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EINSTEIN EQUATIONS IN THE CASE OF STATIC
CYLINDRICAL SYMMETRY AND THE DIAGONAL
STRESS-ENERGY TENSOR WITH MUTUALLY
PROPORTIONAL COMPONENTS

The Einstein equations with the stress-energy tensor in the form of a diagonal matriz with mu-
tually proportional components are studied in the static cylindrically symmetric case. Several
known exact solutions fall into this case (static electric field, some perfect fluid solutions, and
solution with the cosmological constant). Coefficients of proportionality in the stress-energy
tensor serve as parameters that allow studying a more general case (as well as obtaining new
solutions for particular values of these coefficients). The initial system of equations is sim-
plified and transformed into a system of two first-order ordinary differential equations. An
exact solution is found for a broad set of parameters. The equilibrium points of the system
of equations are considered, and the qualitative behavior of the solutions near the hyperbolic

equilibrium points is studied.
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1. Introduction

The Einstein equations are considered in the case of
cylindrical symmetry without rotation together with
a stress-energy tensor T in the form of a diagonal
matrix with mutually proportional diagonal elements

p 0 0 0
0—p 0 0
J
To=10 0 -mp 0 | (1)
0 O 0 —np

where p is an unknown function, and [, m, and n are
some constants (not necessary discrete).

We chose such form of the stress-energy tensor,
because several typical cases fall into this category,
namely: the vacuum solution, solution with a static
electric field, stationary perfect fluid with the equa-
tion of state ¢ = ap, and the case of the cosmological
constant. Therefore, all these cases can be studied
simultaneously.
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The static cylindrically symmetric case has been
studied in numerous works. The vacuum solution
can be found in [1]. A number of solutions have
been obtained in the case of the electromagnetic
field [2-5].

The case of the perfect fluid has been reduced
to the second-order linear differential equation in
[7]. Starting with the metric tensor in different
forms and making various assumptions, several dif-
ferent solutions have been obtained in [7-11]. In the
case of a perfect fluid with the equation of state
€ = ap, the general solution has been found in
[13]. A stationary rotating perfect fluid has been
studied in [12].

The static cylindrically symmetric case with the
cosmological constant has been studied in [14]. A
nonlinear conformally invariant scalar field has been
considered in [15].

The embedding of the cylindrically symmetric con-
figurations in the external spacetime gained attention
in recent years [16-18|. For a discussion of the cylin-
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drically symmetric cosmological solution, see [19], the
collapse of a cylindrically symmetric configurations of
matter has been studied in several works (see, e.g.,
[20] and references therein).

The study of the gravitomagnetic effects under
cylindrical symmetry and their possible connection
to the astrophysical phenomena can be found in [21].

The investigation of cylindrically symmetric grav-
itational waves and related effects has a long his-
tory, starting from the work of Einstein and Rosen.
The modern interest in them arises from the gravi-
tation quantization and the problem of the energy of
a gravitational field. The literature on these ques-
tions is extensive, but we point only to one particular
work [22].

We reduce the Einstein equations to the system
of two first-order differential equations and find the
general solution for a quite general set of parameters
that characterize the stress-energy tensor (in all cases
with n = —1). In the case of a static electric field
(Il =—=1, m = —1, n = —1), this solution reduces to
that obtained by Raychaudhuri (see [5, 6]).

In the other cases, the system of equations can be
studied at least qualitatively. The general review of
the qualitative analysis of dynamical systems can be
found in [30], and work [25] is particularly devoted to
the qualitative analysis of a system of two equations.

Every solution of the system of first-order differ-
ential equations (in general, nonlinear ones) can be
thought as a curve in the phase space of the system.
Knowing the structure of the phase space, one can
describe the behavior of all solutions (including the
solutions with basically different behavior) for all ini-
tial conditions. Since the structure of the phase space
is largely determined by the equilibrium points of the
system, one can extract information about the be-
havior of the solutions without knowing their explicit

Different typical cases and corresponding

values of the parameters in the stress-energy tensor,
where k = %(l + m 4+ n + 1); the vacuum case

can be obtained by setting l =0, m =0, n =0,

and k = 0, bypassing the definition of k

l m n k
Static electric field -1 -1 -1 -1
Stationary perfect fluid @ 1 1 HTO‘
Cosmological constant -1 1 1 1
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form. The case where the system consists of only two
equations is practically the simplest one, has the ad-
vantage to be easily visualized and, thus, is the most
desirable.

In [23, 24|, the qualitative analysis had been ap-
plied to the Einstein equations in the case of the
spherical symmetry together with the stress-energy
tensor with mutually proportional components. The
stress-energy tensor had been parametrized by two
parameters — different values of these parameters cor-
respond to different fields: scalar field, perfect fluid,
etc. Then, the Einstein equations had been reduced
to the autonomous system of two ordinary differen-
tial equations, and the phase space of this system had
been studied in detail. It had been shown that differ-
ent metrics, corresponding to the different values of
parameters in the stress-energy tensor, demonstrate
the same qualitative behavior. The sets of parameters
that give rise to the metrics with similar qualitative
behavior had been identified.

Qualitative analysis has been used to study space-
time singularities in the presence of scalar fields [26].
The example of the qualitative analysis of cosmo-
logical models (in the Brans—Dicke theory) can be
found in [27].

We now find the equilibrium points of the system
of equations. It turns out that the system has a non-
hyperbolic equilibrium point and, if a certain relation
holds between parameters [, m, and n (k* = m(n+1)
with k = (I +m+ n+ 1), see below), acquires a set
of hyperbolic equilibrium points. We determine their
type in what follows.

2. Derivation of a System of Equations

We use the signature (+, —, —, —) and the system of
geometric units, in which ¢ = G = 1. The Einstein
equations are written in the following form:

R" — %5/@3 = 87T". (2)

We begin with the cylindrically symmetric static met-
ric [28]

ds*=e*Vat? — 2K 72U (dp? + dz?) — W2e 2Vdyp?. (3)

In accord with the usual convention, p is the “radial”
coordinate, and the coordinate “z” runs along the axis
of symmetry. Since we consider a static case, the
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unknown functions U, K, and W depend only on p.
The Einstein equations for the metric (3) are

"

2U-2K " /” 12 " 4
U"+2U -U*—-K"—— | =87l 4
€ ( ) 8 D, ( )

W/
e2U—2K (U’2 _ K/W) = —8mp, (5)
_p2U—2K (K” + U’Z) = —8mmp, (6)
W/ Wl/
_62U—2K (UIQ K/W + W) = —8mnp. (7)

Derivatives with respect to p are denoted by primes.

We multiply each equation by €272V and denote
II = 87pe?X =2V Then, multiplying the two last equa-
tions by —1, we obtain

W/ 1"
20" + 2U’— ~U? - K" - WW = (11, (8)
Wl
U? - K'— = —1II 9
W ) ( )
K" +U"”? =mll, (10)
W/ W//
- K — = nll. 11
U’ W + Tl (11)
Subtracting Eq. (9) from Eq. (11), we have
W/ WI/
2U" +2U' — —U? - K" — =11 12
+2U' 55 = UL (12)
Wl
U? - K — =-11 13
W ) ( )
K" +U"” = mll, (14)
1
W= (n+ DL (15)
In view of Egs. (14) and (15), we simplify (12) to the
form
W/
2U”—|—2U/W:(l+m+n+1)ﬂ, (16)
W/
U? - K'— =-II 17
o =1L (7)
K" +U” =mll, (18)
1"
= (n+ 1)IL (19)

w

We note that, in fact, this whole system consists of
only derivatives of some functions. At first, we denote
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U' =Q, K' = ®. If we also denote % = U, then
W2 — 4 P2, So, we obtain

w

2Q0 +2QV = (I+m+n+ DI, (20)
Q2 — U = 11, (21)
'+ O = mll, (22)
U+ 0?2 = (n+ DI (23)

Let us use the second of these equations to get rid
of IT in the other equations:

20 4+ 200 = (I +m + n + 1)(@¥ — O?), (24)
P+ O = m(dT — Q?), (25)
U+ 02 = (n+1)(2F — 0?). (26)

Thus, denoting k = (I + m + n + 1), we finally
arrive at a usable system of equations

Q' = -QU + k(¥ — Q?), (27)
' = —Q% + m(OV — O?), (28)
V=02 + (n+1)(2T — Q). (29)

The function II related to the “pressure” p as II =
8mpe?K =2V can be calculated from the solution of the
system as Il = ®U — 2,

3. Reduction to a System
of Two Equations

System (27) can be integrated once in two slightly
different ways.
Consider the substitution

Q = kF, (30)
® = G +mF, (31)
V=H+(n+1)F, (32)

where F', G, and H are some new unknown functions.
The inverse transformation is

(33)
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G:q)_%ﬂ, (34)
How-"Tlg (35)

Using it in system (27) leads to the following sys-
tem for F', G, and H:

F'=(mn+1)—k)F?> +mFH+

+HG-F)H+ (n+1)F), (36)
G' = (m(n+1) —k*)F? + mFH, (37)
H' =—-H(H+ (n+1)F). (38)
Let us subtract Eq. (37) from (36):
(F-G)Y=(G-F)H+ (n+1)F), (39)
H =—-H(H+ (n+1)F). (40)
We obtain immediately the integrable system
% =—(H+n+1F), (41)
H
7= —(H+ (n+1)F) (42)
or
Then
F—-G=CyH, (44)
where C' is a constant of integration.

Thus, system (36)—(38) reduces to
F' = —K*F* + (mF — CyH)(H+ (n+ 1)F), (45)
H =—-H(H + (n+1)F). (46)

There is a different version of substitution
(30)—(32):
Q=F+kH, (47)
® =G+ mH, (48)
U=(n+1)H. (49)
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With the inverse transformation

k

F=Q—- ——9U 50
v, (50)
m
G=d—- —VU 51
v, (51)
1
H= v, 52
n+1 (52)

Repeat the same steps as in the case of (30)—(32). All
transformations are alike, and we obtain the system

F'=—(n+1)FH, (53)
H'=—-Cp(n+1)FH+m(n+1)H*—(F+kH)*  (54)
together with the result of integration

CpF =G~ H, (55)

where C'r is a constant of integration in the case of
substitution (47)—(49).

4. A Special Case of the System of Three
Equations: k=0, n = —1

The first substitution works in all cases where k # 0,
and the second works if n # —1. It leaves the case,
in which £ = 0 and n = —1. In this case, the system
of equations can be integrated explicitly.

Setting £ = 0 and n = —1 in (27) gives us the
system

O =-QU, (56)
' = —Q% + m (T — O?), (57)
V=02, (58)
The definition of k£ implies that [ = —m, and we

deal with a stress-energy tensor of the form T*# =
= diag(—mp, —p, —mp, p).
Integrating the third equation, we have

1

v = o+ Oy (59)

where (] is a constant of integration.

The constant Cy only affects the position of the
axis of symmetry with regards to the coordinate p (it
is not fixed by metric (3) that we chose). Hence, we
may set C; =0, s0 U = %.
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Integrating the rest of equations, we obtain

_&

Q , 60
p (60)
2
P = & +Csp™, (61)
P
1
U =—, 62
p (62)

where C5 and C3 are constants of integration.
Integrating once more, we obtain the functions di-
rectly related to the components of the metric tensor:

U = n(Cap®™), (63
2 C
_ C3 3 m
K =n(Csp™2) + == 0", (64)
W= Cﬁpa (65)

and C4, Cs, and Cg are three more constants of
integration.

5. Solution for k£ # 0, n = —1

System (27) can be completely integrated in quite a
general case where n = —1 (and the stress-energy
tensor is T = diag(lp, —p, —mp, p)). As we will see
below, this is the case with W = p.

It is much harder to obtain the explicit expressions
for components of the metric tensor in this case. That
is why, in order to completely describe the reduction
of the problem to the system of only two differential
equations, we have left the values k = 0 and n = —1
as a separate case.

We will use the first substitution (30)—(32) and the
system that it produces (45)—(46) (the second substi-
tution does not work in this case).

Again, we will introduce several constants of inte-
gration. All of them will be denoted according to the
usual notation as Cy, Cs, and so forth.

So, we set n = —1 in (45)—(46) and obtain

F' = —k?F? + H(mF — CyH), (66)
H' = —H> (67)
Integrating the second equation, we have H = p-‘r%f
As in the previous case, we can set C; = 0, so
1
H=-. (68)
p
898

Then we are going to rearrange the right-hand side

of the first equation, so we have (kF — %H)2 in it
and

F'= —kK’F?+ H(mF — CyH) =
= _—k’F?>+mFH —CyH? =

22 m 7&2 2
= —KF? + 2kF - H <2k)H+

+ (;n—k)z H? — CyH? =

(o () ) e

Now, we want to get (kF — 3 )/ on the left-hand
side. Thus, we multiply the equation by k£ and then
add —3z H' to it:

(69)

(kF - %H)/ — K (kF f ﬁHf n

2k

m\? 2 m o
+k ((%) - CH) H?— ZH (70)
Using the second equation H' = —H?, we obtain
—H' = 22 H? and

m N m _\2
(bF — oo H) =~k (kF = 1) +

m\2 ml| o
+ [k: <(2k) - CH> + Qk] 2. (71)

Then we denote P =kF — 2 H and a = k((%)g -

—C’H) + 5 and insert H = %:
P =_kPt+ L 72
= + ek (72)

To solve it, we use the standard substitution Q@ = pP,
which allows us to separate variables:

' 102 _ 2_} _ay
pQ = —kQ*+Q+a= k(@ -Q k)—

9 1 1 1 a
:"“(Q IR P IRT= Y

1\ 1+ 4ak
:_k<(Q—%) —W).

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 9
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Then 2t22% can be both

We denote © = Q — =

2k 4k?2
I . . £/ [1+4ak
positive and negative. Denoting b = %,

have two cases in view of the sign of 1 4 4ak:

du kdp
wER p

(74)

Both are easy to integrate.

Hence, we use two different substitutions, depend-
ing on the sign of 1 4+ 4ak. In the case of the mi-
nus sign, we consider two substitutions depending on
whether u? < b? or u? > b?:

uw=btanhv, 14 4ak >0, u®<?b? (75)
w="bcothv, 144ak >0, u®>0b> (76)
u=btanv, 14 4ak <0, (77)

which gives us the following integrals (integrals in the
cases where u? < b? or u? > b? are the same):

1 dp 1
—g/dv:—k ?p—glan,

1 +4ak >0, u?<?b?, (78)
1 dp 1

—g/dv:—k/?p—glnC’g,

1 +4ak >0, u® >0 (79)

1 dp 1

g/d’l}:—k’ ?p_glncz, 1+4ak<07 (80)

where we have chosen the constant of integration to
be %ln C5 in order to simplify our formulas.
Then

v=1In (C’gpkb), 1+4ak >0, u®<b?, (81)
v=In(Cop*), 1+4ak >0, u®> b7 (82)
v=In(Cop*), 1+4ak <0. (83)
Thus,

u=btanhln (Cop™), 1+4dak >0, u®<b? (84)
u=bcothln (Cop"), 1+4ak >0, u®>0b* (85)
u=btanln (Cop~*), 1+ 4ak <O0. (86)
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Using tanh(Inz) = 21 and coth(lnz) = izi, we

241
have

022/)%[) -1 2 2
U:bm, 1+4ak‘>0, u <b, (87)

C3p** 41 2 42
U:bm, 1+40,k'>0, u >b, (88)
u=btanln (Cop~ "), 1+ 4ak <0. (89)

We now collect all the substitutjons and roll back to
the original function F: F = %(%% + % (u + i)) —
%("5,:21 + +u). The condition u? < b® transforms

into F' < kip (1 4+ b). Thus, together with H = %,
we have

Cl/m+1  bC3pP -1
p \ 2k2 k C3p2kb 4+ 1)°
1 /fm+1
1+4ak>0, F<—|——+b 90
+ dak > 0, <kp(2k +), (90)
1 f(m+1  bCEpM 41
p \ 2k2 k C3p2kb —1)7
1 /fm+1
1+ 4dak F>——+0 1
+4ak > 0, >kp(2k +>, (91)
1 /m+1 b kb
= ; (2]€2 + %tanln (ng )),
1+ 4ak < 0, (92)
1
H=". (93)
p

Now we will tidy up our notation. Recall that a =
m 2 m

1 +4ak =1+ m? — 4k*Cy +2m =

= (m+1)* - 4k*Cy, (94)

so the condition 1+ 4ak > 0 reads (m+1)? > 4k?Cy.
We denote

B = /|1 +4ak] = /|(m + 1) — 4k2Cy|,

sob:%. Then we have
1 C3pP —1
= 22 <m+ iz )
+1+3
1)? > 4k2 Fe 95
(m+1)? > 4k*Cy, F < T (95)
899
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1 20° +1
= 1 —
2k2p <m+ HngpB - 1>’

m+1+0
(m+ 1)2 > 4]C2CH, F > W, (96)
1 _B
F—m(m—i—l—ﬁ—ﬂtanln(Cgp )),
(m+1)? < 4k*Cyq, (97)
1
H=-, 98
p (98)
B =+/|(m+1)2 —4k2Cy]|. (99)

The choice between the first two solutions depends
on the initial condition (in p) for F', which can be ex-
pressed through the constant of integration Cy (basi-
cally, take the initial condition F(pg) at some point
po and compare it with ”EEJFB ). These two solutions
can be combined in a single formula. Denote C3 = oL
Then, in both these solutions, a; and as should have
the same sign. However, these solutions differ only by
the sign in front of C3. So, if we allow a; and as to
have different signs, then we embrace both solutions
simultaneously. We have

1 ﬂ a2
F= TP <m+ +ﬁ7a1p5 —|—a2>
(m+ 1) > 4k*Cyy, (100)
1 _B8
F—m(m—kl—&—ﬁtanln(Cgp )),
(m+1)? < 4k*Cy, (101)
H= %, (102)
B =+/|(m+1)% — 4k2Cx]|. (103)

Using the original substitution (30)—(32) and (44),
we obtain

Q=kF, (104)
®=(m+1)F—CyH, (105)
U= . (106)

Then, remembering that Q = U’, ® = K/, and ¥ =
= W'/W and gathering all together, we obtain

900

/%12 ((m+1) — 2k*Cyr+

+(m+ 1)6% dp+C (108)
a ,Oﬂ T ay 14 4,

W = Csp, (109)

(m+ 1) > 4k*Cy, (110)

B =+/|(m+1)2 - 4k2Cy], (111)

and C3, C4, and C5 are constants of integration.
For (m + 1) > 4k*Cp, we have

U /2; (m+1+5tan1n (02,0 ﬁ)) dp+Cs, (112)

1
/2]€2 (im +1)” 2420 +

+(m+1)Ftanln (02,0*%)) dp + C4, (113)
W = Csp, (114)
(m+1)? < 4k*Cyg, (115)
B=+/|(m+1)2 — 4k2C]|. (116)

The case (m + 1)? > 4k*Cy can be integrated to
the end. We have to calculate the integral

8 _
B ap” —a (117)
2kp a1p® + ao
We rewrite it as
3w
2kp arp®’ + agp 72" T
8/2—1 _ ,_—B/2—-1
ﬁ ap a0 dp (118)

ﬁ a1p5/2 +a2p*ﬁ/2

and note that the function in the numerator is the
derivative of the function in the denominator:

d -
@ (a1p5/2+a2p ﬂ/2> -

ﬁ( 8/2—1
dp 9 \11P

p—6/2—1>.
(119)
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Eventually, we have

o m+1

U= ok 1np+%ln (alpﬁ/Q—&—agp_ﬁ/Q)—l—Cg,, (120)
K= (m+ 1);; 2k%2Cy In ot

m}:g ! In (alpﬁ/2 + an—,B/z) + CYy, (121)
W = Csp, (122)
(m+1)? > 4k*Cy, (123)
B =+/|(m+1)% — 4k2Cy]|. (124)

The constants of integration C'5 and C5 can be set
to 0 and 1, respectively, by the choice of the coordi-
nates ¢t and .

6. Equilibrium Points of the System
of Equations and the Energy Conditions

Here, we are going to find the equilibrium points of
the systems of equations (45), (46) and (53), (54) and
to study those of them, which are hyperbolic.

We start with system (45), (46). The equilibrium
points of a system of ordinary first-order differential
equations are points, in which all first derivatives of
the unknown functions equal zero. Setting F” and H’
equal to zero in (45), (46), we have

—k?F? + (mF — CygH)(H+ (n+1)F) =0, (125)

—H(H + (n+1)F) = 0. (126)

In this section, F' and H will denote temporarily
the equilibrium points of the system.

Solving this system, we find the following points:
First and foremost, the equilibrium point at F = 0,
H =0. If k, m, and n satisfy the condition k> =
= m(n + 1), then there is a whole additional set of
equilibrium points parametrized as F = u, H = 0,
or, in other words, it is the axis F' in the phase plane
of the system.

It turns out that, about the point F = 0, H = 0,
all eigenvalues of the linearization of the system (Ja-
cobian matrix) equal zero, so this point is not hy-
perbolic, and the behavior of the solutions near this
point can be complicated.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 9
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Fig. 1. Phase portraits of system (45), (46) in the case of a
static electric field (I = —1, m = -1, n = -1, k = —1) for
Cy=-1/4
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Fig. 2. Phase portraits of system (45), (46) in the case of a
static electric field (I = —1, m = -1, n = -1, k = —1) for
Cy=1/4

In the case of the points F' = p, H = 0, eigenvalues
A(F, H) (eigenvalue A at an equilibrium point (F, H))
are A\ (F,H) =0, A\y(F, H) = —p(n+ +1). The first
zero eigenvalue indicates that we deal with a line of
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Fig. 4. Cosmological constant: [ = -1, m=1,n=1 k=1,
Cyg=-1/4

equilibrium points. The values of the second eigen-
value indicate that a solution either approaches the
corresponding point (negative values) or moves away
from it (positive values), at least far away from the
point F' =0, H =0.

The set of equilibrium points of system (53), (54)
is similar to that of the first system. The equilibrium
points are F = 0, H = 0, and, if k¥ = m(n + 1),
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Fig. 6. Phase portrait of the system that differs only in k£ from
the case in Fig. 5: k= -3, m=-2,n=-3,Cyg =-1/4

also a set ' = 0, H = p (note that, in this case, it
is the axis H).

The point F' = 0, H = 0 has the zero eigenvalues of
the corresponding Jacobian matrix. The eigenvalues
on the axis H are the same A\ (F, H) =0, \o(F, H) =
= —p(n+1).

As we can see, if k> = m(n + 1), then the system
of equations acquires a new set of equilibrium points,
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so it is of interest to get at least a superficial idea of
the behavior of the system in that case. In order to
do this, we will consider several phase portraits of the
system, which are computed numerically.

At first, we are going to look at phase portraits
in the well-known cases: static electric field, perfect
fluid, and solution with cosmological constant.

In order to do this, we also have to specify the
constant of integration C'y. If we write down system
(45), (46) in the case of a static electric field (I =
=—-1,m=—-1,n= -1, k = —1), then Cy must
be negative. For example, Cy = —1/4 corresponds
to the Mukherjee solution [29]. In Figs. 1 and 2, we
present two cases for Cy = —1/4 and Cyg = 1/4.

The next pair of phase portraits (Figs. 3 and 4) is
the perfect fluid (I =1, m =1, n =1, k = 2) and
the system with the cosmological constant (I = —1,
m=1,n=1,k=1); Cyg =—1/4 in both cases.

Figures 5 and 6 show the case where k* = m(n+
+1) (k= -2, m=-2,n= -3, Cg =—-1/4) in
comparison with a case that differs from the former
onlyink (k=-3,m=-2,n=-3, Cyg =-1/4).

The energy conditions [31] pose some restrictions
on the physically sensible values of parameters I, m,
and n. In our case, they lead to the following set of
inequalities:

Ip >0, (127)
lipl > Ipl, (128)
|ip| > |mpl, (129)
|ip| > |np). (130)
Dividing by |p|, we have
Ip>0, (131)
1] > 1], (132)
1| > |m], (133)
1| > |n|. (134)

The first inequality simply sets the sign of [ de-
pending on the sign of p.
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PIBHAHHS EMHIITEVHA YV BUIIAIKY
CTATUYHOI HNJIIHAPUYHOI CUMETPIL

TA JIATOHAJIBHUY TEH30P EHEPIII-IMIIYJIBCY
13 BBAEMHO IIPOIIOPLINHNMU KOMIIOHEHTAMN

Peszwowme

Posrnanaroreca piBusaHHsA EiffHINTelHAa Yy BUIAIKY CTATHYHOL
muaiHapugHol cuMerpil. Bubpanwuii TeH30p eHeprii-iMiynbcy
Ma€ BUIVISLT JiaroHaJbHOI MaTPHUIll 3 B3AEMHO IIPOMOPIIHIMEI
KOMIIOHeHTaMu. JleKiJibKa BiJJOMHUX TOYHUX PO3B’SI3KIB 3a10-
BOJIBHSIIOTH TaKi yMOBH (PO3B’S30K 31 CTATHYHUM €JIEKTPHIHIM

904

oJieM, YacTUHA PO3B’A3KIB 3 17€ajbHOIO PIAMHOIO, PO3B’A30K
3 KOCMOJIOTiYHOIO cTaio10). Koedinientn nponopriiiinocTi Mixk
KOMIIOHEHTaMH T€H30Pa €HePril-iMITyIbCy BUCTYIAIOTH IapaMe-
TpaMH, IO JO3BOJISIOTh BHBYATHU OIJbII 3arajbHUNl BHUIAJOK
(a TakOXK 3HAXOJMTH HOBI TOYHI PO3B’SISKH JIsl OKPEMHUX 3Ha-
yeHb KoedinieHTis). Po3ainenns 3MiHHUX [JO3BOJISE IPUBECTH
CHCTEMY PiBHSIHB IO CIIPOIIEHOI CUCTEMU 3 JIBOX 3BUYANHUX M-
depeH1iabHUX PIBHSHB IIEPIIOTO HOPSAKY. SHANIEHO TOYHUN
PO3B’sI30K CUCTEMH ISl IIIUPOKOrO Jialla30Hy 3HaYeHb Koedilri-
eHTiB. BuBUueHO TOUKHM piBHOBAaru CHCTEMH DIiBHSIHBL, Ha OCHOBI
aHaJI3y SKUX 3’sCOBaHa SKiCHA IOBEJiHKa PO3B’sI3KiB JJIsi BU-
Ma/IKiB IPOCTHUX CTaHIB piBHOBaru.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 9



