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TRUNCATED QCD-POMERON AT LHC ENERGIESPACS 12.40.Nn, 13.85.Lg

The eikonalized elastic proton-proton and proton-antiproton scattering amplitude F (s, t) as
a function of the available increasing energy is constructed with the use of the suggestion
of a finite sum of ladder diagrams calculated in QCD with a certain number of s-channel
gluon rungs and, correspondingly, the powers of logarithms in the total cross section. Explicit
expressions for the total cross section involving three and four rungs (four and five prongs)
with ln3 (s) and ln4 (s) as the highest terms, respectively) are fitted to the all available proton-
proton and proton-antiproton total cross section data. Predictions for the pp total cross section
at the LHC energy are given.
K e yw o r d s: proton-proton scattering, proton-antiproton scattering, QCD-Pomeron, LHC
energy.

1. Introduction

The renewed interest in high-energy soft interactions
is largely triggered by the recent LHC measurements
by the TOTEM [1] measurements of pp scattering.
The accessible energies offer new possibilities to check
the basic theoretical concepts, such as unitarity and
the properties of (multi) Pomeron exchanges.

In the present paper, we develop further and cal-
culate the effects coming from the Pomeron being a
finite sum of reggeized gluon ladders, different from
the “QCD or hard Pomeron”, which is an infinite sum
of such ladders [2–4], resulting in the so-called super-
critical behavior of the total cross section. In that
approach, the main contribution to the inelastic am-
plitude and to the absorptive part of the elastic am-
plitude in the forward direction arises from the multi-
Regge kinematics in the limit s → ∞ in the leading
logarithmic approximation. In the next-to-leading
logarithmic approximation, corrections require also
the contribution from the quasi-multi-Regge kinemat-
ics [5]. Hence, the subenergies between neighboring
s-channel gluons must be large enough to remain in
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the Regge domain. At finite total energies, this im-
plies that the amplitude is represented by a finite sum
of N terms [6], where N increases like ln s, rather
than by the solution of the BFKL integral equation
[2–4], though the possibility of the presence of a hard
Pomeron in hadron-hadron scattering should not be
rejected [7]. The interest in the first few terms of the
series is related to the fact that the energies reached
by the present accelerators are not high enough to
accommodate for a large number of s-channel glu-
ons that eventually hadronize and give rise to clus-
ters of secondary particles [8]. Consequently, one
can expand the “supercritical” Pomeron ∼sαp(0) in
powers of ln(s).

In Ref. [6], a model for the Pomeron at t = 0
based on the idea of a finite sum of ladder diagrams
in QCD was suggested. The opening channels (in
s) were considered as threshold effects, the relevant
prongs being separated in rapidity by ln s0, where s0
is a parameter related to the average subenergy in the
ladder. Within the “finite gluon ladder approach” to
the Pomeron (see [6] and references therein), several
options are possible. In Ref. [6], a system of intercon-
nected equations was solved with several free param-
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eters, including the value of si0, that determine the
opening of each threshold (prong). In [9], a unitariza-
tion procedure was also included: the QCD-inspired
amplitude was treated as a Born term subject to a
subsequent unitarization procedure.

In the present paper, we use the above-mentioned
“finite gluon ladder approach” to the unitarized QCD-
inspired amplitude of [9]. Explicit expressions for the
total cross section involving three and four rungs are
fitted to the p̄p and pp total cross section data from√
s = 5 GeV up to highest energy data [1], [10] for

several possible s0. For the sake of completeness, we
predict the pp total cross section resulting from this
model at the highest LHC energy.

2. Total Cross Sections
from a Finite Sum of Gluon Ladders

Following [6], we write the Pomeron contribution to
the total cross section in the form

σ
(P )
t (s) =

N∑
i=0

fi θ(s̄− s̄i0) θ(s̄i+1
0 − s̄), (1)

where

fi =
i∑

j=0

aijL
j , (2)

s̄0 is the prong threshold, θ(x) is the step function and
L ≡ ln(s̄). Here, by s̄ and s̄0 respectively, s/(1 GeV2)
and s0/(1 GeV2) are implied. The main assumption
in Eq. (1) is that the widths of the rapidity gaps ln(s̄0)
are the same along the ladder. The functions fi are
polynomials in L of degree i, corresponding to finite
gluon ladder diagrams in QCD, where each power
of the logarithm collects all the relevant diagrams.
When s increases and reaches a new threshold, a new
prong opens adding a new power in L. In the energy
region between two neighboring thresholds, the corre-
sponding fi, given in Eq. (1), is supposed to represent
adequately the total cross section.

In Eq. (1), the sum over N is a finite one, since
N is proportional to ln(s), where s is the present
squared c.m. energy. Hence, this model is quite dif-
ferent from the “canonical” approach [2], where, in the
limit s→∞, the infinite sum of the leading logarith-
mic contributions gives rise to an integral equation
for the amplitude.

By imposing the requirement of continuity (of the
cross section and of its first derivative), one constrains
the relevant parameters.

The same procedure can be repeated for any num-
ber of gaps.

Notice that the values of parameters depend on the
energy range of the fitting procedure. For example,
the values of parameters in f0 fitted in “their” range,
i.e. for s ≤ s0, will get modified in f1 with the higher
energy data and, correspondingly, higher order dia-
grams included.

As the first attempt, only three rapidity gaps that
correspond to two gluon rungs in the ladder were con-
sidered [6]. Fits to the pp̄ and pp data were performed
up to the highest energy Tevatron data 1.8 TeV. The
value of the rapidity gap turned out to be

√
s0 ≈

≈ 12 GeV, i.e. the value, for which the energy range
considered is covered with equal rapidity gaps uni-
formly.

3. Explicit Iterations of BFKL

From the theoretical point of view, the phenomeno-
logical model of Section 2 corresponds to the explicit
evaluation of gluonic ladders with an increasing num-
ber of s-channel gluons in QCD. This correspondence
is far from literal, since each term of the BFKL series
takes only the dominant logarithm as s→∞ into ac-
count. In the following, we give speciific expressions
for the forward high energy scattering amplitudes for
hadrons in the form of an expansion in powers of large
logarithms in the leading logarithmic approximation.

We start from the known results obtained in [3],
where an explicit expression for the total cross section
for hadron-hadron scattering has been obtained. In
the high energy limit, it is convenient to introduce
the Mellin transform of the amplitude

A(ω, t) =

∞∫
0

ds̃s̃−ω−1 ImsA(s, t)
s

, s̃ =
s

m2
. (3)

To obtain the total cross section, the ansatz of
Ref. [11] for the impact factor of a hadron in terms
of its form factor,
F0(k) = ak2e−bk

2
, (4)

was used [9]. As a result,

σt(s) =
πa2

2c

{
1 + 2(ln 2)ρ+

[
π2

12
+ 2(ln 2)2

]
ρ2+

+
1
3

[
π2

2
(ln 2) + 4(ln 2)3 − 3

4
ζ(3)

]
ρ3 + ...

}
, (5)
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where ρ is defined as

ρ =
3αs
π

ln s̃, (6)

and the Riemann’s zeta function ζ(3) ≈ 1.202. This
approach was used [9] to predict the total cross sec-
tion at the LHC energy. The strong coupling αs is
assumed to be frozen at a suitable scale set, for ex-
ample, by the external particles.

Now, we consider another Pomeron contribution
corresponding to four rungs:

σt = (πa2/(2b)[1+c1ρ+c2ρ2+(c3/3)ρ3+(c4/12)ρ4+...],
(7)

where

c1 = 2(ln 2), c2 =
π2

12
+ 2(ln 2)2,

c3 =
π2

2
(ln 2) + 4 (ln 2)3 − 3

4
ζ(3).

(8)

c4 =

1∫
0

dz

1− z

1∫
0

dt

1− t

[
R(zt)+

+
1
t
R
(z
t

)
+

1
z
R

(
t

z

)
+

1
tz
R

(
1
tz

)
−

−2R(z)− 2
z
R

(
1
z

)
− 2R(t)− 2

t
R

(
1
t

)
− 2R(1)

]
, (9)

where

R(a) =

1∫
0

dx

1− x

[
1

1 + ax
ln

(1 + ax)2

ax
+

+
1

a+ x
ln

(a+ x)2

ax
− 2

1 + a
ln

(1 + a)2

a

]
, (10)

R(1) = 2(ln 2)2 +
π2

12
. (11)

There, c4 = 10.145.

4. Fit with the Unitarized
QCD-inspired Pomeron

Apart the calculations of the total cross section in-
volving fits of a variety of Pomeron models, it is in-
teresting to estimate the value of s0, a basic parame-
ter in the finite series of QCD diagrams. Each set is
“active” in its rapidity gap, i.e. the parameters aij in
(2) should be fitted in each energy interval separately,

and the relevant solutions should be matched by im-
posing the continuity of the total cross section and
its first derivative. Here, we present the result of a fit
to the existing experimental data (including the new
LHC data [1]) and predict the values of total cross
section at the next LHC energy with the unitarized
contribution of the explicit BFKL iteration. As will
be seen below, the values of s0 are quite constrained
by the fits.

First of all, we must put
√
s0 > 5 GeV in the

framework of our approach. Second, each rapidity
gap must contains at least one experimental point.
As a convenient minimal value of rapidity gap, we
chose

√
s0 = 6.8 GeV, and, in estimating σtot(pp), we

are restricted by the maximal power ln4(s). From the
experimental data

√
s0 ≤ 24 GeV, one expects a high-

quality description of the total cross section with the
Pomeron contribution of (1), i = 0, including relevant
secondary Regge-pole terms.

To cover the whole fitted range, we choose the in-
terval 10.9 GeV ≤ √s0 ≤ 24 GeV, where four gaps
are sufficient to estimate the total cross section at the
maximal LHC energy. We have

f3(s) = a30 + a31L+ a32L
2 + a33L

3 (12)

for

s̄30 ≤ s̄ ≤ s̄40. (13)

For the remaining part of the studied region
6.8 GeV ≤ √s0 ≤ 10.9 GeV, it is necessary to take five
gaps into account to estimate the total cross section
at the LHC energy. In this case,

f4(s) = a40 + a41L+ a42L
2 + a43L

3 + a44L
4. (14)

for

s̄40 ≤ s̄ ≤ s̄50. (15)

Below, we perform such calculations in the frame-
work of the eikonal formalism and compare the results
with the experimental data.

We start from Eq. (7) for the pp and p̄p total cross
section. Supplying that expressing with an exponen-
tial t-dependence, we get the elastic scattering ampli-
tude

FBorn(s, t) = A(−is̃)1+α
′t[a0 + a1γ ln(−is̃) +

+ a2γ
2 ln2(−is̃) + a3γ

3 ln3(−is̃)]eBt, (16)
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Total p̄p (upper curve) and pp cross sections from the uni-
tarized (eikonalized) version of the model. The vertical lines
corresponds to the boundaries of rapidity gaps

where α′ and B are fitting parameters,

γ =
2αs
π

; (17)

and

a0 = 1 +
π2

4

(
π2

12
+ 2 ln2 2

)
γ2, (18)

a1 =
π2

4

[
π2

2
ln 2 + 4 ln3 2− 3

4
ζ(3)

]
γ2 + 2 ln 2, (19)

a2 =
π2

12
+ 2 ln2 2, (20)

Values of the fitted parameters
and calculated total cross sections at the LHC
energies. A in (16), (31) for different i rungs

Parameter
3 rungs 4 rungs

value error value error

A0 3.61 1.11 4.83 0.25
A1 1.77 0.92 3.44 0.25
A2 1.06 0.64 2.63 0.26
A3 0.59 0.46 2.09 0.27
A4 – – 1.66 0.27
αs 0.145 0.049 0.084 0.007
gf –6.17 0.53 –7.67 0.32

αf (0) 0.681 0.028 0.633 0.011
gω 3.61 0.17 3.72 0.18

αω(0) 0.463 0.015 0.452 0.015
s0, GeV2 121.0 – 49.0 –
σ(pp), mb

7 TeV 92.2 1.5 94.8 1.5
14 TeV 102.6 2.1 106.6 1.9

a3 =
1
3

[
π2

2
ln 2 + 4 ln3 2− 3

4
ζ(3)

]
, (21)

A = −a
2

8c
. (22)

In the eikonalization procedure, we follow Ref. [12],
according to which the Pomeron amplitude

FP (s, t) = is

∞∫
0

bdbJ0

(
b
√
−t
)(

1− eiχ(b,s)
)
, (23)

where J0 is the zero-order Bessel function and the
eikonal χ is

χ(s, b) =
1
s

∞∫
0

√
−td
√
−tI0(b

√
−t)FBorn(s, t). (24)

Inserting the expression for the Pomeron into
Eq. (24) and expanding the exponential in (23), we
find that the eikonalized Pomeron amplitude

FP = 2isξ
∞∑
k=1

1
kk!

(
− ξ
µ

)k−1

eµt/k. (25)

The corresponding forward Pomeron amplitude is

FP (s, t = 0) = 2isµ[C + ln(ξ/µ) + E1(ξ/µ)], (26)

where

µ = B + α′ ln(−is̃), (27)

ξ =
A

2m2
(ξ0 + ξ1 + ξ2 + ξ3), (28)

and

ξi = aiγ
i lni(−is̃), (29)

C = 0.577216 is the Euler constant, and E1 is
the asymptotic form of the first-order exponential
integral:

E1 =
exp(−ξ/µ)

ξ/µ

[
1− 1

ξ/µ
+

2
(ξ/µ)2

− 6
(ξ/µ)3

+ ...
]
.

(30)

For the case of four rungs, the Born amplitude is

FBorn(s, t) = A(−is̃)1+α
′t×
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×[a0 + a1γ ln(−is̃) + a2γ
2 ln2(−is̃)+

+a3γ
3 ln3(−is̃) + a4γ

4 ln4(−is̃)]eBt, (31)

where

a0 = 1 +
(πγ

2

)2(π2

12
+ 2 ln2 2

)
+ 5c4

(πγ
2

)4
, (32)

a1 =
π2

4

[
π2

2
ln 2 + 4 ln3 2− 3

4
ζ(3)

]
γ2 + 2 ln 2. (33)

a2 =
3π2

2
c4γ

2 +
π2

12
+ 2 ln2 2, (34)

a3 =
1
3

[
π2

2
ln 2 + 4 ln3 2− 3

4
ζ(3)

]
, (35)

a4 =
1
12
c4γ

4, (36)

where A, µ, γ and ξi are the same,

ξ =
A

2m2
(ξ0 + ξ1 + ξ2 + ξ3 + ξ4). (37)

The obtained eikonalized Pomeron terms are ap-
pended by a contributions from secondary Reggeons,
ρ and ω:

F±R (s, t = 0) = gf s̃
αf (0) ± igω s̃αω(0), (38)

where the +(−) sign corresponds to p̄p(pp) scattering,
the resulting forward amplitude being

F p̄ppp (s, t = 0) = FP (s, t = 0) + F±R (s, t = 0). (39)

For the total cross section, the norm

σ =
4π
s

ImF p̄ppp (s, t = 0) (40)

was used.
Consider the fitting procedure in the approach with

different numbers of rungs (power of log’s) in more
details. In the case of 3 rungs, for values

√
s0 within

the interval 10.9–24 GeV, the whole range of the data
5 GeV–7 TeV is covered. We have chosen the param-
eters B = 0.116 GeV−2 and α′ = 0.134 GeV−2 [9].

The parameters of secondary reggeons are the same
for the whole fitted experimental data region. Notice
that, in this approach for the Pomeron contribution,
there is only one free parameter in every separate in-
terval. Therefore, it is sufficient for its determination,

in principle, to have one experimental point. In our
case, this condition is fulfilled.

To estimate s0 in the remaining part of the whole
investigated region 6.8 GeV ≤ √s0 ≤ 10.9 GeV, we
added the new LHC [1] data. In our calculations,
s0 is not a free parameter. Instead, we have per-
formed a series of fits and have chosen a value s0
for the cases where χ2/dof ≈ 1. We find that this
condition is valid in the whole interval 6.8 GeV ≤
≤ √s0 ≤ 10.9 GeV, where αs is rather small ≈0.08.
The prediction of the total cross section at the 7-TeV
LHC energy crosses the experimental value within
the error bars. In the case of three rungs, how-
ever, the predicted value is unacceptably low. In
Table, two representative fits for s0 = 49 GeV2 and
s0 = 121 GeV2 are quoted. Throughout this paper,
we chose the fits with (χ2/dof) ≤ 1.0. The best fit is
quoted in Figure.

5. Conclusions

Our main goal was an adequate picture of the
Pomeron exchange at t = 0. In our opinion, it is nei-
ther an infinite sum of gluon ladders, as in the BFKL
approach [2–4], nor its power expansion. In fact, the
finite series – call it “threshold approach” considered
in Secs. 2 and 4 and in the previous papers [6], realizes
a nontrivial dynamical balance between the total re-
action energy and the subenergies equally partitioned
between the multiperipheral ladders.

The gap width s0 is an important physical pa-
rameter independent of the model presented above.
We have fitted it and obtained the value, which ex-
ceeds our previous estimates [6]. Another goal of the
present investigation was the comparison and the pre-
diction of the proton-proton total cross section at the
LHC energies with a QCD-inspired Pomeron model.
The model fits give values of σ (s) compatible with
the experiment at 7 TeV within the error bars and
consequently cannot be ruled out.
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garian Academy of Sciences Fellowship for Transfron-
tiery Hungarian Science. We are thank V. Bitev,
L. Jenkovszky, and E. Kuraev for discussions and the
valuable collaboration.
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ОБРIЗАНИЙ КХД-ПОМЕРОН ПРИ ЕНЕРГIЯХ ВГК

Р е з ю м е

Ейконалiзована амплiтуда F (s, t) пружного протон-
протонного та антипротон-протонного розсiяння побудова-
на на припущеннi скiнчених драбинних глюонних дiаграм,
розрахованих в КХД з певним числом глюонних сходинок i
вiдповiдно степенiв логарифма у повному перерiзi залежно
вiд доступної зростаючої енергiї. Точний вираз повного
перерiзу, що включає три або чотири сходинки з ln3 (s) та
ln4 (s), як члени вищих степенiв вiдповiдно, використано
для опису усiх наявних експериментальних даних повних
перерiзiв протон-протонного та антипротон-протонного
розсiяння. Зроблено передбачення протон-протонного
повного перерiзу при енергiях Великого гадронного
коллайдера.

708 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 8


