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In the framework of rate theory, a generalized statistical approach has been proposed to describe
the spatial organization of point defects of the vacancy type into clusters and pores in irradiated
systems. The approach makes allowance for the generation of point defects by elastic fields,
as well as for defect interaction. The model is applied to study the defect pattern formation
in pure nickel. The conditions required for the pattern formation at actual irradiation regimes
in reactors have been analyzed. The peculiarities of microstructure changes at various tem-
peratures and dose accumulation rates have been obtained both analytically and numerically.
The defect pattern period and the change of a characteristic pattern size have been studied by
applying the statistical methods to analyze the obtained numerical data. The results are in
good correspondence with well-known experimental observations of the defect microstructure
formation in irradiated materials under reactor conditions.
K e yw o r d s: rate theory, spatial organization of point defects of the vacancy type, clus-
ters, pores, irradiated systems, defect pattern formation, irradiation in reactors, numerical
simulation.

1. Introduction

It is well known that the influence of high-energy par-
ticles on and, in general, irradiation of solids give
rise to variations in the structural-phase states of
the latter. Changes in the physical and mechanical
properties of such systems are driven by the process
of defect formation in the crystalline structure and
the spatial organization of arisen defects, which re-
sults in certain microstructural transformations. As
such, the formation of vacancy clusters (di-, three-
, and tetra-vacancies) [1], individual pores and their
lattices [2, 3], precipitates, and defect walls [4], the
orderings of vacancy loops [5, 6] can be mentioned.
The majority of defects formed owing to an exter-
nal influence are thermodynamically unstable. Con-
sequently, their uniform distribution becomes also
unstable, which results in their spatial reorganiza-
tion: an effective reduction of system’s entropy takes
place as a result of the self-organization induced by
external factors. In general, such processes in con-
densed systems are challenging and interesting not
only from the theoretical viewpoint. For the sys-
tems of defects in solids, those problems attract a
special attention, because knowing the behavior of
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such statistical ensemble allows the mechanisms of
microstructural transformations in irradiated mate-
rials to be revealed and analyzed. Moreover, they
are useful when forecasting the behavior of pure sub-
stances and alloys. Therefore, this work is aimed at
studying the processes of micropattern formation in
constructional materials (nickel is taken as an exam-
ple), provided that point defects become organized
as a result of the constant irradiation action under
reactor conditions.

From literature data (see, e.g., work [7]), it is
known that, in the case of low-energy incident par-
ticles (their energy does not exceed very much the
energy of an initially knocked out atom; for exam-
ple, Ed ≈ 30 eV for nickel), isolated Frenkel pairs
are formed. If the energy of incident particles is
high (for example, it exceeds 2Ed), the cascades of
displacements are formed. The minimum energy of
nickel ions required to initiate the process of de-
fect formation in nickel itself does not exceed 60 eV;
this quantity amounts to 250 eV for α-particles, to
860 eV for neutrons, and to 800 keV for electrons.
From experimental observations, it was found that
the formation of organized defect pattern demands
that defects should be produced in cascades. Such
processes are mainly observed under ion and neu-
tron irradiation [8]. Spatial defect patterns were also
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Fig. 1. Microstructure of chrome-nickel steel (a) and pure
nickel (b) irradiated with Ni ions at room temperature to doses
of 40 d.p.a (a) and 20 d.p.a (b). Taken from work [11]

observed at laser irradiation with pulse intensities
I ∼ 107 ÷ 108 W/cm2, when the shock wave formed
defects in the bulk of a solid, where the wave front
had propagated [9, 10]. It should be noted that, at
moderate intensities (I ∼ 104 ÷ 107 W/cm2) and in
the absence of a shock wave, the thermal mechanism
of defect formation plays the dominant role. The cor-
responding concentration of nonequilibrium point de-
fects can exceed the equilibrium one by several orders
of magnitude [9].

The rate of defect formation that characterizes ir-
radiation conditions (in reactors or on accelerators)
is determined by the number of displaced atoms, the
spectral density of a particle flux, and the defect for-
mation cross-section. It is known that, in the case
of irradiation in reactors, this quantity has an order
of magnitude of 10−6 d.p.a/s (displacement per atom
per second); in the case of accelerators, we have an es-
timate of 10−3 d.p.a/s. At the irradiation with laser
pulses, this quantity will evidently be substantially
lower than the reactor one. It should be noted that
the temporal scale for the running of corresponding
processes in crystalline systems is as follows: about
10−16 s for the formation of a primarily knocked out
atom and about 10−13 s for passing the cascade; the
relaxation (annealing) stage runs within an interval
of 10−8–10−7 s.

The spatial scales of defect organization also differ
considerably. Here, besides the diffusion length, one
has to consider the nanometer ranges of the defect
interaction and the peculiarities in the formation of
vacancy nanoclusters. For instance, the defect clus-
ters 5.5 nm in average size were observed while ir-
radiating Ni and Cu targets with 3-MeV protons to
doses below 2 d.p.a [1]. At low doses (0.01 d.p.a), de-
fects were distributed uniformly. At the same time,
at doses higher than 0.1 d.p.a, fluctuations of de-
fect clusters transformed into pronounced and peri-
odically arranged clusters with a period of 20–30 nm.
Patterns typical of the formation of small defect clus-
ters (“black dots”) in stainless steel and pure nickel
are depicted in Fig. 1. The number of “black dot”
clusters in stainless steels was found to amount to
1% of all defects, whereas the concentration of va-
cancy tetrahedra for Ni and Cu ranged from 25 to
50% [11]. Similar effects were observed for Mo, Al,
Nb, Ta, W, and Ti –Zr–Mo alloys with a periodic (a
period of 200–800 Å) arrangement of pores 20–100 Å
in dimensions.

Since the behavior of such systems is determined
by wide spatial and temporal intervals, the theoret-
ical researches of a micropattern formation use ap-
proaches that include the consideration at various hi-
erarchical description levels: from the quantum me-
chanical theory to numerical methods (e.g., the finite-
element method) while studying a constructional ele-
ment fabricated from a given material. The research
of the defect formation processes at the microscopic
level is carried out taking advantage of molecular dy-
namics methods, whereas the approaches based on
the Monte Carlo [12–14] and phase field [15] tech-
niques are well suitable for diffusion time intervals.

The application of a specific modeling method at
every level of consideration does not allow the influ-
ence of the lower and upper hierarchical levels to be
taken into account. Therefore, the application of hy-
brid techniques or the development of existing ap-
proaches to make allowance for such an influence is
one of the solutions of this problem. As a hybrid
method, we may regard the method of the crystal
phase field, which adequately describes the behavior
of an atomic system in terms of atomic concentrations
[16, 17]. It was successfully used to study the diffu-
sion of defects [18], the dislocation dynamics [19], and
structural transformations [20–23]. This approach is
effectively used while describing and simulating the
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formation of surface structures in the course of ionic
sputtering (see, e.g., works [24, 25]). The generaliza-
tion of the Cahn–Hilliard theory under an assump-
tion that there exist two temporal scales (the diffu-
sion time and the time of cascade passage) allows the
processes of precipitate emergence and binary system
stratification at irradiation to be analyzed (see, e.g.,
works [26–28]). At the mesoscopic level, the dynam-
ics of defects can be presented in the framework of
rate theory by considering the behavior of point de-
fects and their diffusion and interaction [29, 30]. It
allows one not only to describe the quantitative char-
acteristics of defects and the swelling effect, but also
to explain the spatial organization of defects at the
formation of their clusters, pores, and extended de-
fects (pore walls); the formation of grain boundaries;
and the outcrop of defects on them [31].

In this work, on the basis of the developed rate
theory, which involves the interaction between point
defects, the processes of the vacancy-type defect clus-
ter formation are studied assuming that intersti-
tial atoms move quickly and quickly arrive at sinks.
Nickel, the most wide-spread constructional material
used in the atomic engineering, was selected as a sys-
tem to study. We will demonstrate that, if the pro-
cesses of defect generation by the elastic field of de-
fects themselves are taken into account, the existence
of bistable stationary states in this system becomes
possible. We will analyze the types of defect patterns
and determine the conditions of their realization for
various rates of defect formation and irradiation tem-
peratures. The deterministic mesoscopic model de-
veloped in this work will be generalized by taking the
fluctuation contribution into consideration that sim-
ulates the influence of the microscopic level in accor-
dance with the fluctuation-dissipation theorem. The
fluctuation effect obtained at the formation of sta-
tionary defect patterns will be analyzed. In order to
generalize the results obtained, the rate of defect for-
mation is chosen within the interval ranging from the
values corresponding to laser irradiation to those that
are characteristic of accelerators.

The structure of the paper is as follows. In Sec-
tion 2, the model of interacting point defects is devel-
oped. In Section 3, the stability of stationary states
is analyzed in the linear approximation. In Section 4,
the deterministic approach is generalized to the case
where the action of an internal stochastic source is
taken into account. In Section 5, the formation of

stationary defect patterns in a nonlinear system is
examined. Section 6 contains the results of the nu-
merical simulation of the pattern formation dynam-
ics. Conclusions are summarized in the last section
of the paper.

2. Model of a Point-Defect System

In the framework of approaches inherent to the rate
theory, the dynamics of radiation-induced defects–as
such, we will regard only point-like ones (vacancies
and interstitial atoms)–is described by equations that
look like

∂tcv=K(1−εv)−DvSv(cv−c0v)−αcicv−∇ · J0
v,

∂tci = K(1− εi)−DiSici − αcicv −∇ · J0
i .

(1)

Here, cv,i are the concentrations of vacancies (the
subscript v) and interstitial atoms (the subscript i);
c0v = e−E

f
v /T is the equilibrium concentration of va-

cancies expressed in terms of their formation energy
Efv and the temperature T measured in the energy
units; K is the rate of dose accumulation; εv,i are the
intensities of cascade collapse at the formation of the
loops of vacancies and interstitial atoms (εv � εi);
and Dv,i = D0

v,ie
−Em

v,i/T are the diffusion coefficients
of vacancies and interstitial atoms, which are deter-
mined by the corresponding preexponential factors
D0
v,i and the defect migration energies Emv,i. The sink

intensities Sv,i for point defects of two types are deter-
mined by the density of a dislocation grid ρN and the
densities of vacancy and interstitial loops ρv,i with the
preference Z{·,·}·. The general expression for the sink
intensities looks like Sv,i = Z{v,i}NρN + Z{v,i}V ρv+
+Z{v,i}Iρi, where ZvN = ZvI = ZvV = 1, ZiN =
= 1 + B, ZiI ' ZiV ' 1 + B′, B′ ≥ B, and B ≈ 0.1.
The recombination of point defects is given by the co-
efficient α = 4πr0(Di +Dv)/Ω, where r0 is the defect
interaction radius, and Ω the atomic volume. Since
defects are mobile particles of the micropattern, the
evolution equations for their concentrations involve a
contribution of the diffusion fluxes denoted as J0

v and
J0
i , respectively.
When changing to dimensionless variables, we can

use the definitions

Sv,i = Z{v,i}NρN (1 + ρ∗v + ρ∗i ), ρ∗v,i ≡ ρv,i/ρN , (2)

where t′ ≡ tλv stands for the temporal variable,
with λv ≡ DvZvNρN ; the rescaled defect concentra-
tions xi,v = γci,v are determined by the parameter
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γ ≡ α/λv; and P ≡ γK/λv is a function of the
dose accumulation rate and the temperature mea-
sured in terms of d.p.a units. Using the notation
µ ≡ (1 + ρ∗v + ρ∗i ) and ZiN/ZvN = 1 + B and adopt-
ing that the diffusion coefficients for vacancies and
interstitial atoms differ from each other by several
orders of magnitude, it is possible to introduce the
small parameter Dv/Di ≡ ε� 1, which describes the
difference between the time intervals of evolution for
defects of two types. Then, we arrive at a system of
differential equations

∂txv=P (1−εv)−µ(xv−x0v)−xixv−∇ · Jv;

ε∂txi=εP (1−εi)−(1+B)µxi−εxixv−ε∇ · Ji,
(3)

where Ji,v ≡ γJ0
i,v/λv. From whence, it follows that

the concentration of interstitial atoms is a quickly
changing variable in comparison with that of vacan-
cies and, hence, can be effectively neglected in the
adiabatic approximation. Really under the condition
ε∂txi ≈ 0, we obtain the following expression for the
concentration of interstitial atoms:

xi = P (1− εi)/[(1 +B)µ/ε+ xv].

If this quantity is substituted into the first equation
of system (3), the dynamics of the system is described
by the equation of slow mode evolution, x ≡ xv.

It should be noted that the defect formation has
a thermofluctuation character. Its probability grows
with the temperature (the irradiation intensity) and
the defect concentration [9]. As was shown in work
[10], the latter phenomenon is connected with a
change in the height of an activation barrier for the
defect formation, which occurs owing to the elastic
deformation of the medium induced by the defects
themselves. In this case, in order to take the men-
tioned effect into account, the evolution equation for
x has to be appended by a term describing the de-
fect generation according to that mechanism. The
corresponding term looks like G exp(−E/T ), where
G = pωDγ/λv is the frequency factor determined in
terms of the Debye frequency ωD, p ≈ 10−6 is the
probability to realize this process, and E = Efm+
+Emv −Ee(r̄) is the activation energy, which decreases
due to the action of the deformation field Ee(r̄) cre-
ated by the defects. Supposing that the relation be-
tween the average defect-to-defect distance and the
defect concentration has the form r̄ = x−1/3 and fol-
lowing the results of work [10], this term looks like

G exp(εx/(1+x2)), where the parameter ε ≡ 2ZEe0/T
depends on the characteristic energy of the deforma-
tion field Ee0 and the coordination number Z. This
contribution to the defect dynamics is substantial at
laser irradiation intensities (at small rates of dose ac-
cumulation). Therefore, despite that it is small at a
particle irradiation owing to the cascade mechanism
of defect formation, we hold it in the subsequent con-
sideration without loss of generality.

Consider now the diffusion flux of vacancies. As
a whole, it includes the Fickian component −L2

d∇x
with the diffusion length L2

d ≡ Dv/λv and a compo-
nent describing the interaction between defects. In
the case of a stationary flux, we obtain

J = −L2
d∇x+ vx. (4)

Here, the second component describes the motion of
defects at the rate v = (L2

d/T )F under the action
of a force F = −∇U invoked by the defect interac-
tion. The flux J can be rewritten in the canonical
form J = −L2

dM(x)∇µ(x), where M(x) = x is the
mobility, and µ(x) = δF/δx plays the role of chem-
ical potential. Then, the corresponding free energy
functional looks like

F =
∫

drf(x(r))− 1
2T

∫
dr
∫

dr′x(r)ũ(r, r′)x(r′). (5)

Here, the free energy density f(x) = x(lnx − 1)
in the first term describes the gas of free particles,
the second term characterizes pair interactions in the
self-consistent approximation [31–33], and −ũ(r) is
the attractive potential between two particles (de-
fects) separated by the distance r. The function
ũ(r) is selected symmetric in a vicinity of the de-
fect,

∫
ũ(r)r2n+1dr = 0. If the field x(r) does not

change considerably over the defect interaction dis-
tance r0 ' Ω1/3, we may use a series expansion up to
the second non-disappearing term, i.e.∫

dr′ũ(r− r′)x(r′) ≈ ε(x+ r20∇2x). (6)

The first term on the left-hand side of Eq. (6) gives
rise to a standard relation between the elastic field po-
tential U = −

∫
dr′ũ(r− r′)x(r′) and x in the frame-

work of elasticity theory. Really, the potential U is
connected with the displacement vector u by the for-
mula U = −κ$∇ · u, where ∇ · u ∝ $x, κ is the
bulk modulus, and $ is the dilatation parameter [9].
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Therefore, the expression for the effective flux looks
like J ∝ −(1 − $2κx/T )∇x. The second term in
expansion (6) characterizes microscopic processes of
interaction between defects at the distance of corre-
lation (interaction) length r0. Under normal condi-
tions, this term can be omitted because its contri-
bution is small in comparison with the diffusion one.
Substituting Eq. (6) into definition (4) for the total
flux, one can see that even if the first term in Eq. (6)
is taken into account, the expression for the diffusion
flux will include the coefficient (1− εx) dependent on
the concentration field, i.e. J ∝ −(1 − εx)∇x. This
coefficient can change its sign depending on x. As
a result, we obtain a divergence, which means that
a uniform distribution of vacancies becomes unstable
if the rate of their formation exceeds a critical value
determined by the temperature, sink concentration,
and volume dilatation. The appearance of this di-
rected flux results in the vacancy oversaturation and
the formation of defect patterns such as pores and so
forth. From the mathematical viewpoint, this diver-
gence cannot be compensated by non-linearities in the
evolution equation [31–33]. It can be prevented only
by making allowance for the second (interaction) com-
ponent in expansion (6). Therefore, this component
must be retained in the subsequent consideration. As
will be demonstrated below, it is this component that
characterizes the dimensions of defect patterns.

Hence, if all the features indicated above are taken
into account, the general expression for the model
concerned is given by an equation of the reaction-
diffusion type,

∂tx = R(x;K,T )−∇ · J, (7)

where the full expressions for the reaction component
and the flux look like, respectively,

R(x;K,T ) ≡ P (K,T )(1− εv)− µ(x− x0)−

−P (K,T )(1− εi)x
µ(1+B)

ε + x
+G(T )e

εx
1+x2 ,

J(x;T ) ≡ −
[
∇x− ε(T )x∇(x+ `2∇2x)

]
. (8)

Here, the rescaling of the spatial variable r′ = r/Ld
is taken into account, and the dimensionless length
` ≡ r0/Ld is introduced.

For the further consideration, let us use the data set
for pure nickel [8] (see Table 1). The estimation of the

diffusion length gives Ld ' 10−6 ÷ 10−7 m, whereas
` � 1. The rate of dose accumulation amounts to
K ' 10−6 d.p.a/s for reactors and K ' 10−3 d.p.a/s
for accelerators. At laser irradiation, the dose ac-
cumulation rate is several orders of magnitude lower
than that for reactors and depends on the power of
laser pulses.

3. Analysis of the Linearized System Stability

Consider firstly a uniform system in the stationary
case, t→∞. Then its stationary states xs are given
by the solutions of the equation ∂tx = 0. The cor-
responding dependences are shown in Fig. 2, a for
various fixed temperatures and various values p of
the probability of vacancy generation by the field
of elastic stresses. As is seen from Fig. 2, a, with-
out an elastic field (p = 0), the concentration of va-
cancies monotonously increases from the equilibrium
value c0v by several orders of magnitude even at doses
lower than 1 d.p.a. However, in the case of non-zero
p-value, the dependence cv(K) demonstrates a hys-
teretic behavior, which means the appearance of a
bimodality for the stationary states. This peculiar-
ity manifests itself at low doses or low rates of defect
formation typical of the laser irradiation. It can also
reveal itself at additional mechanical loadings that
raise the energy level Ee0 . At low and high doses,
the stationary dependences coincide well with those
for the case p = 0. From the physical viewpoint,
such a behavior can evidently be explained as fol-
lows. Proceeding from the equilibrium concentration
c0v = cv(K = 0, T ), as growth of the irradiation dose

Basic material parameters for nickel

Parameter Value Measurement unit

Ef
v 1.8 eV

Em
v 1.04 eV

Em
i 0.3 eV
Ee

0 0.01÷ 0.2 eV
Dv 6× 10−5e−Em

v /T m2/s
Di 10−7e−Em

i /T m2/s
c0v e−Ef

v /T –
ωD 1.11× 1013 s−1

r0 1.5× 10−9 m
εv , εi 0.1, 0.01 –
ρN 1012–1015 m−2

Ω 1.206× 10−29 m3
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a

b
Fig. 2. Stationary dependences of the vacancy concentration
at Ee

0 = 0.1 eV and various temperatures and p (a). Phase
diagram illustrating the existence of the bimodal mode at p =

= 10−6 and various energies Ee
0(b). The dislocation density

ρN = 1014 m−2. The other parameters are quoted in Table 1

results in the formation of nonequilibrium vacancies.
The latter, when achieving a certain number corre-
sponding to Kb2, bring about the formation of an
elastic field that is capable of accelerating the rate of
vacancy formation. At this point, the number of va-
cancies increases drastically and is characterized by
a jump in their concentration. If the irradiation dose
grows further, the elastic fields cannot strongly af-
fect the processes of defect generation in comparison
with cascades, which become a more effective factor
at higher rates of dose accumulation. Therefore, at
high doses, the corresponding dependence of the va-
cancy concentration tends to the reference one, which

is obtained provided no influence of the elastic field
on the process of vacancy generation.

Hence, it follows from the aforesaid that the sys-
tem is in a bistable mode in the range of values
K ∈ [Kb1,Kb2]. Binodals, which the values Kb1 and
Kb2 belong to, form a phase diagram in the plane of
independent parameters “damage rate–temperature”.
The diagram is determined by consistently solving the
following two equations:

R(xs;K,T ) = 0,
∂R(x;K,T )

∂x

∣∣∣∣
x=xs

= 0. (9)

The corresponding result is depicted in Fig. 2, b. In
the beak-shaped region II confined by the binodals,
the bistable mode is realized. Regions beyond re-
gion II and marked as I correspond to unimodal sta-
tionary states with low (at small K’s) and high (at
large K’s) concentrations of defects. It should be
noted that an increase of the probability p even by
an order of magnitude substantially expands the bi-
modality region toward low temperatures by lowering
the critical value for K. Such a scenario is typical of
the irradiation with laser pulses, when the influence
of the elastic field is considerable. While comparing
the diagrams calculated for different Ee0-values – ac-
tually, they correspond to different mechanical load-
ings on the system – we obtain a similar scenario,
when the temperature interval of the bistability re-
gion broadens and the critical value of the dose, at
which this mode becomes possible owing to the reduc-
tion of the potential barrier for the defect formation
and the effective growth of the elastic field energy,
diminishes.

Let us analyze the stability of stationary states
with respect to small perturbations in the case of non-
uniform system. The small deviation δx = x − xs
from the uniform stationary state xs satisfies the
equation

∂tδx = (Λ(xs) + ω(k;xs)) δx, (10)

where the stability of uniform state with respect to
uniform perturbations is given by the index

Λ(xs) = −µ− P (1− εi)ε µ (1 +B)
(µ+ µB + xsε)

2 +

+G
ε(1− x2

s)
(1 + x2

s)2
exp

(
εxs

1 + x2
s

)
, (11)
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and the stability with respect to non-uniform pertur-
bations is characterized by the dispersion relation

ω(k;xs) = −k2[1− εxs(1− `2k2)]. (12)

Then, it follows that unstable modes with ω(k) > 0
are characterized by the wave numbers k’s (0 < k <
kc), where the critical value

kc =
√
εxs − 1
εxs`2

(13)

is determined by the condition ω(k) = 0. In the sim-
plest case with ` → 0 in the phase diagram region
beyond the beak-shaped one, all states with xs > 1/ε
are unstable with respect to non-uniform perturba-
tions with kc → ∞, whereas the states with concen-
trations xs < 1/ε are stable. In the sought case with
` 6= 0, the system states with xs > 1/ε become un-
stable, and the corresponding values of wave numbers
fall within the interval 0 < k < kc. In the bimodality
region, the uniform system states are always unstable
in respect to non-uniform perturbations. The wave
number k0 corresponding to the most unstable mode
can be obtained by solving the equation dω(k)/dk = 0
and is equal to k0 = kc/

√
2.

The results of calculations for the dependences of
the critical wave number are exhibited in Fig. 3, a.
One can see that, in the standard case p = 0, the
critical wave number grows from zero (k∗ = 0), when
the dose accumulation rate increases from a definite
critical value Kc. This means that, when crossing
this threshold, there emerge spatial patterns in the
system characterized by the infinite period. A fur-
ther dose accumulation gives rise to the emergence of
new patterns, the distance between them decreases,
and, at high doses, the period of their arrangement
diminishes to about 10−8 m. In the case p 6= 0, owing
to the hysteretic behavior of the stationary concen-
tration, we obtain a scenario when the first unstable
mode appears with a nonzero wave number, k∗ = kc,
at K > Kb1. The emergence of spatial patterns in
the bimodal region of the phase diagram depicted in
Fig. 3, b occurs in a vicinity of the stationary value
cv corresponding to a metastable state with high con-
centration; at the same time, no spatial defect pat-
terns are formed in a vicinity of the states with low
vacancy concentrations. At elevated temperatures (in
the bimodality region), the uniform state loses its sta-
bility at larger wave number values and higher dam-
age rates. The critical temperature and dose values,

a

500 600 700 800 900 1000 1100
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1E-7

1E-5

1E-3

645 650 655

2E-9

4E-9

 (k)<0

K
, 

[d
p

a
/s

e
c
]

T, [K]

 (k)=0, p=0

 (k)=0, p=1E-6

b
Fig. 3. (a) Dependences of the critical wave number on the
dose accumulation rate at various p and T . (b) Stability dia-
gram calculated in the linear approximation

which confine the regions of existence of spatial defect
patterns at p 6= 0, are shown in Fig. 3, b by dashed
curves. The critical Kc and temperature values cal-
culated for p = 0 are depicted by a solid curve. In
the region above the dashed curves, as well as in the
corresponding beak-shaped regions, the processes of
pattern formation take place. At p = 0, patterns
emerge in the region above the thin curve.

4. Influence of Internal-Fluctuation Source

The deterministic model described above is known to
be idealized, because it does not take into account the
contribution of a fluctuation source that simulates the
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influence at the microscopic level on the dynamics of
a system. In contrast to the external noise induced
by the fluctuations of the environment parameter, the
internal noise is induced by the microscopic character
of the system itself, with its sources being the internal
processes running in the system. Therefore, in what
follows, we consider the Langevin dynamics, includ-
ing the internal noise that is responsible for the dis-
sipative dynamics of the whole ensemble. Certainly,
this noise has to be essentially coupled with the va-
lidity of the fluctuation-dissipation theorem. Hence,
following the standard procedure, let us rewrite the
deterministic equation for the concentration field in
the form

∂tx = R(x) +∇ ·M(x)∇µ, µ ≡ δF
δx
, (14)

where the free energy functional is defined as follows:

F [x] =
∫
dr
[
x lnx− x− ε

2
x2 +

ε`2

2
(∇x)2

]
. (15)

Formally, Eq. (14) can be rewritten in the canonical
form within the relaxation model with nonconserved
dynamics,

∂tx = − 1
M(x)

δU
δx
, (16)

where only the first variational derivative for the func-
tional U [x] is known, i.e.

δU=−
∫

drδx [M(x)R(x)+M(x)∇·(M(x)∇µ)]. (17)

Following works [31, 33, 34], it is possible to
introduce a fluctuation source that satisfies the
fluctuation-dissipation theorem. In this case, the
Langevin dynamics will be described by the equation

∂tx = − 1
M(x)

δU
δx

+

√
1

M(x)
ξ(r, t), (18)

where ξ is a white Gaussian noise with standard
properties

〈ξ(r, t)〉 = 0, 〈ξ(r, t)ξ(r′, t′)〉 = 2σ2δ(r−r′)δ(t− t′),
(19)

and σ2 is a noise intensity proportional to the tem-
perature.

The influence of such multiplicative noise on sys-
tem’s dynamics at initial stages (in the linear approx-
imation) is analyzed with respect to the stability of
concentration fluctuations 〈δx〉 = 〈x〉 − xs averaged
over the noise, where, as before, xs is the station-
ary uniform state of the deterministic system. In
the framework of the Stratonovich interpretation of
Eq. (18), the evolution of the average concentration-
field value is described by the equation

∂t〈x〉=〈R(x)+∇·M(x)∇µ〉−σ2

〈
1

M2(x)
dM(x)

dx

〉
.(20)

Linearizing this equation, we obtain

∂t〈δx〉 =
[
Λ̃(xs) + ω(k;xs)

]
〈δx〉, (21)

where the indicator of stability with respect to uni-
form perturbations is determined in terms of its de-
terministic analog and a term describing the influence
of noise. The latter looks like

Λ̃(xs) = Λ(xs) +
2σ2

x3
s

. (22)

From whence, it follows that the internal noise makes
a positive contribution to the Lyapunov indicator, i.e.
to the destabilization of the uniform state at early
stages of evolution of the system.

While studying the behavior of the system in the
stationary case, the major quantity is the station-
ary distribution of the concentration field, P ≡
Ps([x], t → ∞), which is a solution of the Fokker–
Planck equation [35]. The latter, according to the
Langevin equation (18), reads

∂tP =
∫

dr
δ

δx

[
1

M(x)

(
δU
δx
− σ2 1

M(x)
dM(x)

dx

)
P +

+σ2 δ

δx

1
M(x)

P
]
. (23)

Its exact solution, provided no probability density
flux across the boundaries, which is considered natu-
ral, has a quasi-Gibbs form,

Ps[x] ∝ exp(−Fef [x]/σ2), (24)

where the effective functional of free energy consists
of the initial functional, which plays the role of in-
ternal energy, and the entropy contribution times the
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effective temperature, the latter being reduced to the
renormalized noise intensity Σ,

Fef [x] = U [x]− ΣSef [x], Sef [x] ≡
∫

dr lnM(x). (25)

Here, Sef [x] is the effective entropy expressed in terms
of the mobility M(x). Hence, it follows that the
internal noise can essentially change the states of a
stationary system owing to the entropic contribution
by changing the number of extrema in the station-
ary distribution of the concentration field at fixed key
parameters of the system. The corresponding quali-
tative transformations with the emergence of the so-
called “macroscopic phases” (they are determined by
the maxima in the probability density) and transi-
tions between them (they are initiated by a change
of the effective entropy) are known as entropy-driven
phase transitions (see, e.g., works [33,34,36–40]). For
systems with the conserved dynamics, those phase
transitions bring about the phase separation [38, 41]
or, in general, pattern formation [33, 34, 37]. Below,
we are interested in the latter case, which makes it
possible to describe the character of stationary point-
defect patterns that emerge under the action of the
constant irradiation.

In order to study the processes of pattern forma-
tion at later time intervals – namely, in the stationary
case – it is enough to solve the Cauchy problem, while
minimizing the functional of effective free energy, the
minima of which correspond to the probability den-
sity maxima in the distribution of the defect concen-
tration field and, hence, to the most probable spa-
tial configurations of point defects. Therefore, from
the mathematical viewpoint, the problem is reduced
to the solution of the equation for the most proba-
ble structures, whose evolution, as was demonstrated
earlier (see, e.g., works [31, 42]), is described by the
equation
∂tx = − 1

M(x)
δFef [x]
δx

, (26)

and the relevant periodic boundary conditions. Its
solutions are stationary patterns xs(r, t → ∞), the
morphology of which will be studied with the help
of nonlinear analysis. Substituting the corresponding
definitions, we arrive at the equivalent equation

∂tx = Ref(x) +∇ ·M(x)∇µ,

Ref(x) ≡ R(x) +
Σ

M2(x)
dM(x)

dx
.

(27)
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Fig. 4. Dependences of the most probable values of vacancy
concentration on the dose accumulation rate at T = 800 K,
Ee

0 = 0.01 eV, and for various intensities of the internal noise

From it, one can see that the Stratonovich drift acts
oppositely to its contribution at short time intervals
obtained when the system stability is analyzed in
the linear approximation [31, 42]. From the physi-
cal viewpoint, this situation is a manifestation of the
Le Chatelier principle. The corresponding scenario is
inherent to the systems that undergo entropy-driven
phase transitions, the latter being considerably dif-
ferent from nonequilibrium transitions with external
noise [36, 39, 40, 43].

Let us consider the character of noise-induced vari-
ations in the most probable states by neglecting the
spatial component in Eq. (27). In this case, instead
of the functional Ps[x], we have the distribution func-
tion Ps(x), and the solutions of the equation Ref(x) =
= 0 determine the positions of its extrema, xmp. The
dependences of the most probable concentration val-
ues, cmpv , at various noise intensities Σ are shown in
Fig. 4. One can see that noise stimulates the growth
of the stationary, most probable concentration and
substantially expands the bistability region. Thus,
noise enhances the contribution of elastic fields, if any,
due to the stochastic generation of defects.

5. Features of the Stationary Pattern
Formation in a Nonlinear System

In order to analytically analyze the processes of sta-
tionary pattern formation in nonlinear systems, let
us consider the behavior of the unstable mode am-
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plitude in the framework of the standard approach
[8]. For this purpose, we will confine the analysis to
the one-dimensional case, which can provide us with
a basic information concerning the possibility of for-
mation of stationary defect patterns. Let us linearize
the right-hand side of Eq. (27) with respect to an in-
dependent parameter, the temperature, in a vicinity
of the critical temperature Tc, above which the spatial
patterns are formed at a fixed dose accumulation rate
K. In this case, the expression for the effective reac-
tion component in the dynamics of the most probable
concentration values looks like

R = Ref(x, Tc) +
dRef(x, T )

dT

∣∣∣∣
T=Tc

(T − Tc). (28)

The main attention will be concentrated on the insta-
bilities that arise in a vicinity of the uniform, most
probable states xmp; the latter can be determined by
solving the equation Ref(xmp, ε) = 0. For the sake
of simplicity, let us first consider the one-dimensional
case (r → ρ). By introducing the scale α2 = T − Tc,
let us examine the case of instabilities with the wave
number k characterized by the width O(α) and the
instability order O(α2). For further purposes, we use
the auxiliary field w(ρ, t) ≡ (x(ρ, t)− xmp), where

w(ρ, t) = αφ(ρ, t) ≡ αA(%, τ)eikρ + c.c.

is expressed in terms of a slow amplitude A(%, τ).
In the one-dimensional case, only the pair of crit-
ical wave numbers (k1,−k1) is possible, % = αρ,

and τ = α2t. The notation c.c. means the com-
plex conjugation. We should expand R in a series in
αφ = x− xmp,

R(αφ) ' A1αφ+A2(αφ)2 +A3(αφ)3;

An =
1
n!

dnR
dxn

∣∣∣∣
x=xmp

.
(29)

Using the relations ∂t → α2∂τ and ∇ → (ik + α∂%),
substituting w(ρ, t) into Eq. (27), and comparing the
coefficients at every αneinkρ (for available n’s), we
arrive at the equation for the unstable amplitudes in
the form

∂τA = C1A+ C3|A|2A+ ∂2
%A, (30)

where the expansion coefficients are

C1 ≡
d2Ref(x, T )

dxdT

∣∣∣∣
x=xmp,T=Tc

+ xmpk
2(1− `2k2),

C3 ≡
1
3!

d3Ref(x, Tc)
dx3

∣∣∣∣
x=xmp

.

(31)

The derived equation belongs to the class of equations
with the spatial operator of the Swift–Hohenberg type
[8,44]. In the case C1 < 0 and C3 < 0, the trivial value
of hydrodynamic mode amplitude (A = 0) is realized,
which means the absence of a spatial defect order-
ing, i.e. we obtain a uniform (chaotic) distribution of
point defects over the system. The pattern formation
becomes possible only if C1 > 0 and C3 < 0. Then,
the family of stationary solutions Ak = |Ak|eiψ has
the amplitudes |Ak| =

√
C1/|C3|, and the phase ψ is

arbitrary.
The pattern formation diagram in the one-

dimensional case at p = 10−6 is depicted in Fig. 5.
Here, making allowance for the linear analysis of sta-
bility, three characteristic regions with respect to the
C1- and C3-values can be distinguished. Region I re-
stricts the temperature and dose accumulation rate
values, for which the uniform distribution of defects
is stable. Beyond it, the uniform distribution of de-
fects is unstable. Region III is characterized by the
condition C1 > 0 and C3 < 0. Here, according to
the results of nonlinear analysis, T and K have the
values, at which patterns are stationary. Evidently,
in region II, arising instabilities do not form station-
ary defect patterns; the latter have a transient char-
acter. In other words, they disappear after a long
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enough time of the evolution of the system. In the
two-dimensional case, region III becomes so expanded
that the region of transient patterns degenerates, and
only regions I and III survive. For a system with
p = 0, only regions I and III with no transient pat-
terns can be distinguished. In the both cases, noise
gives rise to a reduction of C3 at small xmp owing
to the contribution −(Σ/4)x5

mp to the deterministic
component C3. Hence, the internal noise can substan-
tially expand the stationary pattern formation region
even at low defect concentrations.

6. Simulation

In order to verify the results of analytical calcula-
tions, let us carry out a numerical simulation us-
ing a mesh with square (cubic) symmetry, which
corresponds to the nickel structure, and taking ad-
vantage of a finite-difference scheme. Assuming no
anisotropy, the mesh step is selected to equal Δl =
= 0.5. Since Ld = ρN

−1/2, we obtain Ld = 10−7 m
for ρN = 1014 m−2. The number of mesh points in
both spatial directions is N = 128. In this case, the
total length of the system in either direction amounts
to L = 25Ld. For the length scale, we put ` = 0.25,
which automatically means that r0 = 2.5 × 10−8 m.
The boundary conditions are chosen periodic. As the
initial condition, we select the equilibrium value of
vacancy concentration, i.e. 〈x(r, 0)〉 = x0 with a 10%-
spread of values around the average one. To ensure
the stability of a numerical simulation algorithm, the
time increment is taken equal to Δt = 10−4, which
corresponds to the physical time interval of the cas-
cade relaxation.

A typical picture of evolution with the formation of
defect pores is illustrated in Fig. 6. Here, the dark re-
gions correspond to the phase with a depleted defect
density, whereas the light ones to the defect-enriched
phase. One can see from the figure that, proceeding
from a chaotic configuration of defects, the extended
defect patterns are first formed in the system within
a short time interval; then they decay into small ag-
gregates (pores) that are more stable at the given
irradiation parameters. The corresponding dynam-
ics demonstrates effects of the vacancy attachment to
extended defects and their decay into separate pores.
This process is weakly pronounced, but it can be ob-
served in statistical characteristics in the form of os-
cillations.

Fig. 6. Typical scenario of the defect pattern formation in the
form of pores at T = 778 K, K = 10−6 d.p.a/s, Ee = 0.1 eV,
p = 10−6, and Σ = 0.001

To describe the formation of patterns with the dis-
tribution of the defect density in clusters, we use the
average defect density m1, the dispersion of the de-
fect density spread m2, the asymmetry m3, and the
excess m4 defined in the standard way:

m1 = 〈x〉; m2 = 〈(x− 〈x〉)2〉;

m3 =
〈(x− 〈x〉)3〉

m3
2

, m4 =
〈(x− 〈x〉)4〉

m4
2

,
(32)

where m2 determines the width of the intermediate
layer between two phases (defect-depleted and defect-
enriched ones). The asymmetry parameter evaluates
the profile symmetry for the defect distribution at the
basic level. Its sign characterizes the position of gen-
erating points proportionally in the defect-enriched
(m3 > 0) or defect-depleted (m3 < 0) phase in com-
parison with the average level of the defect distribu-
tion. The excess parameter describes the distribu-
tion stochasticity in comparison with the perfectly
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chaotic (Gaussian) distribution (m4 = 3.0 for the
Gaussian distribution). This parameter also charac-
terizes a nonsmoothness of the distribution function
for x. If the majority of peculiarities (excitations
in the defect-enriched phase) are concentrated near
the average level, the excess value is less than in the
case where they are located far from this level. The
average defect density m1 can grow, but it gives no
information concerning the character of the pattern
formation. The relevant information is provided by
the dispersion m2; namely, its growth testifies to the
emergence of new phases, defect-enriched and defect-
depleted ones. The asymmetry and excess parameters
describe how much those phases are different.

The results of simulation showed that, for a com-
pletely chaotic distribution of defects in the crystal
characterized by an equilibrium defect concentration,
we have the following dynamics of pattern formation
(see Fig. 7). At short time intervals, the defects are
accumulated to a level sufficient for their spatial or-
ganization. At this stage, the dispersion is close to
zero, which testifies to the absence of interfaces be-
tween two phases. After the maximum in the depen-
dence m1(t) is reached, the dispersion starts to grow,
which reflects an ordering in the system; the defects
start to attract one another and aggregate into clus-
ters. At this stage, the asymmetry starts to substan-
tially deviate from zero, and the excess from a value
of 3. It is significant that a weak excess and asym-
metry oscillations testify to the oscillatory character
of the extended defect growth: the attachment of de-
fects to and their emission from clusters. The reduc-
tion in the number of accumulated defects distributed
over the crystal testifies to their migration to sinks,
namely, pores. If the irradiation time grows further,
a stationary mode is established, when the statistical
moments do not change. It should be noted that, in
the range of dose accumulation rate or temperature,
when we are in the region below the curves describing
the loss of stability in the uniform distribution (see
Fig. 3, b), the average value gradually grows with-
out manifestating a peak, whereas the dispersion is
constant and equal to zero, which testifies that the
emergence of defect patterns under such conditions
is impossible (the corresponding dependences, being
trivial, are not presented).

Let us consider the stationary patterns that arise
at various temperature or dose accumulation regimes
separately (see Fig. 8). From the presented results,
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it follows that, at low temperatures and dose accu-
mulation rates (see Fig. 8, a), the vacancy clusters
emerge in the system. Some clusters are extended
defects; for instance, it can be a self-intersection of a
vacancy loop in the three-dimensional space or an in-
tersection of defect walls. At elevated temperatures,
the number of extended defects considerably grows
(see Figs. 8, b and c). The defect concentration de-
creases at that, and, when approaching the line of
stationary pattern existence, defects are smeared out
over the whole system. It is significant that, when
the dose accumulation rate increases, the spherical
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aggregates of defects mainly appear, and the number
of defects in pores considerably grows (see Fig. 8, d
and the distribution of x-values in every panel). The
stationary patterns which are the most probable at
Σ = 0.01 are depicted in Figs. 8, e and f. From all
that, one can see that, in the stationary case, the
internal noise stimulates the formation of extended
defects.

Let us carry out the correlation analysis of the de-
scribed stationary patterns. For this purpose, we
should determine the properties of the two-point,
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one-time spherically averaged correlation function
〈δx(0, t)δx(r, t)〉, where δx = x − 〈x〉. Its typical de-
pendences for various relationships between the tem-
perature and the dose accumulation rate are shown
in Fig. 9. In the general case, the correlation func-
tion can be approximated by the dependence C(r) =
= C(0)e−r/rc sin(2πr/〈r0〉+φ), where rc is the corre-
lation length, 〈r0〉 the average period of the patterns,
and φ an arbitrary phase. In our research, we are in-
terested in the dependence of the correlation length
on the key parameters of the system, whereas the pat-
tern period will be estimated using the Fourier analy-
sis. From the approximation of correlation functions,
it follows that both a decrease in the temperature and
an increase in the rate K bring about a reduction of
the correlation length (formation of compact spheri-
cal defect patterns), with, in general, rc ∼ 100 nm.
However, at elevated rates K, the correlation length
decreases because the lattice pore symmetry becomes
violated due to the radiation-stimulated formation
of additional pores in the pore lattice. If the tem-
perature grows owing to the formation of extended
defects, the correlation length increases. The es-
timation of the quantity 〈r0〉 shows that its value
is comparable with the diffusion length Ld, so that
〈r0〉/rc ∼ 10−1. While studying the pattern period,
an important quantity is the spherically averaged
structural factor S(k, t) = N−2

∑
k<|k|<k+Δk S(k, t),

where S(k, t) is the structural factor determined us-
ing the Fourier transformation of the correlation func-
tion depending on the vector argument, C(r), and
Δk is the ring width in the reciprocal space. The
corresponding dependences for S(k) are exhibited in
Fig. 10. The figure demonstrates that the position of
the main peak, which determines the pattern period,
completely agrees with the results of the linear anal-
ysis carried out above for the stability of the system.
Really, the peak shifts toward larger wave numbers
at higher dose accumulation rates and lower temper-
atures. In addition, the peak height considerably in-
creases at large K, which testifies to a high degree of
ordering in defect patterns.

Now, let us examine the distribution of de-
fect patterns over their dimensions by calculating
the corresponding probability distribution function
(PDF(S)) over sizes using the simulation data (see
Fig. 11). From the results obtained, it follows that,
at T = 750 K and K = 10−5 d.p.a/s, as well as at
T = 773 K and K = 10−6 d.p.a/s, when spherical

clusters are mainly realized, PDF (S) is centered in
a vicinity of the average cluster plane, 〈S〉. The ap-
pearance of extra maxima at T = 773 K and K =
= 10−6 d.p.a/s is explained by the formation of ex-
tended defects giving a contribution to the distribu-
tion. It should be noted that, in the case of high dose
accumulation rates, the distribution peak grows by
an order of magnitude. This circumstance testifies
that the pore ensemble is characterized by a small
dispersion of pore dimensions, so that S ≈ 〈S〉. In
accordance with the calculated values, we have that
〈S〉 ∼ L2

d for spherical patterns, and 〈S〉 increases
when the extended defect patterns emerge.

At last, let us consider the distribution function of
the vacancy concentration in clusters, f(cv), obtained
under various irradiation conditions (see Fig. 12). It
should be noted that, in all analyzed cases, the dis-
tribution function is not centered in a vicinity of the
average concentration 〈cv〉. The presence of peaks in
the function f(cv) means the formation of vacancy
clusters with different contributions. In the upper
panel of Fig. 12, the peak smearing is associated with
the presence of extended defects, the number of which
is small at T = 750 K and the given dose accumula-
tion rate. In the case of elevated temperatures, when
the number of extended defects is substantial (the
middle panel), the majority of vacancy clusters are
characterized by a smeared distribution and a single
peak. In the case of higher dose accumulation rates
(the lower panel), when all defects are grouped into
spherical pores with almost identical dimensions 〈S〉,
the number of defects in the clusters is characterized
by a small concentration dispersion (in comparison
with the case T = 750 K and K = 10−6 d.p.a/s).

7. Conclusions

Within the generalized rate theory for the evolution
of point defects in irradiated materials and nickel,
as an example, the processes of pattern formation
for defects of the vacancy type have been studied.
The developed model makes allowance for the pro-
cesses of defect generation by the deformation fields
induced by defects themselves, as well as for the inter-
action between defects. The generalization of the dy-
namic approach has been carried out by introducing
a stochastic evolution component into consideration.

It was found that the action of elastic fields at
the stage of defect generation in the examined sys-
tem can give rise to the formation of bistable states
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at low dose accumulation rates, which are charac-
teristic of laser irradiation, and explains the ther-
mofluctuation mechanism of defect formation. The
phase diagram was plotted in the plane “dose accu-
mulation rate–temperature”, which revealed the re-
gion of bimodality existence. While studying the sta-
bility of the uniform defect distribution in a crys-
talline system in the framework of linear analysis,
it is shown that the spatial perturbations, which
are an impetus for the processes of pattern forma-
tion to run, emerge in restricted intervals of working
temperatures and dose accumulation rates. In the
case of a low dose accumulation rate, the first unsta-
ble mode is found to be characterized by a nonzero
wave number. In the framework of the linear ap-
proximation, it was demonstrated that the period
of formed defect patterns (vacancy or pore aggre-
gates) decreases with the growth of the dose accu-
mulation rate and the temperature, the result being
in agreement with known literature data (see, e.g.,
work [11]).

While studying the influence of the stochastic com-
ponent, which describes the action of microscopic pro-
cesses of defect formation and defines the statistical
character of pattern formation, it is found that, at
early stages of system’s evolution, this noise leads
to the destabilization of the uniform system state,
whereas it acts oppositely at later stages. This ef-
fect corresponds to the mechanism of entropy-driven
phase transitions in stochastic systems with internal
multiplicative noise. Therefore, it is necessary to con-
sider the random factors that can considerably affect
the dynamics of a system at various stages of its evo-
lution. It is established that this statistical approach
makes it possible to analyze the properties of station-
ary patterns.

While examining the conditions of the stationary
pattern formation in the framework of nonlinear anal-
ysis (in the case of weakly varying amplitudes in the
hydrodynamic mode), it is shown that the character
of pattern formation can be described, by using a sim-
ple equation for those amplitudes. The results of the
relevant research made it possible to plot the phase
diagram, which evidences that the emerging patterns
can be classed into stationary and transient (with a
finite time of existence) ones.

The described approaches are used to carry out a
numerical simulation, which allows the changes in the
morphology of defect patterns to be studied when

the temperature and the rate of dose accumulation
vary (within the intervals corresponding to those ob-
tained at irradiation in reactors). It was established
that, if a deviation in the phase diagram from the
pattern formation region is insignificant, the defects
become organized into extended clusters with low va-
cancy concentrations. As the temperature decreases,
the separate vacancy clusters, which can be identi-
fied as pores, are formed between the extended de-
fects. If the temperature decreases further or the
dose accumulation rate increases, the pores become
main structural units. With the help of correlation
analysis, it is found that the characteristic dimension
of pores is of the order of 100 nm, and the correla-
tion length can be slightly different from this value.
The latter circumstance testifies to a periodicity in
the arrangement of vacancy-induced pores in nickel,
which was confirmed by the results of researches of
the structural factor and the distribution function of
pores over their dimensions. The results of numerical
simulation completely agrees with those of analyti-
cal calculations; they qualitatively and quantitatively
correspond to the known experimental data obtained
for the pattern formation from defects of the vacancy
type [11].

Despite that the model discussed in this work does
not consider the dynamics of interstitial atoms, which
quickly migrate to sinks, and does not include the
emission of vacancies from pores (their dynamics is
not presented in the evolution equations), the devel-
oped approach can be used to study the behavior of
defects of the vacancy type not only under irradia-
tion conditions in reactors and laser pulses. It can be
applied also to the analysis of the defect formation
at irradiation on linear accelerators and when an ex-
ternal mechanical loading is applied to the crystalline
system.
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Д.О.Харченко, В.О.Харченко, А.I. Баштова

МОДЕЛЮВАННЯ ПРОСТОРОВОЇ
ОРГАНIЗАЦIЇ ТОЧКОВИХ ДЕФЕКТIВ
В ОПРОМIНЮВАНИХ СИСТЕМАХ

Р е з ю м е

Запропоновано узагальнений статистичний пiдхiд до опису
процесiв органiзацiї точкових дефектiв вакансiйного типу у
кластери та пори на прикладi нiкелю в рамках швидкiсної
теорiї, що враховує генерацiю дефектiв пружними полями
та взаємодiю дефектiв. Проведено дослiдження умов вини-
кнення структур дефектiв у робочих режимах опромiнення
в реакторах. Встановлено характер змiни мiкроструктури
при рiзних температурах та швидкостях набору дози в рам-
ках використання аналiтичних пiдходiв та методiв числово-
го моделювання. Дослiджено змiну перiоду структур та їх
характерних розмiрiв за допомогою статистичного аналiзу
даних моделювання. Отриманi результати узгоджуються з
експериментальними спостереженнями за процесами дефе-
ктоутворення при опромiненнi в реакторних умовах.
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