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A chain of N identical two-level atoms coupled with the electromagnetic field, prepared via a
single-photon Fock state, is investigated. It is found that, if the interaction between atoms
is negligible, than the obtained dynamic equations for the probability amplitudes allow, in a
certain sense, an interpretation of the dynamics of states in the classical fashion in terms of
a superposition of oscillatory modes of the system under study. The derived equations reveal
how a space configuration of the system of atoms affects the dynamics of the atomic states,
particularly the “decay” rates of separate atoms and the system as the whole.
K e yw o r d s: one-photon scattering, atomic system, Fock state, Schrödinger equation.

1. Introduction

The collective radiative effects in an atomic system
were under intense investigation since the 1950th.
Taking the quantization of an electromagnetic field
into account, many fundamental and interesting
properties of the coupled systems of atoms and a field
were revealed in numerous theoretical and experimen-
tal works. For example, the collective spontaneous
emission from a cloud of N atoms was discovered in
[1]. It was shown that if the excited atoms are placed
in a volume so that the average distances between
atoms are less than the “resonant transition” wave-
length of emitted light (the so-called superradiance),
than the system can irradiate into the field signif-
icantly faster than an isolated atom. The existing
correlations between atoms at such distances causes
the coherent atomic transitions. The latter is the rea-
son for the emitted light intensity to be proportional
to N2 (the so-called superradiation). As a result, the
system radiates “its energy N times faster than a sin-
gle atom” (see, e.g., [2]). Such property in some sense
is the basis for an alternative to lasers’ applications.
This particular behavior at the spontaneous emission
is inherent to the system even if only one atom or one
photon state is excited initially in the “atomic cloud-
field” system (see, e.g., [3]). Under some conditions,
besides the mentioned collective effects, the atomic
system can slow down the re-emission as a whole that
was explained by the multiphoton exchange mecha-
nism (virtual effects in [4]). A possible application of
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the specifically prepared atomic states is, for exam-
ple, the optical quantum-state storage (see [5]).

In the present paper, we study the system of
N identical two-level noninteracting atoms coupled
with the electromagnetic field initially prepared in a
single-photon Fock state. The main goal of the pa-
per is to obtain the information about the tempo-
ral behavior of the states of the electromagnetic field
and atoms.

The results of our work differ from those in works
[6, 7], and [8], where the photon scattering by a large
spatially homogeneous system with uniform spatial
atomic density coupled to the continuum of modes
of a quantized electromagnetic field was discussed.
In contrast to those papers, we consider a resonator
that limits the number of allowed modes in a de-
fined direction. But, the suggested here model of
decay for system’s states is also associated with the
conventional method of transition to the continuous
set of modes of the quantized electromagnetic field
in all “other available” (also continuous) directions.
At that point, we will demonstrate the some dif-
ficulties related to applying the certain approxima-
tions. Particularly, we will show that the conven-
tional “relaxational” approximation, which is usually
associated with the “thermalization” in the atoms-
field system, cannot be directly derived in doing
the transition to the continuum. So, the question
about the mechanism of state decay remains open.
For instance, it can happen that the system has to
be discussed as open, which results in the neces-
sity of taking a statistical distribution of the elec-
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tromagnetic modes into account. The latter can be-
come the cause of the relaxation exponential in time
(see below).

By the aid of the decay parameter D introduced
in a certain approximation in Section 4 for the ob-
tained general formalism in Section 2, we made an
attempt to reach such form of dynamic equations for
the probability amplitudes, that allows us to inter-
pret the system of equations obtained Section 3 in
the classical fashion as that describing the oscillatory
motion of a multimode system of particles.

We note here that the approaches to realistic sys-
tems, including damping effects, were discussed, for
example, by M. Lax in [9]. He presented a model
with an atoms-reservoir coupling inducing a decrease
in the population of excited atomic levels and the cor-
responding field states. As is cited in [10], the model
was studied by several authors, mainly by M. Lax
(see [9]). In this model, it is assumed that there is a
single important radiation field mode described by an
annihilation operator in the reservoir. It is assumed
that there are N � 1 three-level atoms described
by their own annihilation operators. These atoms
interact with the field, but not with one another.
Both the field and atoms are affected by individual
“reservoirs” simulating the effects of other radiation
modes, phonons in the cavity walls, the pump, etc.
In this model, a decrease in the population (decay)
was introduced by the specific terms corresponding
to reservoir-induced transitions. The earlier litera-
ture “pertaining to more realistic laser models” (see
[10], pp. 236-237) may also be traced from [11].

Some fundamental aspects of the decay processes of
a single atom are discussed in [12]. There, the descrip-
tion is performed in terms of the probability density
matrix for a rarefied atomic beam on the time scale
such that only one atom interacts with the cavity.
It was shown that the decay processes (atomic emis-
sion) can be due to a certain disbalance between the
populations of atoms in the excited (or ground) state
and the field Fock states. Especially, the decay con-
ditions arise in the case of a thermal non-equilibrium
distribution among the states in the cavity. In addi-
tion, the available continuous set of modes can cause
frequency shifts.

Within an application, if we consider a superradi-
ating system, the cause of the relaxation (decay) of
coherent states can, along with the thermalization of
the system states, be the Doppler broadening of the

atomic (electronic) resonant frequencies. Some exam-
ples of the real systems and the analysis of the appli-
cation of the theory to the “superradiation” effects are
presented in [13]. As a particular case, the cyclotron
waves in a plasma are described in the mentioned
work to demonstrate a possible application to the
physics of a magnetized plasma in tokamak systems.

It is worth to note that the difference between the
terminologies used in this paper and in [14] reflects
our attention to the dynamics of the system, that is an
intermediate step on the way to the kinetics. In more
details, the application of the mentioned methodology
of the exclusion of boson operators can be found in
[15]. For comparison with the results of the kinetic
method, the dynamic system of two atoms coupled
with electromagnetic field was described in [16].

2. The Equation
of Motion for the State Amplitudes

Let us consider a collection of N identical atoms
at the positions r1, r2, ..., rα, ..., rN , coupled with a
bath of electromagnetic field modes. Each atom α =
= 1, ..., N is assumed to have only two states |a〉α and
|b〉α separated by the energy Eα = Eaα − Ebα = ~ω.
Using the dipole approximation, one can write the
following Hamiltonian (relative to the ground-point
atom energy and field energy):

H = H0 +Hint = ~ω
N∑
α=1

σ†ασα+

+
2∑
j=1

∑
k

~νkâ†k,j âk,j −
N∑
α=1

p̂αÊ(rα), (1)

where H0 is the Hamiltonian of free atoms and the
free electromagnetic field, H... describes the inter-
action of the atoms with the electromagnetic field;
σα ≡ |b〉α〈a|α is the lowering operator for the atom
α, and Ê(rα) is the electric field operator evaluated
at the position rα of the atom α; p̂α is the tran-
sition dipole moment operator for the atom α; â†k,j
and âk,j are, respectively, the photon creation and
annihilation operators for the mode k, j, where the
index j = 1, 2 defines the polarization plane.

In the interaction representation, the Schrödinger
equation (with ~ = 1) is

i~
∂

∂t
Ψ = V̂intΨ (2)
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with the corresponding Hamiltonian V̂int that de-
scribes the interaction of the atoms with photons in
the dipole approximation,

V̂int = −~
∑
k,j

N∑
α=1

[
gα(k, j)σ̂αâ+

k,j ×

× exp
(
i(νk − ω)t− ikrα

)
+ g∗α(k, j)σ̂+

α âk,j ×

× exp
(
− i(νk − ω)t+ ikrα

)]
. (3)

where

gα(k, j) =
√

νk
2~ε0V

℘α · ek,j =

= eiφα
√

νk
2~ε0V

|℘α| cos θk,j , (4)

where φα denotes some phase, cos θk,j is the angle
between the dipole vector ℘α = e〈a|rα|b〉 and the j-th
unit polarization vector ek,j (j = 1, 2 and ek,j ·k = 0),
and V is the normalization volume.

Since, at the initial time moment t = 0, all atoms
α = 1, ..., N of the ensemble are in the ground state
|b〉α and the electromagnetic field is in the Fock state
|1k0〉 (that presents one photon with the wave vector
k0), we look for a solution of the Schrödinger equation
in the form

Ψ =
N∑
α=1

βα(t)|b1b2...aα...bN ; 0〉+

+
∑
k,j

γk,j(t)|b1b2...bN ; 1k,j〉 (5)

with the initial conditions

βα(0) = 0, γk,j(0) = δk,k0 , (6)

where δk,k0 is the Kronecker delta, δk,k0 = 1 if k =
= k0, and δk,k0 = 0 if k 6= k0, βα(t) (α = 1, ..., N)
and γk,j(t) (j = 1, 2) are the atomic α excited state
amplitude with the others in the ground states and
the excited Fock field state amplitude of the j-th po-
larization with the wave vector k, respectively.

Substituting expression (5) into the corresponding
evolution equation (2), we obtain the following equa-
tions for the coefficients βα(t) and γk(t):

β̇α(t) = i
∑
k,j

g∗α(k, j)γk,j(t) exp(−i(νk − ω)t+ ikrα),

(7)

γ̇k,j(t) = i

N∑
δ=1

gδ(k, j)βδ(t) exp(i(νk−ω)t−ikrδ). (8)

Integrating Eq. (8) over time yields

γk,j(t) = γk,j(0) +

+ i

t∫
0

dt′
N∑
δ=1

gδ(k, j)βδ(t′) exp(i(νk−ω)t′− ikrδ). (9)

Finally, by substituting expression (9) in (7), we ob-
tain

β̇α(t) = i
∑
k,j

gα(k, j)γk,j(0) exp[−i(νk−ω)t+ikrα]−

−
∑
k,j

N∑
δ=1

t∫
0

dt′g∗α(k, j)gδ(k, j)βδ(t′)×

× exp[i(νk − ω)(t′ − t) + ik(rα − rδ)]. (10)

The derived equation (10) will be analyzed in a
certain approximation in what follows.

3. Resonance Approximation

Here, we assume that the electromagnetic field can
only be in the “resonant” Fock state |1k0〉, in other
words:

γk,j(t) = 0 if νk 6= ω. (11)

So, we rewrite here the equation of motion in the
case of the resonance approximation ω = νk. Then
Eq. (10) takes the form

β̇α(t) = i
∑
j,k

gα(k, j)γk,j(0) exp(ikrα)−

−
∑

j, |k|=k0

N∑
δ=1

t∫
0

dt′g∗α(k, j)gδ(k, j)βδ(t′) exp[ik(rα−rδ)].

(12)

As the next step, we differentiate the above-
obtained equation (12) with respect to the time. As
a result, we find that the second derivative of an
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atomic state amplitude βα is expressed through a lin-
ear combination of the all atomic state amplitudes βδ,
δ = 1, ..., N , as follows:

β̈α(t) = −
∑

j, |k|=k0

N∑
δ=1

g∗α(k, j)gδ(k, j)βδ(t)×

× exp[ik(rα − rδ)] = −
N∑
δ=1

Φαδβδ(t). (13)

Thus, we have the system of simple second-order
linear differential equations with respect to the time t

d2

dt2
βα(t) = −

N∑
δ=1

βδ(t)Φαδ, (14)

where

Φαδ =
∑

j, |k|=k0

g∗α(k, j)gδ(k, j) exp[ik(rα − rδ)]. (15)

Now, we will analyze the structure of the solutions
βα(t) of the system of equations (14). For that, we
investigate the properties of the matrix Φαδ and the
structure of the parameter ω.

The following evident property for the matrix Φαδ
takes place:

Φδα =
∑

j, |k|=k0

g∗δ (k, j)gα(k, j) exp[ik(rδ−rα)] = Φ∗αδ.

(16)

So, the matrix Φδα is a Hermitian matrix. Thus, all
eigenvalues of the matrix are real. Such matrix can
be diagonalized by some unitary transformation.

If the matrix Φδα is degenerate, then we have to
take the multiple roots into account. The latter
means that the general solutions of the system of
equations (14) can contain the corresponding powers
of the time.

In the case of different eigenvalues of the matrix
(Φαδ), we find the particular solution of the system
of equations (14) in the form

βα(t) = Aα+e
−iw+t +Aα−e

−iw−t. (17)

Substituting (17) in the system of equations (14),
we obtain the system of linear algebraic equations

−w2
±Aα± +

N∑
δ=1

Φαδ Aδ± = 0; (18)

or, in a matrix form,

(−w2δαδ + Φαδ) · (Aα) = (Sαδ) · (Aα) = 0, (19)

where Sαδ = −w2δαδ + Φαδ.
It is known that a homogeneous system of equa-

tions, like (18), can has a non-trivial solutionAα± 6= 0
only if its determinant equals zero. In the introduced
notation, we have

det(Sαδ) = det(−w2δαδ + Φαδ) = 0. (20)

As follows from the above notation, we can make
a general assumption that, even in the case of a res-
onator without damping, w has real and imaginary
parts w = Re(w) + iIm(w).

From the equation of motion (14) for the ampli-
tudes βα after the substitution of a solution in the
form (18), we obtain∑
δ

(−w2δαδ + Φαδ)Aδ = 0. (21)

It follows that∑
α,δ

(−w2δαδ + Φαδ)A∗αAδ = 0. (22)

Therefore,

w2 =

∑
α,δ ΦαδA∗αAδ∑
α,δ δαδA

∗
αAδ

. (23)

It is easy to see that the expression∑
α,δ

δαδA
∗
αAδ (24)

is real. Therefore, since

ΦαδA∗αAδ+ΦδαA∗δAα=ΦαδA∗αAδ + (ΦαδA∗αAδ)
∗=

= 2Re (ΦαδA∗αAδ), (25)

the expression∑
α,δ

ΦαδA∗αAδ =
1
2

∑
α,δ

(ΦαδA∗αAδ + ΦδαAαA∗δ) =

=
∑
α,δ

Re (ΦαδA∗αAδ) (26)
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is a real quantity and the parameter w squared

w2 =

∑
α,δ

Re (ΦαδA∗αAδ)∑
α
|Aα|2

(27)

is real. Taking into account that

w2 = Re2(w)− Im2(w) + 2iRe(w)Im(w), (28)

we conclude that (27) is true (w2 is real) if Re(w) = 0
or Im(w) = 0, or Re(w) = Im(w) = 0.

It is of interest that the choice of w2 < 0 corre-
sponds formally to Re(w) = 0. Hence, we can de-
scribe the exponential decay of a “vibration” mode
contributing to the state amplitude βα(t). Here, we
should say that, from representation (17), the state
amplitude βα(t) for each α = 1, ..., N as a solution
of the system of dynamic equations (14) is a super-
position of the “vibration” modes with different wm,
where wm is the m-th root of Eq. (20). However, in
real applications described in the literature, the de-
cay of a state is still referred to an atomic state for
the α-th atom or to some linear combination of the
atomic state amplitudes. It is worth to note that the
proposed representation for the state amplitude re-
flects the space structure of the system and, thus, the
corresponding correlations between particles.

4. Model of Damping Effect

The decay effect for the state amplitudes of a sys-
tem can be taken into account in many different ways
depending on its nature (see, e.g., [10], [9]). As an
example, we describe the system of a resonator and
atoms placed into the bath of quantized modes. In
other words, the resonator “extracts” only a certain
set of modes by amplification among all the modes
(of electromagnetic field) allowed in the open system,
which are denoted by kres. Following the idea, we di-
vide the sum over all modes

∑
k,j

in Eq. (10) into two

parts
∑

k=kres,j

and
∑

k6=kres,j

corresponding to the reso-

nant modes and all non-resonant modes, respectively.
Then the total sum over k can be approximated in
the “open” space with a quite large volume V by the
integration over some distribution of modes. We have

1
V

∑
k,j

=
1
V

∑
k=kres,j

+
1
V

∑
k6=kres,j

→

→ 1
V

∑
k=kres,j

+ lim
ωM→∞

∑
j

(
1

2π c

)3 ωM∫
0

ω2dω

∫
dk̂. (29)

Then, the second term on the right-hand side of Eq.
(10) can be split into two terms, one of which corre-
sponds to the non-resonant modes.

Therefore, let us study the second term on the
right-hand side of Eq. (10) after applying the split-
ting procedure (29). First, we discuss the integral
over the non-resonant set of modes in the case of equal
atomic indices α = δ:

V
∑
j

(
1

2πc

)3 ωM∫
0

ω2dω

∫
dk̂×

×
t∫

0

dt′ |gδ (k, j)|2 βδ(t′) exp[i(ω − ωres)(t′ − t)]. (30)

In the certain approximation (e.g., in the Weisskopf–
Wigner approximation), we rewrite the last expres-
sion (30) in the form

∑
j=1,2

1
2~ε0

(
1

2πc

)3
|℘|2ω3

res

ωM∫
0

dω

∫
dk̂×

×
t∫

0

dt′ cos2 θjβδ(t′) exp[i(ω − ωres)(t′ − t)]. (31)

Here, we used the relation |k| = ωk/c and

g∗α(k, j)gα(k, j) =
ω

2~ε0V
|℘|2 cos2 θj , (32)

where θj is the angle between the atomic dipole mo-
ment ℘ and the electric field polarization vector ej ,
j = 1, 2. Note that the integration over frequencies
includes the resonant frequency in the range of inte-
gration because, as is known, a definite integral does
not depend on a value of an integrand at one point.
The explanations and comments for the approxima-
tion used here are given below in the following sub-
section.

4.1. Some remarks
about the Weisskopf–Wigner approximation

In the Weisskopf–Wigner approximation (see [8], pp.
206–209), we replace ω3 in the integrand of expression
(30) by ω3

res and the lower limit of the integration over
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the frequency ω by −∞. Then, after the integration
over the spatial angle dk in the equation, we repre-
sent the integral over frequency by the delta-function
to express the approximation for a quite long time
intervals:
∞∫
−∞

dω exp[i(ω − ωres)(t′ − t)] = 2πδ (t′ − t) . (33)

Usually, this approach is argued by the the fact that
(see [8], p. 207), “in the emission spectrum, the in-
tensity of light associated with the emitted radiation
is going to be centered about the atomic transition
frequency ωres.” Respectively, the quantity ω3 varies
slightly around the resonance frequency (here, ω3

res)
during the quite long time interval.

At the same time, the integration in expression (31)
over frequencies (and over spatial angles in the case
where rα = rδ in Eq. (10)) without imposing any
additional conditions such like that mentioned above
does not reveal any delta-functional properties for the
following time integration:

lim
ωM→∞

ωM∫
0

ω3 exp[iω(t′ − t)]dω = lim
ωM→∞

1
i(t′ − t)

×

×
[
ω3
M exp[iωM (t′ − t)]− 3

1
i(t′ − t)

×

×
{
ω2
M exp[iωM (t′−t)]− 2

i(t′ − t)
ωM exp[iωM (t′−t)] +

+2
(

1− cos (ωM (t′− t))
(t′− t)2

− i sin (ωM (t′− t))
(t′− t)2

)}]
. (34)

We see that the integral also yields terms that can be
responsible for a shift of the resonant frequency ω0,
at which the atomic-field transitions can occur (see,
for comparison, [12]).

Some redemption from the analytic difficulties
could be made, by assuming that the coefficients
gα(k, j) are distributed in space over a volume corre-
sponding to an atomic diameter a. This characteristic
size a can impose some restrictions on the minimum
wavelength and, thus, the frequency ωM . In addition,
a specific assumption about the atomic susceptibility
and the time scale can change the character of the fre-
quency integration yielding the delta-functional limits
(see, for comparison, [17] and [18]).

Let us continue the calculation after the digression.
Following the Weisskopf–Wigner approximation,

the integration over the spatial angle is done by us-
ing the relation

∑
j=1,2

cos2 θj = 1− cos2 θ3, where θ3 is

the angle between the wave vector k and the dipole
moment ℘, so that

π∫
0

2π∫
0

(
1− cos2 θ

)
sin θ dϕdθ =

8π
3
. (35)

Having the delta-function dependent on the time dif-
ference, we can easily perform the integration over
the time. As a result, we have

β̇α(t) = i
∑
k,j

gα(k, j)γk,j(0) exp[−i(νk−ω)t+ikrα]−

−8π
3

2π
2~ε0

(
1

2π c

)3
|℘|2ω3

resβα(t)−

−
∑

|k|=ωres/c,j

t∫
0

dt′ |gα(k, j)|2 βα(t′)−

−
∑
k,j

N∑
δ=1,δ 6=α

t∫
0

dt′g∗α(k, j)gδ(k, j)βδ(t′)×

× exp[i(ωk − ωres)(t′ − t) + ik(rα − rδ)]. (36)

Again, splitting the third term on the right-hand
side of the last equation into “resonant” and “non-
resonant” parts, we can introduce the “non-resonant”
terms for each δ 6= α through the multiplication of
the corresponding coefficient Dα δ and the δ-th state
amplitude, having the frequency and time integra-
tions approximated by the time integration with a
delta-functional core. The more detailed procedure
of calculation in this case can be found, as an exam-
ple, in the recent work [18]. In the related “resonant”
part, only the time integration is retained. Therefore,
taking this and the initial condition (6) into account
and differentiating Eq. (36) one more time, we derive
the equations

d2

dt2
βα(t) = −

N∑
δ=1

βδ(t)Φαδ − 2
N∑
δ=1

Dαδ
d

dt
βδ(t), (37)
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where

Dαα =
1
2

8π
3

2π
2~ε0

(
1

2πc

)3
|℘|2ω3

res =

=
1
2

1
3π~ε0c3

|℘|2ω3
res, (38)

and Φαδ are defined in the previous section. Here,
the coefficients Dαα, α = 1, ..., N , describe the re-
spective rate of single-atom decay for the α-th atom
excited state. Since the atomic transition dipole mo-
ment is scaled in debyes, such single-atom decay usu-
ally occurs in the optical region through a sponta-
neous emission during 10−7–10−9 s. The coefficients
Dαδ, α = 1, ..., N and δ = 1, ..., N , with α 6= δ de-
scribe the collective decay rates for each α-th atom
in the excited state and can be represented in the
fashion given in Appendix in work [18].

We can see from (37) that the equations of mo-
tion for the state amplitudes βα(t), α = 1, ..., N have
form similar to that describing the motion of coupled
classical oscillators.

5. Conclusion

Thus, we have investigated the system of N identi-
cal two-level noninteracting atoms coupled with the
electromagnetic field initially prepared via a single-
photon Fock state. The obtained form of dynamic
equations for the probability amplitudes allows, in
a certain sense, an interpretation of the dynamics
of states in the classical fashion as the motion of a
multimode vibrating system of particles. The “mul-
timode vibrating system” arises, because an atomic
spatial configuration defines the excitation ability of
an atom in respect to the whole system. Respectively,
the space configuration of an atomic chain preset the
“decay” rates of the states of the system.
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ОДНОФОТОННЕ
РОЗСIЮВАННЯ АТОМНИМ ЛАНЦЮГОМ
В ОДНО- ТА ДВОМОДОВОМУ РЕЗОНАТОРАХ

Р е з ю м е

Дослiджено систему N iдентичних дворiвневих невзаємодi-
ючих атомiв, що приготовлена в однофотонному фокiвсько-
му станi електромагнiтного поля. Показано, що при нехту-
ваннi взаємодiєю мiж атомами отриманi динамiчнi рiвня-
ння для амплiтуд ймовiрностей дозволяють iнтерпретацiю
динамiки станiв у класичному стилi, а саме, в термiнах су-
перпозицiї коливальних мод дослiджуваної системи. Отри-
манi рiвняння розкривають вплив вiдносного просторового
розташування атомiв на динамiку станiв, зокрема розпад
як окремих атомiв, так i системи в цiлому.
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