obtain
(note that [X,P ] = i) is intact:

i = XP−PX =
2i

(q − q−1)2
(
T−1

q [Tq, B]q[B, T−1
q ]q−1−

−Tq[B, T−1
q ]q−1 [B, T−1

q ]q
)
.

That implies the validity of two identities:

T−1
q [Tq, B]q[B, T−1

q ]q−1 − Tq[B, T−1
q ]q−1 [B, T−1

q ]q =

= (q − q−1)2/2,

Tq[T−1
q , B]q[B, T−1

q ]q − T−1
q [Tq, B]q[T−1

q , B]q =

= q(q − q−1)2/2.

On the other hand, we can deduce a q-deformed ex-
tension of Heisenberg algebra for the pair of operators
X and P̃ = TqP = q−1PTq, which is

[X, P̃ ] = q−1
(
iTq + (1− q)P̃X

)
. (23)

If we compare (23) with the known deformations of
the Heisenberg algebra, e.g., those from [9], we notice
the presence of a q-scaling operator Tq times iq−1 and
of the bilinear P̃X multiplied by 1− q.

Written through the q-commutator, it takes an-
other simpler though equivalent form

XP̃ − 1
q
P̃X =

i
q
Tq. (24)

Clearly, in the limit q → 1, the r.h.s. of both (23)
and (24) turns into familiar “ i”.

2.5. Ground state
of TD-type q-superoscillator

Let us find the ground state (zero mode) for the lad-
der operators B and B†, namely,{
Bf(x) = 0
B†f̃(x)=0

⇒

{
Tqf

′(x) + xf(x) = 0,
q−2Tq−1 f̃ ′(x)−xf̃(x) = 0;

(25)
f(x) =

∞∑
k=0

Ckx
k,

f̃(x) =
∞∑

k=0

C̃kx
k.

(26)

These turn into recurrence relations for the expansion
coefficients
f(x) :

{
Ck + (k + 2)qk+1Ck+2 = 0,
C1 = 0,

f̃(x) :

{
−C̃k + (k + 2)q−k−3C̃k+2 = 0,
C̃1 = 0.

(27)
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These can be solved (e.g., by using Mathematica),
that gives
f(x) = C0

∞∑
k=0

q−k2

k!

(
−x2

2

)k

f̃(x) = C̃0

∞∑
k=0

qk(k+2)

k!

(
x2

2

)k
q→1−−−→

{
f(x) = e−

x2
2 ,

f̃(x) = e
x2
2 .

(28)

Here, C0 and C̃0 are arbitrary constants depending
on the deformation parameter q, with the obvious
property {C0, C̃0}

q→1−−−→ 1 in order to recover the un-
deformed case. From these two functions, only f(x)
at q → 1 recovers the ground state of standard super-
symmetric oscillator. Moreover, the function f̃(x) in
(28) is not square integrable. Thus, we find

ψ0 = C0

∞∑
k=0

q−k2

k!

(
−x

2

2

)k
. (29)

We have obtained the unique, i.e. non-degenerate,
ground state as the (non-Gaussian) eigenfunction of
B− and hence of H−. Below, it will be shown that
this non-Gaussian wave function naturally takes the
form of a specially introduced TD-type q-deformed
Gaussian exponent.

2.6. Elements of TD-analysis

We will need some more elements of TD-analysis.
First, let us introduce the q-number of the Tamm–
Dankoff type

(n]q ≡ nq
n−1. (30)

This form can be easily obtained from the (p, q)-
number [n]p,q = pn−qn

p−q by taking the limit p→ q.
The TD-factorial is given as

(n]q! = (1]q(2]q ... (n]q = qn(n−1)/2n!,

(0]q! = 0! = 1, (1]q! = 1! = 1.
(31)

Remembering that qz d
dz f(z) = f(qz), one can intro-

duce the TD-derivative

zD(TD)
z ≡ z d

dz
qz d

dz−1, (32)

which acts on monomials as

D(TD)
z zn = (n]qzn−1. (33)

From these definitions, it is natural to introduce the
TD-exponent

exp(TD)
q (z) ≡

∞∑
n=0

zn

(n]!
=
∞∑

n=0

q−n(n−1)/2

n!
zn, (34)

with the property

D(TD)
z exp(TD)

q (αz) = α exp(TD)
q (αz). (35)

In the q→1 (no-deformation) limit: e(TD)
q (z)

q→1−−−→ez,

D(TD)
z

q→1−−−→ d
dz .

The ground state ψ0 has a natural record in terms
of the TD-exponent

ψ0(z) = C0 exp(TD)
q2

(
−1

2
q−1z2

)
. (36)

In the limit q→1, we have ψ0(z)→ C0 exp (− z2

2 ).

2.7. Relation to bibasic
and twin-basic hypergeometric functions

First, let us recall the (p, q)-exponent

expp,q(z) =
∞∑

n=0

zn

[n]p,q!
, (37)

where [n]p,q! = [1]p,q[2]p,q...[n]p,q, and the (p, q)-
number was given after Eq. (30). The TD-exponent
can be recovered from (37) in the p → q limit.
The family of the so-called twin-basic hypergeometric
functions is given as

rΦs({a, b}; {c, d}; (p, q); z) ≡

≡
∞∑

n=0

((a1, b1), (a2, b2), ..., (ar, br); (p, q))n

((c1, d1), (c2, d2), ..., (cs, ds); (p, q))n

×

×

[
(−1)n (q/p)n(n−1)/2

]1+s−r

((p, q); (p, q))n

zn, (38)

where we introduced the shorthand notations

{a, b} .= ((a1, b1), (a2, b2), ..., (ar, br))
((a1, b1), (a2, b2), ..., (ar, br); (p, q))n

.=
.= ((a1, b1); (p, q))n ((a2, b2); (p, q))n ...
... ((ar, br); (p, q))n,

((a, b); (p, q))n
.= (a− b)(ap− bq)(ap2 − bq2)...

...(apn−1 − bqn−1), ((a, b); (p, q))0 = 1.
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Some special cases are:

((0, b); (p, q))n = (−b)nqn(n−1)/2, (39)

((a, 0); (p, q))n = anpn(n−1)/2, (40)

((a, b); (q, q))n = (a− b)nqn(n−1)/2, (41)
((a, a); (p, q))n = 0, (42)
((p, q); (p, q))n = (p− q)n[n]p,q, (43)(
(q−1, q); (q−1, q)

)
n

=
(
q − q−1

)n
[n]q!. (44)

The requirement of convergence of (38) implies that
|q/p| < 1 and also |z| < 1. Now, we establish the re-
lation between different deformed exponents and the
twin-basic hypergeometric function 1Φ1, namely,

expp,q(z) = 1Φ1((1, 0); (0, 1); (p, q); (p− q)z), (45)

expq(z) = 1Φ1((1, 0); (0, 1); (q−1, q); (q−1 − q)z), (46)

exp(TD)
q (z) = lim

p→q
1Φ1((1, 0); (0, 1); (p, q); (p− q)z).

(47)

That is, when the limit on the r.h.s. of (47) is
performed, we obtain nothing but the TD-type q-
exponent from (36).

On the other hand, the TD-exponent can be ex-
pressed as some special case of bibasic hypergeomet-
ric functions (see, e.g., [10, 11]):

r,r′Fs,s′(a, c; b, d; (p, q); z) ≡

≡
∞∑

n=0

(a1, a2, ..., ar; p)n(c1, c2, ..., cr′ ; q)n

(b1, b2, ..., bs; p)n(d1, d2, ..., ds′ ; q)n (q; q)n
×

×
[
(−1)npn(n−1)/2

]1+s−r [
(−1)nqn(n−1)/2

]s′−r′

zn.

(48)

Here a = (a1, a2, ..., ar) and (a1, a2, ..., ar; p)n ≡
≡(a1; p)n(a2; p)n ... (ar; p)n; and (a; q)n≡

(a;q)∞
(aqn;q)∞

are
the q-Pochhammer symbols. Then we have

exp(TD)
q (z) ≡ lim

p→1
0,0F0,1(−,−;−, 0; p, q−1; (1−p)z),

(49)

where it is taken into account that (p,p)n

(1−p)n

p→1−−−→n!.
Now it is clear that, using (49), our ground-state wave
function ψ0 in (36) can be presented as a particular
(limit of) bibasic hypergeometric function.

3. Concluding Remarks

In this work, we have presented a new version of the
q-deformed supersymmetric quantum mechanics and
a new q-deformed superoscillator. Our way of defor-
mation is rooted in the special Tamm–Dankoff-type
deformation of quantum harmonic oscillator. Though
our main defining relation differs from Spiridonov’s
variant of q-SQM only slightly at first sight (com-
pare (7) and (16)), the consequences are more prin-
cipal. The basic distinction lies in the presence, in
our case, of the scaling operator Tq (or Tq−1) in
all subsequent formulas: for bilinears BB†, B†B,
q-supercharges, and q-super-Hamiltonian, while the
analogous operators do not involve Tq in Spiridonov’s
version (only traces of its action can be seen in these
operators). The second important distinction con-
cerns the ground states in the two versions: it is a
usual Gaussian for the superpotential W (x) = −x
of a superoscillator in Spiridonov’s case, and the
special TD type of a q-Gaussian in our paper, see
(36)–(37) above.

At last, let us make three final remarks:
– In the version of q-SQM presented above, the

q-SUSY algebra is exact, as seen from the relations
at the end of subsection 2.2, and there is exactly one
state with the lowest (zero) energy. However, the two-
fold degeneracies of exited states of standard SUSY
models are lifted. Moreover, the whole set of (q-
dependent) eigenvalues of the q-superpartner Hamil-
tonian H+ is obtained from the set of q-superpartner
Hamiltonian H− eigenvalues (other than zero and as
well q-dependent) merely by the q2-scaling.

– The particular W (x) = ±x case of a q-deformed
superoscillator was considered, and the ground state
is found and expressed through the p → q limit of
the bibasic p, q-hypergeometric function, or through
the appropriate limit of the twin-basic hypergeomet-
ric function.

– A complete system of eigenfunctions for the ex-
cited states of such a q-superoscillator yet remains to
be found, and it is an exciting problem!

– A very interesting question is, of course, about
a possible relation(s), if any, to the recently devel-
oped nonlinear extensions of supersymmetric Quan-
tum Mechanics, see, e.g., [9].
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О.М. Гаврилик, I.I. Качурик, О.В. Лукаш

НОВА ВЕРСIЯ Q-ДЕФОРМОВАНОЇ
СУПЕРСИМЕТРИЧНОЇ КВАНТОВОЇ МЕХАНIКИ

Р е з ю м е

Запропонована нова версiя q-деформованої суперсиме-
тричної квантової механiки (q-СКМ), iнспiрована q-
деформацiєю квантового гармонiчного осцилятора у формi
Тама–Данкова. Отримано алгебру q-СКМ, яка за виглядом
подiбна до отриманої у пiдходi Спiрiдонова. Однак, у рам-
ках нашої версiї q-СКМ, найнижчий стан для часткового
випадку суперпотенцiалу, що вiдповiдає q-суперосцилятору,
знайдено явно – вiн вiдмiнний вiд гаусiана, i має вигляд спе-
цiальної (типу Тама–Данкова) q-деформацiї гаусової експо-
ненти. Встановлено зв’язок останньої з частковими випад-
ками (границями) бiбазисної, а також i твiн-базисної уза-
гальнених гiпергеометричних функцiй.
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