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STUDIES OF THE VIBRATIONAL ENERGY
LEVEL OF H2O BY ALGEBRAIC AND DFT APPROACHESPACS 03.65.Fd, 02.20.Sv,

33.20.Ea

The molecular spectroscopy is a branch of physics that deals with the interaction of electro-
magnetic radiation with matter. Within new theoretical approaches, we have calculated the
stretching and bending vibrational energy levels of a water molecule in fundamental and over-
tone modes. The present calculation not only predicts the higher overtones, but also shows
good agreement with a few experimental data.
K e yw o r d s: Lie-algebraic method, vibrational spectra, density functional theory (DFT),
H2O.

1. Introduction

To maintain the resonance with a rapid development
of sophisticated experimental approaches, theoretical
physics has been constantly tested to provide a col-
lection of satisfactory models that can account for
the experimental observations. Characterizing these
experimental data is also equally important for un-
derstanding the dynamics of chemical reactions and
the structure of molecules. The presented model is
based on the idea of dynamical symmetry, which is
expressed in the language of Lie algebras. Using the
algebraic technique, we obtain an effective Hamilto-
nian operator that conveniently describes the rota-
tional vibrational degrees of freedom of the physical
system [1–3]. We formulate algebraic models that
contain the same physical information for ab initio
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theories (based on the solution of the Schrödinger
equation) and semiempirical approaches (that use the
phenomenological expansions in powers of appropri-
ate quantum numbers). Various approaches have
been used so far in the study of molecular spectra.
Among them, we separate two following important
approaches: (i) Dunham expansion [4] and (ii) po-
tential approach [5]. A simple analysis of molecu-
lar rotational-vibrational spectra is provided by the
Dunham expansion. This is the expansion of energy
levels in terms of vibration–rotation quantum num-
bers. However, this expansion does not contain any
information about the wave functions of individual
states. Thus, the matrix elements of operators can-
not be directly calculated. In the Dunham expansion,
one needs a large number of parameters to describe
a large polyatomic molecule. Further, these parame-
ters have to be adjusted by a fitting procedure over
a conveniently large experimental database, which is
not always available. This is another serious draw-
back for this approach. As compared with the Dun-
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ham expansion, a better analysis of molecular spec-
tra is provided by the potential approach. Energy
levels are obtained by solving the Schrödinger equa-
tion with an interatomic potential. The potential
is expanded in terms of interatomic variables. The
solution of the Schrödinger equation provides wave-
functions, from which the matrix elements of various
operators can be calculated. In this approach, all ma-
nipulations are either differentiations or integrations.
Though the potential approach is better, as compared
with the Dunham expansion, it should be noted that
this approach also encounters difficulties as soon as
we consider highly excited levels. Moreover, a large
number of parameters are needed to achieve meaning-
ful results for a large polyatomic molecule. It should
be noted that the algebraic approaches to complex
spectra have already been proved useful in other fields
of physics. The algebraic models are successful mod-
els in the study of the vibrational spectra of small
and medium-sized molecules. Some small or large
molecules can be studied, by using the U(4) and U(2)
algebraic models. But the U(4) model becomes com-
plicated, when the number of atoms in a molecule
becomes more than four. On the other hand, the
U(2) model introduced by Wulfman and Levine is
found to be successful in explaining the stretching vi-
brations of polyatomic molecules such as tetrahedral,
octahedral, icosahedral, and benzene-like ones. The
brief review of the research work done with the al-
gebraic models up to the year 2000 and its outlook
and perception in the first decade of the 21st cen-
tury were presented by Iachello and Oss. Recently, it
is found that the Lie algebraic method [6–10] is ex-
tremely successful and accurate in calculating the vi-
brational frequencies of polyatomic molecules as com-
pare with the other methods such as the Dunham ex-
pansion and the potential approach method reported
earlier [11]. As a specific complementary technique to
the conventional approaches, the algebraic approach
has already proved to be successful in the study of
molecular spectra during the last 29 years. The highly
accurate prediction of molecular vibrations has been
a challenging task in theoretical physical chemistry
[12, 13]. Quantum chemistry allows one to obtain
the valuable estimations of vibrational energy levels.
As one of the best recent advanced approaches, we
mention the DFT method [14, 15].

In this paper, we use the algebraic and DFT
(B3LYP) methods to study the vibrational energy

levels of a water molecule in the fundamental mode
and compare our results with experimental data.

2. Algebraic Framework

Before applications of the algebraic method, it is es-
sential to begin with a brief review of the algebraic
model. The algebraic method has been introduced
as a useful computational tool for the analysis and
the interpretation of experimental rotational vibra-
tional spectra of large and medium-size molecules.
This method has been used extensively in chemical
physics and molecular physics. This method is based
on the idea of dynamic symmetry, which, in turn,
is expressed in the language of Lie algebras. By ap-
plying Lie algebraic techniques, we obtain an effective
Hamiltonian operator that conveniently describes the
rotational-vibrational degrees of freedom of the physi-
cal system [4]. The algebraic methods are formulated
in such a way that they contain the same physical
information of both ab initio theories (based on the
solution of the Schrödinger equation) and of semiem-
pirical approaches (using the phenomenological ex-
pansions in powers of appropriate quantum numbers).
However, by employing the powerful method of group
theory, the results can be obtained in a more rapid
and straightforward way [5]. In Lie algebraic ap-
proaches, U(4) and U(2) algebraic models have been
extensively used. The U(4) model deals with the ro-
tation and the vibration simultaneously, but it be-
comes quite complicated when the number of atoms
in a molecule are more than four. The U(2) model
has been particularly successful in explaining the
stretching vibrations of polyatomic molecules such as
benzene-like, octahedral, and icosahedral ones.

The algebraic model is based on the isomorphism
of the U(2) Lie algebra and a one-dimensional Morse
oscillator, whose eigenstates may be associated with
U(2) ⊃ 0(2) states. For a three-atom molecule like
A2B, we introduce two U(2) Lie algebras to describe
two stretching bonds (A–B), respectively. Two pos-
sible chains of molecular dynamical groups in three-
atom molecules are described by

U1(2)⊗ U2(2) ⊃ 01(2)⊗ 02(2) ⊃ 012(2)
Quantum
numbers: N1 N2 n m n + m, (1)

U1(2)⊗ U2(2) ⊃ U12(2)(2) ⊃ 012(2)
Quantum
numbers: N1 N2 v1 + v2, (2)
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where Eqs. (1) and (2) correspond to local and nor-
mal couplings, respectively. The quantum numbers
corresponding to various algebras are indicated by
n,m in Eq. (1) and v1, v2 in Eq. (2). N1 and N2

are vibron numbers corresponding to the number of
bound states of two oscillators and are constant for
the system. It is to be noted that n+m = v1 +v2 is a
conserved quantity. The bending motion can now be
assigned an algebra U3(2) to be combined with the
algebra U1(2)⊗U2(2) associated with the interacting
stretching motions.

The algebraic Hamiltonian in case of the stretching
mode of pyramidal molecules can be constructed from
two chains as

Ĥ = E0 +
3∑

i=1

AiĈi +
3∑

i〈j=1

AijĈij +
3∑

i〈j=1

λijM̂ij . (3)

In Eq. (3), there are three types of contributions.
The operators Ĉi are the Casimir invariant operators
of Oi(2)algebras, i=1, 2, 3. Their diagonal matrix
elements in the local basis |v1, v2, v3〉 are of the form〈
Ĉi

〉
= −4vi(Ni − vi), i = 1, 2, 3, (4)

with N1 = N2 = N3 = N . Interbond couplings can
be introduced in terms of operators associated with
products of U(2) and O(2) algebras related to differ-
ent interacting bonds. The term Ĉij leads to cross-
anharmonicities between pairs of distinct local oscil-
lators. It is diagonal with matrix elements given by〈
Ni, vi;Nj , vj |Ĉij |Ni, vi;Nj , vj

〉
=

= 4[(vi + vj)2 − (vi + vj)(Ni +Nj)]. (5)

The modes of three equivalent X-H bonds are now
mixed, shifted, and split under the action of the op-
erator M̂ij . The Majorana operator is used to de-
scribe local mode interactions in pairs and has both

Optimized structure of an
H2O molecule

diagonal and non-diagonal matrix elements given by

〈Ni, vi;Nj , vj | M̂ij |Ni, vi;Nj , vj〉 =
= viNj + vjNi − 2vivj ,

〈Ni, vi + 1;Nj , vj − 1| M̂ij |Ni, vi;Nj , vj〉 =

= − [vj(vi + 1)(Ni − vi)(Nj − vj + 1)]1/2
,

〈Ni, vi − 1;Nj , vj + 1| M̂ij |Ni, vi;Nj , vj〉 =

= − [vi(vj + 1)(Nj − vj)(Ni − vi + 1)]1/2
.


(6)

We now construct the local vibrational basis given by∣∣∣U1(2)⊗ U2(2)⊗ U3(2) ⊃ O1(2)⊗O2(2)⊗O3(2)
N1 N2 N3 v1 v2 v3

〉
.

(7)

The total vibrational quantum number is always con-
served for a particular polyadic structure.

3. Results and Discussion

Using the U(2) algebraic model, the vibrational
modes of a water molecule are computed using the
algebraic Hamiltonian up to the third overtone and
are listed in Tables 1 and 2 with fewer algebraic pa-
rameters (i.e., A, A12, λ12, and N).

The vibron number N can be determined by the
relation

Ni =
ωe

ωexe
− 1, i = 1, 2, 3, (8)

where ωe and ωexe are the spectroscopic constants of
diatomic molecules [16]. The value of N must be such
as initially guessed from Eq. (8); however, one can
expect changes in an estimated N , being not larger
than± 20% of the original value. The vibron numbers
N between the diatomic molecules H–O and H–H are
44 and 28, respectively. From the Figure, it is noticed
that some of the bonds are equivalent. It may be
noted that, during the calculation of the vibrational
modes of water molecules, the value of N is kept fixed
and not used as a free parameter.

The next step is to obtain a guess for the second
parameter A. The expression for the single-oscillator
fundamental mode is

E(ν = 1) = −4A(N − 1). (9)

In the present case, we have three energies, corre-
sponding to symmetric and antisymmetric combina-
tions of the different local modes. A possible strategy
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Table 1. Comparison between experimental and calculated vibrational energy levels (in cm−1) of H2O

(v1v2v3) Observed a (I)
Calculated

Population standard deviation Standard deviation

Algebraic method (II) DFT (III)

(1 0 0) 3657.05 3657.80 3737.96 37.9658 46.49842
(0 1 0) 594.74 1591.88 1603.23 4.81989 5.90314
(0 0 1) 3755.93 3747.56 3869.96 55.83175 68.37965
(2 0 0) 7201.54 7155.08 – 23.23 32.85218
(1 0 1) 7249.82 7244.48 – 2.67 3.77595
(0 0 2) 7445.05 7484.04 – 19.495 27.57009
(3 0 0) 10599.66 10580.76 – 9.45 13.36432
(2 0 1) 10613.41 10668.24 – 27.415 38.77066
(1 0 2) 10868.86 10794.43 – 37.215 52.62996
(0 0 3) 11032.40 11057.60 – 12.6 17.81909
(2 0 2) 13828.30 13665.93 – 81.185 114.81293
(3 0 1) 13830.92 13843.40 – 6.24 8.82469
(4 0 0) 14221.14 14211.45 – 4.845 6.85186
(1 0 3) 14318.80 14468.23 – 74.715 105.66297
(0 0 4) 14536.87 14536.44 – 0.215 0.30406

a Experimental data has taken from Ref. [17]

is to use the center of gravity of these modes, so the
guess for

↼

A =
↼

E

4(1−N)
. (10)

The third step is to obtain an initial guess for λ. Its
role is to split the initially degenerate local modes,
placed here at the common value E used in Eq. (10).
Such an estimate is obtained by considering the sim-
ple matrix structure. We can find

λ12
∼=
|E1 − E2|

3N
. (11)

With the help of a numerical fitting procedure (in a
least-square sense), the parameters A and λ12 start-
ing from values given by Eq. (10) and Eq. (11) and
A12 (whose initial guess can be zero) were adjusted.
Vibrational modes of a water molecule are computed
using the algebraic Hamiltonian up to the third over-
tone and are listed in Table 1.

Thus, we can say that the algebraic model Hamil-
tonian is successful in predicting the energies in a
complex molecular system. We believe that the more
satisfactory results will be obtained if the higher or-
der interactions are included in the algebraic Hamil-

Table 2. Algebraic parameters ∗ for H2O

Stretching parameters Bending parameters

N1 = N2 = N = 44 N3 = 28

A1 = A2 = A = −18.98 A3 = −14.76

A12 = −1.13 A13 = A23 = −3.66

λ12 = 1.02 λ13 = λ23 = 1.71

∗All parameters are in cm−1 except N , which is dimensionless

tonian. The fitting parameters for a water molecule
are given in Table 2.

4. Conclusion

In Table 1, the theoretical values are compared with
experimental vibrational energy levels of H2O. The-
oretical values obtained from algebraic calculations
are in close agreement with the experimental values
compared to DFT values. On the basis of a local
model, the highly excited vibrational energy levels
are predicted for an H2O molecule with few numbers
of parameters. We believe that the more satisfactory
results will be obtained if quadratic terms of interac-
tions will be taken into account. In last twenty five
years, the Lie algebraic approach was found to be suc-
cessful in explaining the vibrational energy levels of
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small and medium molecules, polymers, biomolecules,
and isopolymers. In view of many possible applica-
tions, it is hoped that the present calculation will
open new windows in the field of spectroscopy.

S.R. Karumuri thanks the Department of Science &
Technology (DST), New Delhi, India for the financial
support of this study.
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ДОСЛIДЖЕННЯ ВIБРАЦIЙНОГО РIВНЯ ЕНЕРГIЇ H2O
АЛГЕБРАЇЧНИМ МЕТОДОМ I МЕТОДОМ ТФГ

Р е з ю м е

Молекулярна спектроскопiя – це область фiзики, яка опи-
сує взаємодiю електромагнiтного випромiнювання з речо-
виною. У рамках нових теоретичних схем розрахованi рiвнi
енергiї молекули води для коливань з розтягуванням i ви-
гином для основної моди i гармонiк. Розрахунки не тiльки
передбачають вищi гармонiки, а i знаходяться в добрiй зго-
дi з експериментальними даними.
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