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Oliinychenko, Bugaev, and Sorin [arXiv:1204.0103 [hep-ph]] considered the role of conserva-
tion laws in discussing possible weaknesses of thermal models which are utilized in describing
the hadron multiplicities measured in central nucleus-nucleus collisions. They argued to ana-
lyze the criteria for chemical freeze-out and to conclude that none of them was robust. Based
on this, they suggested a new chemical freeze-out criterion. They assigned to the entropy per
hadron the ad hoc value 7.18 and supposed to remain unchanged over the whole range of the
baryo-chemical potentials. Due to the unawareness of the recent literature, the constant entropy
per hadron has been discussed in Refs. [Fizika B 18, 141 (2009), Europhys. Lett. 75, 420
(2006), Phys. Rev. C 85, 014908 (2012) and nucl-ph/1306.3291]. Furthermore, it has been
shown that the constant entropy per hadron is equivalent to the constant entropy normalized to
the cubic temperature, an earlier criterion for the chemical freeze-out introduced in Refs. [Eu-
rophys. Lett. 75, 420 (2006), Nucl. Phys. A 764, 387 (2006)]. In this comment, we list out
the ignored literature, compare between the entropy-number density ratio and two criteria of
averaged energy per averaged particle number and constant entropy per cubic temperature. All
these criteria are confronted to the experimental results. The physics of constant entropy per
number density is elaborated. It is concluded that this ratio cannot remain constant, especially
at large chemical potentials related to the AGS and SIS energies.
K e yw o r d s: hadron multiplicity, hadron yield ratios, heavy-ion collisions.

1. Introduction

In the preprint [1], Oliinychenko, Bugaev, and Sorin
have considered the role of conservation laws, the val-
ues of hard core radii along with the effects of the
Lorentz contraction of hadron eigenvolumes in dis-
cussing the weaknesses of thermal models, which are
utilized in describing the hadron multiplicities mea-
sured in the central nucleus-nucleus collisions. Re-
gardless the unawareness of earlier literature, the
authors concluded that none of the criteria for the
chemical freeze-out is robust. In doing this, they en-
tirely disregarded the indirect experimental results in
baryo-chemical potentials µb and their corresponding
temperatures T . A systematic analysis of the four cri-
teria describing the chemical freeze-out is introduced
in [2–4]. Furthermore, a comparison between these
four criteria is elaborated in [2–4].

Starting from phenomenological observations at
the SIS energy, it was found that the averaged en-
ergy per averaged particle ε/n ≈ 1 GeV [5], where the
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Boltzmann approximations are applied to calculating
ε/n, this constant ratio is assumed to describe the
whole T − µb diagram. For completeness, we men-
tion that the authors assumed that the pions and
rho-mesons get dominant, at high T and small µb.
The second criterion assumes that the total baryon
number density nb + nb̄ ≈ 0.12 fm−3 [6]. In the
framework of percolation theory, the authors of Ref.
[7] have suggested the third criterion. As shown in
Fig. 2 of [3], the last two criteria seem to give almost
identical results. All of them are stemming from the
phenomenological observation. The fourth criterion
based on lattice QCD simulations was introduced in
Ref. [2,3]. Accordingly, the entropy normalized to the
cubic temperature is assumed to remain constant over
the whole range of baryo-chemical potentials, which
is related to the nucleus-nucleus center-of-mass en-
ergies

√
sNN [4]. An extensive comparison between

constant ε/n and constant s/T 3 is given in [2, 3].
The thermodynamic quantities deriving the chem-

ical freeze-out in the framework of hadron resonance
gas are deduced in [2, 3]. Explicit expressions for s/n
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at vanishing and finite temperatures are introduced in
[2, 8]. The motivation of suggesting the constant nor-
malized entropy is the comparison to the lattice QCD
simulations with two and three flavors. We simply
found the s/T 3 = 5 for two flavors and s/T 3 = 7 for
three flavors. Furthermore, we confront the hadron
resonance gas results to the experimental estimation
for the freeze-out parameters, T and µb.

2. The Hadron Resonance Gas Model

The hadron resonances treated as a free gas [9–13] are
conjectured to add to the thermodynamic pressure
in the hadronic phase (below Tc). This statement is
valid for free resonances, as well as for strong inter-
actions between the resonances themselves. It has
been shown that the thermodynamics of a strongly
interacting system can also be approximated to an
ideal gas composed of hadron resonances with masses
≤2 GeV [12, 14]. Such a mass cut-off is implemented
to avoid the Hagedorn singularity [16]. Therefore,
the confined phase of QCD, the hadronic phase, is
modelled as a non-interacting gas of resonances. The
grand canonical partition function reads

Z(T, V ) = Tr
[
exp−H/T

]
, (1)

where H is the Hamiltonian of the system, and T is
the temperature. The Hamiltonian is given by the
sum of the kinetic energies of relativistic Fermi and
Bose particles. The main motivation of using this
Hamiltonian is that it contains all relevant degrees of
freedom of confined and strongly interacting matter.
Obviously, it can be characterized by various – but a
complete – set of microscopic states. Therefore, the
physical properties of the quantum systems turn to
be accessible in the approximation of non-correlated
free hadron resonances. Each of them is conjectured
to add to the overall thermodynamic pressure of the
strongly interacting hadronic matter. It includes im-
plicitly the interactions that result in the resonance
formation. In addition, it has been shown that this
model can submit a quite satisfactory description of
the particle production in heavy-ion collisions [9–13].
With the above assumptions about the dynamics, the
partition function can be calculated exactly and be
expressed as a sum over single-particle partition func-
tions Z1

i of all hadrons and their resonances.

lnZ(T, µi, V ) =
∑
i

lnZ1
i (T, V ) =

=
∑
i

±V gi
2π2

∞∫
0

k2dk ln
(
1± exp

[
µi − εi
T

])
, (2)

where εi(k) = (k2+m2
i )

1/2 is the i−th particle disper-
sion relation, gi is the spin-isospin degeneracy factor,
and ± stands for bosons and fermions, respectively.

The switching between hadron and quark chem-
istry is given by the relations between the hadronic
chemical potentials and the quark constituents; µi =
= 3nb µq + ns µS , where nb(ns) being the baryon
(strange) quantum number. The chemical potential
assigned to the light quarks is µq = (µu + µd)/2,
and the one assigned to a strange quark reads µS =
= µq − µs. The strangeness chemical potential µS
is calculated as a function of T and µi under the as-
sumption that the overall strange quantum number
has to remain conserved in heavy-ion collisions [12].

The HRG calculations assume quantum statistics
and an overall strangeness conservation. With this
regard, the strangeness chemical potential µS is cal-
culated at each value of T and µb assuring that the
number of strange particles should be the same as
that of the anti-strange particles. It is worthwhile to
mention that no statistical fitting has been applied in
determining all thermodynamic quantities, including
entropy and number density derived from Eq. (2).

As introduced in Ref. [12], the whole spectrum
of possible interactions is to be represented by the
S-matrix. A recent review on the estimation of the
excluded volume, which reflects the repulsive interac-
tion, as a function of

√
sNN is given in [15] and ref-

erences therein. According to [12], the fugacity term
can be expanded to include various kinds of interac-
tions. In such a way, the S-matrix gives plausible
scattering processes taking place in the system of in-
terest. It is found that including hadron resonances
with some effective masses has almost the same ef-
fect as that of a free particle with same mass. At
high energy, the effective mass approaches the physi-
cal value. In other words, even strong interactions are
taken into consideration via heavy resonances. These
conclusions suggest that the grand canonical partition
function is able to simulate various types of interac-
tions, when resonances with masses up to 2 GeV are
included. As elaborated previously, this mass cut-off
is supposed to avoid Hagedorn’s singularity. A con-
clusive convincing proof has been presented through
confronting HRG results to LGT [9–13].
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3. Physics of Constant
Entropy Per Number Density

From the entropy and equilibrium, the Gibbs condi-
tion simply leads to

s

n
=

1
T

( p
n

+
ε

n
− µb

)
, (3)

the rhs is positive as long as µb < p/n + ε/n, where
the thermodynamic quantities, p, ε and n are sup-
posed to be calculated at the T − µb diagram of the
chemical freeze-out. Figure 1 shows the experimental
estimation for the freeze-out parameters T and µb.
It is obvious that increasing µb leads to decreasing T,
and, therefore, all values of the thermodynamic quan-
tities decrease as well. Cleymans et al. [5] suggested
an empirical T − µb relation

T = a− b µ2
b − c µ4

b , (4)

where a, b and c are fitting parameters. Almost same
kind of restriction would be valid for ε/n. According
to Eq. (3),

ε

n
= T

s

n
+ µb −

p

n
. (5)

The physics of constant s/T 3 has been discussed
in Ref. [2, 3]. It combines the three thermodynamic
quantities, p/T 4, ε/T 4, and n/T 3:

s

T 3
=

p

T 4
+

ε

T 4
− µb

n

T 3
. (6)

At the chemical equilibrium, the particle production
at the freeze-out is conjuncted to fully fulfil the laws
of thermodynamics, as Eq. (3). The hadronic abun-
dances observed in the final state of heavy-ion col-
lisions are settled when s/T 3 drops to 7, i.e., the
degrees of freedom drop to 7π2/4. Meanwhile the
changing in the particle number with the changing in
the collision energy is given by µb, the energy that
produces no additional work, i.e. the stage of van-
ishing free energy, gives the entropy at the chemical
equilibrium. At the chemical freeze-out, the equilib-
rium entropy represents the amount of energy that
cannot be used to produce an additional work. In
this context, the entropy is defined as a degree of
sharing and spreading the energy inside the system,
that is in chemical equilibrium [3].

4. Constant Entropy per Number in Lattice
QCD Simulations and Heavy-ion Collisions

For completeness, we analyze s/n as measured in
LGT. Once again, the related literature on lattice
QCD simulations is not cited in [1]. For example,
Borsanyi et al. [17] studied the trajectories of con-
stant s/n, where s = S/V and n = N/V , on the
phase diagram and thermodynamic observables along
these isentropic lines. This was not the only work de-
voted to such line of constant physics [18]. In the
Stefan–Boltzmann limit, the ratio s/n is assumed to
remain unchanged with increasing µb (Appendix A
of [17]). In doing this, the lowest order in perturba-
tion theory is assumed, where the strangeness chemi-
cal potential µS likely vanishes. For µb/T , a limiting
behavior for the isentropic lines on the phase dia-
gram is obtained. The ratio s/n has been measured
at various

√
sNN [19]. It is concluded that, in lim-

its of low temperatures, increasing the chemical po-
tential results in an overestimation for the ratio s/n
even beyond the applicability region of the Taylor-
expansion method, which is applied in lattice QCD
simulations at a finite chemical potential. Two re-
marks are now in order. First, the values of s/n seem
to depend on the chemical potential µb or

√
sNN .

This is confirmed in different experiments [19] and
lattice gauge theory [17]. Second, the ratio s/n as
calculated in the lattice QCD simulations [17] is sug-
gested to characterized the QCD phase diagram [12],
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Fig. 1. The freeze-out parameters, T and µb, measured in
various heavy-ion collisions experiments (labelled) are com-
pared with the three criteria, ε/n = 1 GeV (double-dotted
line), s/n = 7.18 (dash-dotted line) and s/T 3 = 7 (solid line).
The s/n dotted curve seems to diverge at µb > 500 MeV, i.e.,
much high temperatures are needed to fulfil the condition
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Fig. 2. The thermal evolution of s/n at µb = 500, 630 and
750 MeV is presented. The horizontal dashed line indicates
s/n = 7.18. The singularities at low temperatures are stem-
ming from the almost vanishing number density

i.e., the deconfinement phase transition, while likely
differs from the freeze-out diagram [2, 3], especially
at large chemical potential µb or small

√
sNN . At

fixed µb, the critical (deconfinement) differs from the
freeze-out (hadronization) temperature. As per LGT,
the ratio s/n characterizes the deconfinement phase
transition, especially at a large chemical potential.

5. Results and Conclusions

In Fig. 1, the freeze-out parameters, T and µb, mea-
sured in various heavy-ion collisions experiments are
compared with the three criteria, ε/n = 1 GeV (dou-
ple dashed line), s/n = 7.18 (dash-dotted line) and
s/T 3 = 7 (solid line). The experimental data are
taken from [4] and the reference therein. The quality
of each criterion in describing the experimental data
is presented. All conditions are almost equivalent at a
very high energy or low chemical potential. The abil-
ity of the condition ε/n = 1 GeV at very low energies
are not as much as that of s/T 3 = 7. As discussed in
Section 3, s/n = 7.18 seems to fail to reproduce the
freeze-out parameters at µb > 500 MeV.

The dependence of the freeze-out temperature T
on µb starts to be non-monotonic at µb ∼ 400 MeV
(compare solid with double dot-dashed curves in the
right panel of Fig. 2). Starting from this value, the
resulting T increases with µb. At fixed µb values,
high freeze-out temperatures are needed to fulfil the
condition. This would mean that the freeze-out tem-
peratures at large µb become much higher that those

at vanishing µb. At higher chemical potentials, the
resulting dash-dotted curve diverges. To have a de-
tailed illustration for this observation, we firstly study
the thermal evolution of s/n at a very high chemical
potential, right panel of Fig. 2. Details on the uti-
lized HRG model are elaborated in Section 2. In this
figure, the ratio s/n is calculated a function of T , at
five fixed values of µb. We observe that s/n = 7.18
is eventually achieved at µb ≤ 500 MeV. At higher
chemical potentials, the condition s/n = 7.18 is ap-
parently not fulfilled. The ratio s/n never reaches the
value 7.18, i.e. singularity. Furthermore, we notice
that the thermal evolution of s/n is non-monotonic.
Three remarks are now in order. First, due to a small
particle number n at very small T , the ratio s/n gets
very large in this limit. In other words, the condi-
tion s/n = 7.18 might be fulfilled at very small T
and finite µb. This would be a kind of artifact, as the
physical interpretation is not related to the chemi-
cal freeze-out. Second, the ratio s/n raises with in-
creasing T . The resulting peak seems never reach the
value 7.18, i.e. there is no freeze-out temperature at
the given µb (singularity). Third, with increasing T ,
the ratio s/n slowly decreases, assuring the previous
remark.

The second criteria to interpret the observation
that s/n seems to diverge at large µb is based on
an analytical treatment to find out the value of µb at
which the freeze-out curve diverges. The latter means
that ∂T/∂µb = ∞ or ∂µb/∂T = 0. In doing this, we
start with s/n =const or

d
s

n
= 0. (7)

Then we get

n

(
∂s

∂T

)
d T + n

(
∂s

∂µb

)
dµb =

= s

(
∂n

∂T

)
d T + s

(
∂n

∂µb

)
dµb, (8)

which can be solved as follows.
∂µb
∂T

=
n ∂s
∂T − s

∂n
∂T

s ∂n
∂µb
− n ∂s

∂µb

. (9)

Thus, the divergence in the freeze-out parameter, T ,
under the condition that s/n =const is to be fulfilled
when we are succeeded in determining µb values, at
which

n
∂s

∂T
= s

∂n

∂T
, (10)
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is valid. Such µb values assure that the freeze-out
temperature diverges. In doing this, we may use the
classical limit

lnZ(T, µb) =
N∑
i

gi
2π2

T 3
(mi

T

)2
exp

(
µ

(i)
b

T

)
K2

(mi

T

)
,

(11)

where Kn is the n-th rank modified Bessel func-
tion. The baryo-chemical potential for the quark con-
stituents of each baryon µb = 3nbµq, where nb (µq)
being the baryon number (quark baryo-chemical po-
tential). At the chemical freeze-out line, it is con-
jectured that the partonic matter should absolve the
hadronization process into an equilibrated hadronic
matter. In light of this, we might assume that the en-
ergy of each state in the phase space could be given by
m, where m ' T . Then, the freeze-out temperature
diverges at the quark baryo-chemical potential

µq ≥ T. (12)

When µq becomes as higher as the temperature, then
the freeze-out temperature calculated according to
s/n = 7.18 rapidly diverges with increasing µb and
or
√
sNN . A quantitative estimation for µq is only

possible when taking the quantum statistics into con-
sideration.

The HRG calculations are performed as follows.
Starting with a certain µb, the temperature T is in-
creased very slowly. At this value of µb and each raise
in T , the strangeness chemical potential µS is deter-
mined under the condition that the strange quantum
numbers should remain conserved in heavy-ion colli-
sions. Having the three values of µb, T, and µS , then
all thermodynamic quantities are calculated. At each
step, the ratio s/T 3 is checked. When it reaches the
value 7, then the quantities like ε/n, nb+nb̄, and s/n
are registered. This procedure is repeated over all val-
ues of µb. Examples of such calculations can be seen
from the thermal evolution presented in Fig. 2. So
far we conclude that the applicability of s/n = 7.18
is limited to µb < 500 MeV.

Furthermore, the robustness of s/n = 7.18 is very
much limited in comparison to the four criteria: per-
colation [7], baryon number [6], energy per particle
[5] and normalized entropy [2, 3].

The coincidence that s/T 3 is accompanied with
constant s/n has been introduced in Ref. [2]. That

the authors of [1] argue that s/n = 7.18 is novel
likely ignores the related literature. The four criteria
[2, 3, 5–7] are based on the physical observation ei-
ther phenomenological and/or theoretical, while the
authors of [1] suggest an ad hoc value for s/n. It
is inapplicable at the AGS and SIS energies. Its re-
lation to s/T 3 is apparently overseen. The same is
valid for the comparison with other criteria (some of
them are ignored, completely) and for ignoring the
experimental measurements. The ad hoc value as-
signed to s/n is obviously not much robuster than
the other criterion. The unawareness of literature
and underestimating or even ignoring the previous
work would seen as a violation of the rules of scien-
tific research.
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КОМЕНТАР ДО СТАТТI
“ДОСЛIДЖЕННЯ ВIДНОСИН МНОЖИННОСТI
I ВИХОДУ АДРОНIВ У ЗIТКНЕННЯХ ВАЖКИХ IОНIВ”

Р е з ю м е

Олiйниченко, Бугаєв i Сорiн в [arXiv: 1204.0103 [hep-ph]]
розглянули роль законiв збереження для обговорюваних
можливих недолiкiв температурних моделей, що викори-
стовуються для опису адронних множинностей, вимiрюва-
них у центральних ядер-ядерних зiткненнях. Вони проана-
лiзували критерiї хiмiчного фрiзауту i зробили висновок,
що жоден з них не є надiйним. На цiй пiдставi вони за-
пропонували новий критерiй, взявши безпiдставно величи-
ну 7,18 для ентропiї на адрон, вважаючи, що вона незмiн-
на в всьому дiапазонi барiон-хiмiчних потенцiалiв. Через
недостатню iнформованiсть про поточну лiтературу, тема

постiйної ентропiї на адрон обговорювалася в Fizika B 18,
141 (2009), Europhys. Lett. 75, 420 (2006), Phys. Rev. C 85
014908 (2012) та nucl-ph/1306.3291. Було показано, що по-
стiйна ентропiя на адрон еквiвалентна постiйнiй ентропiї,
нормованої на температуру в кубi. Цей вiдомий критерiй
хiмiчного фрiзауту було введено в Europhys. Lett. 75, 420
(2006), Nucl. Phys. A 764, 387 (2006). У цьому коментарi
ми перераховуємо iгнорованi лiтературнi джерела та по-
рiвнюємо величину вiдношення ентропiї до щiльностi чи-
сла частинок i два критерiї: середня енергiя, нормована
на середнє число частинок, i постiйна ентропiя, нормова-
на на температуру в кубi. Цi критерiї суперечать експери-
менту. Ми розглянули фiзику постiйної ентропiї, нормова-
ної на щiльнiсть числа частинок, i зробили висновок, що
це вiдношення не залишається постiйним, особливо при ве-
ликих хiмiчних потенцiалах для енергiй синхротронiв AGS
i SIS.
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