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OF THE METABOLISM OF A CELL

This work continues the study of the earlier constructed mathematical model of the metabolic
process running in a cell. We will consider autooscillations arising on the level of enzyme-
substrate interactions in the nutrient and respiratory chains, which leads to the self-
organization in autocatalysis of the integral metabolic process in cells. The autooscillations
organize themselves in the total metabolic process of cells at autocatalysis. The behavior of
the phase-parametric characteristic under a high dissipation of the kinetic membrane poten-
tial is analyzed. All possible oscillatory modes of the system and the scenario of formation
and destruction of reqular and strange attractors are studied. The bifurcations of the tran-
sitions “order-chaos”, “chaos-order”, “chaos-chaos” and “order-order” are calculated. The to-
tal spectra of Lyapunov indices and the divergences for all types of attractors on a part of
the phase-parametric characteristic under consideration are determined. For various types of
strange attractors, their Lyapunov dimensions, Kolmogorov—Sinai-entropies (KS-entropies),
and “predictability horizons” are calculated. Some conclusions about the structure of the chaos
of strange attractors and its influence on the stability of the metabolic process in a cell are
drawn.
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1. Introduction

The study of the processes of self-organization in alive
cells is one of the most important physical problems.
Its solution will allow one to answer many questions
about the physical nature of life. The most suitable
object of studies is the metabolic processes, in which a
complicated auto-oscillatory dynamics is manifested.
Such modes were found in the processes of photosyn-
thesis and glycolysis, the variation of the concentra-
tion of calcium in a cell, oscillations in heart muscle,
ete. [1-4].
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A complicated auto-oscillatory dynamics is also re-
vealed in widely applied bacteria Arthrobacter glob-
iformis. These bacteria are used in the decomposi-
tion of practically all hydrocarbons of oil, purification
of waste waters, production of tannic extracts, neu-
tralization of the toxic action of herbicides on plants,
biotechnologies, medicine, etc. In laboratory studies,
the researchers have found the unpredictable behav-
ior of these bacteria. The intensity of their growth
can vary without apparent reasons. The multistabil-
ity of stationary states and the auto-oscillatory modes
of growth are revealed.

Earlier at G.K. Skryabin Institute of Biochemistry
and Physiology of Microorganisms of the RAS, the
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studies aimed at the development of a biotechnolog-
ical process of transformation of steroids by immo-
bilized cells Arthrobacter globiformis in a bioreac-
tor were carried out. By the results of those stud-
ies, V.P. Gachok and V.I. Grytsay constructed and
studied a mathematical model of this.process. The
stationary modes obtained within the model corre-
sponded completely to experimental characteristics
and were published in several works jointly with
experimenters [5-8]. On the basis of the model,
the appearance of various auto-oscillatory modes
in granules with immobilized cells was theoretically
established [9].

The first experimental confirmation of this phe-
nomenon manifesting itself in the given population
of cells was obtained later by researchers at the In-
stitute of Microbiology of the RAS. The reason for
its appearance was unknown to experimenters. For
the quantitative interpretation of such unusual kinet-
ics, they used a modified base synthetic chemostatic
model (SCM) [10]. This model is based on some hy-
potheses about the presence of some functions of a
certain form, which describe the inhibition and the
inactivation of metabolic processes in cells, as well as
about the storage of glucose in the polymeric form.
Under such conditions, an oscillatory process arises
in the metabolism of a cell.

In 2002 at D.I. Mendeleev Russian Chemical-
Technological University, a PhD dissertation was suc-
cessively defended [11], in which the author con-
structed some model of auto-oscillations arising in a
population of the given cells and cited the works by
V.P. Gachok and V.I. Grytsay. The article describing
the model was published somewhat later [12]. In the
article, it was stated that the mathematical model
has a general character and can be applied to the
description of oscillations of the biomass of various
cells during their cultivation. The metabolic process
running in a cell was described with some conditional
intermediates. Oscillations in a population of cells
appear due to the self-regulation of their number ow-
ing to feedbacks with delay under the loss of viability
and the lysis of a part of cells due to the action of
certain internal factors.

The basic distinction of the model developed by
us from the above-mentioned one consists in that we
consider a specific real metabolic process of transfor-
mation of steroids, rather than a conditional one. We
study the dynamics of variations in the concentra-
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tions of real metabolites in a cell under the breaking
of the stationary modes, which corresponds to the
experiment. The purpose of our studies is the con-
sideration of intracellular oscillations arising on the
levels of substrate-enzyme interactions and the res-
piratory chain. These are intracellular oscillations in
the metabolic process. By this example, the laws of
self-organization of these oscillations and the appear-
ance of chaos in the metabolic process in a cell are
investigated. Just the manifestation of such oscil-
lations in the external medium is registered in ex-
periments. In the earlier above-mentioned models,
namely these extracellular oscillations were studied,
but the internal dynamics of the cell itself was not
considered.

By using the proposed model, we study a cell as
an object of synergetics and as a nonlinear open self-
organizing system. This approach allows us to con-
sider the structural-functional connections inside a
cell and to comprehend the physical laws of its vi-
tal activity.

In [13-21], the model was used in the numerical cal-
culations of spatio-temporal dissipative and chaotic
structures formed with the participation of immo-
bilized cells Arthrobacter globiformis in granules of
a bioreactor. The study showed that the oscilla-
tions observed in the external solution of a bioreac-
tor are created due to intracellular oscillations in the
metabolism. The diffusion instability changes only
the form of spatio-temporal structures. Therefore,
there appears the necessity to study the dynamics
of the metabolic process itself in a cell in more de-
tails. The numerical calculations within the model
involved a variation of the dissipation of a kinetic
membrane potential. This allowed us to determine
the intervals on the phase-parametric characteristic,
where the periodic, quasiperiodic, and chaotic attrac-
tors, whose dimension depends on the dissipation of
a kinetic membrane potential, are present. A regu-
larity in the sequence of the appearances of attrac-
tors on a toroidal surface was revealed. The sec-
tions, where the chaos arises by Feigenbaum’s sce-
nario, and an intermittence of the first kind were
determined. The Poincaré sections and maps were
studied, and the strange attractors, whose struc-
ture is formed with the help of folds and funnels,
were found. In what follows, we will carry out the
further study of the dynamics of a metabolic pro-
cess within the given model, as well as the regular-
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ities of scenarios of formation of strange attractors
under a high dissipation of the kinetic membrane
potential.

2. Mathematical Model
and Methods of Its Study

A mathematical model of the given metabolic pro-
cess is constructed with regard for the general scheme
of the metabolic process in cells Arthrobacter globi-
formis at a transformation of steroids [22-24]:
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where V(X) = X/ (14 X); VO(y) = 1/ (1 +4?);
V(X) is a function describing the adsorption of the
enzyme in the region of local coupling; and V(1) is
a function characterizing the influence of the kinetic
membrane potential on a respiratory chain.
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The variables in the equations are dimension-
less [5, 7].

We take the following values of parameters of the
system: | =11 = k1 = 0.2; Iy = 19 = 0.27; I5 = 0.6;
l4 = l6 = 0.5; l7 = 1.2; lg = 2.4; k‘g = 1.5; Elo = 3;
01 =2; Ny =0.03; m = 2.5; a = 0.033; a; = 0.007;
a1 = 0.0068; Eyy =1.2; 8 =0.01; 82 = 1; Ny = 0.03;
ag = 0.02; Gp = 0.019; N3 = 2; 79 = 0.2; a5 = 0.014;
a3 = g = Qg = Xy = 0.001; 020 = 0.015; N5 = 0.1;
NO = 00037 N4 == 1, K]_O =0.7.

Equations (1, a1, j) describe variables of the con-
centrations: Eq. (1a) — hydrocortisone (G); Eq. (1b) —
prednisolone (P); Eq. (1c) — 208-oxyderivative of
prednisolone (B); Eq. (1d) — oxidized form of 3-
ketosteroid— A’ — dehydrogenase (F1); Eq. (le) — re-
duced form of 3-ketosteroid — A’-dehydrogenase (e1);
Eq. (1f) — oxidized form of the respiratory chain
(Q); Eq. (lg) — oxygen (O2); Eq. (1h) — 2083 -
oxysteroid-dehydrogenase (Es); Eq. (1i) - NAD - H
(reduced form of nicotinamide adenine dinucleotide)
(N). Eq. (1j) describes the variation of the kinetic
membrane potential ().

The calculations are based on the Runge-Kutta—
Merson method. The set accuracy is 1078, Prior
to the approach by the system to an attractor, the
duration of the transient initial phase was taken to
be 1,000,000 in order to obtain the proper calcu-
lated values.

To construct the phase-parametric characteristic,
we used the method of sections. In the phase space
with a trajectory of the system, we drew the cutting
plane P = 0.2. Such a choice is supported by the
symmetry of oscillations relative to this point in mul-
tiple modes.

The spectrum of Lyapunov indices was calculated,
by using Benettin’s algorithm with orthogonalization
of the perturbation vectors within the Gram—Schmidt
method [23].

Here, we consider the zero Lyapunov index to be a
number, whose first significant number appears only
in the fifth decimal place. By this, we identified the
type of regular and strange attractors.

To classify the geometric structures of strange
attractors, we calculated their fractal dimensions.
Strange attractors are fractal sets and possess the
Hausdorff-Besicovitch fractional dimension. But its
direct calculation is a very difficult problem, which
has no standard algorithm. Therefore, we calculated
the Lyapunov dimension of attractors, as a quantita-
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tive measure of fractality, by the Kaplan—Yorke for-
mula [25, 26]

221 Ai

DF =m+ 5
' |)‘m+1‘

(2)
where m — number of the first Lyapunov indices in the
decreasing order, whose sum > " A; > 0; m+1 —
number of the first Lyapunov index, whose value
>\m+1 < 0.

In addition, we studied the variation of a distance
between close phase points of trajectories d(t) =
= |z2(t) — x1(t)| during the evolution of the sys-
tem (1,a — 1,j5). If the dynamics of the system is
chaotic, then d(t) increases exponentially with time:
d(t) ~ = d(0)e**. In this case, the mean rate of di-
vergence of trajectories is defined as k = M.
We consider also

In {ﬂ}
h= lim GO
d(0)—0 t—oo t

)

which is called the Kolmogorov—Sinai entropy or KS-
entropy [27,28]. With the use of the KS-entropy, we
determined the conditions, under which the modes
under study are chaotic or regular attractors. In
particular, if the dynamics of the system is periodic
or quasiperiodic, then the distance d(t) does not in-
crease with time, and the KS-entropy is equal to zero
(h = 0). In the presence of a fixed point in the sys-
tem, d(t) — 0 and h < 0. In the case of the chaotic
dynamics of the system, the KS-entropy is positive
(h > 0).

Since the values of characteristic Lyapunov indices
determine the rates of divergence of trajectories in
the m-dimensional phase space of the system, we use
the spectrum of Lyapunov indices for the calculation
of the value of h. By the Pesin theorem [29], the KS-
entropy corresponds to the sum of all positive Lya-
punov characteristic indices:

h=> A (3)

The KS-entropy allows us to estimate the rate of
loss of the information about the initial state of the
system. The positiveness of the entropy is a criterion
of the chaos. This gives the possibility to qualitatively
evaluate properties of the local stability of attractors.
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The value reciprocal to the KS-entropy,
tmin = hilv (4)

determines the time of mixing in the system and char-
acterizes how rapidly the initial conditions will be
forgotten. At ¢ < tpin, the behavior of the sys-
tem can be predicted with sufficient accuracy. At
t > tmin, only the probabilistic description is possi-
ble. The chaotic mode is unforeseen due to the loss of
the memory of initial conditions. The quantity ¢,
is called the Lyapunov index and characterizes the
“predictability horizon” of a strange attractor.

3. Results of Studies

Earlier, we studied the part of the phase-parametric
characteristic o € (0.032,0.32554) and established
that, at o = 0.032554, regular attractor 10 - 2° on
a torus holds in the system. We now continue the
study of oscillatory modes of the system under the
variable dissipation of a kinetic membrane potential.
Below in (Table 1), we present the calculated total
spectra of Lyapunov indices and the divergences for
the majority of modes under consideration.

Let v increase. We observe that, at a = 0.0326735,
strange attractor 10 - 2% appears instantly. Hence, we
have the transition 10 - 2° — 10 - 2% of the “order-
chaos” type. If the value of a grows, the given strange
attractor transits gradually to strange attractor 9 - 27
(v = 0.03269) (Fig. 1, a). In this case, we observe
the transition “chaos-chaos”. Then strange attractor
9-2% shrinks to quasiperiodic cycle ~ 9-2! on a torus
(a0 = 0.032694).

Let us consider the part of the phase-parametric
characteristic for o € (0.032694, 0.032706) (Fig. 1, b).
By passing from right to left, we see that regular at-
tractor 9 - 2% on a torus exists at o = 0.032706. As
the dissipation of a kinetic membrane potential in the
interval o € (0.032705,0.0327036) decreases, the os-
cillations on a toroidal surface are destroyed, and the
formation of the simple regular attractor 9 - 2! with
doubled period occurs (o = 0.032704). The further
decrease in o causes the renewal of cycle 9 - 2° on
a torus (o = 0.032703). At a = 0.0327014, we ob-
serve the formation of attractor 9 - 2! and the sec-
ond appearance of the period doubling bifurcation
on a torus. Then this cycle loses the stability, and
quasiperiodic cycle ~ 9 - 2! is formed on a torodoidal
surface (o = 0.032697).

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7



The Structure of a Chaos of Strange Attractors

G4 0.03269609 00327014 0.032704
:

1

5
0.15

a

0.16 L
055G 0.032694 0.032698 b 0.032703 0.032706X

Fig. 1. a) Projection of the phase portrait of strange attractor 9 - 2% at o = 0.03269; b) phase-parametric characteristic of the

system for o € (0.032694, 0.032706)

Table 1. Total spectra of Lyapunov indices for attractors of the system under study
(We do not show A4 — A9, because they are not important for our conclusions)

« Attractor A1 A2 A3 A0 A
.032554 10 - 20(¢) .000024 —.000001 —.004607 —.509882 —.918426
0.0326735 10 - 2% .000444 —.000027 —.005019 —.514817 —.922863
0.03269 9.2% .000396 .000035 —.004854 —.516039 —.924688
0.032694 ~9-21(t) .000054 —.000029 —.004812 —.515355 —.925486
0.03269609 9.20(t) .000056 .000018 —.004805 —.514496 —.924643
0.032697 ~9 21(t) .000070 .000004 —.004804 —.514505 —.924654
0.0327014 9-2%(t) .000031 .000002 —.004801 —.514363 —.924584
0.032703 9-20(t) .000023 .000001 —.004797 —.514369 —.924627
0.032704 9.21 .000052 —.000425 —.004113 —.516335 —.925214
0.032706 9.20(t) .000022 —.000019 —.004790 —.514520 —.924884
0.032866 9.20 .000049 —.000851 —.004304 —.516447 —.927297
0.03287086 9.2% .000154 —.000077 —.005312 —.518125 —.928356
0.032874 9.2% +» 8.2% .000111 .000008 —.005054 —.521442 —.933349
0.032875 8- 20(t) .000044 .000031 —.005042 —.521542 —.933617
0.0328765 8 .27 .000364 .000010 —.005139 —.522725 —.933812
0.032877 8- 25(t) .000042 —.000034 —.005031 —.521540 —.933605
0.032884 8-20(¢t) .000020 .000013 —.005039 —.521533 —.933816
0.0331 8.20 .000041 —.001030 —.004499 —.522401 —.936430
0.0332 7.20 .000013 —.000362 —.005280 —.530190 —.946471
0.0338 6-20 .000031 —.001004 —.005479 —.539588 —.961956
0.0346 5.20 .000044 —.001560 —.005593 —.552388 —.980067
0.0348 4.20 —.000016 —.001151 —.006220 —.576517 -1.008694
0.0375 3.20 .000024 —.002174 —.006569 —.595931 -1.048803
0.039 2.20 .000004 .002403 —.006890 —.647123 -1.112671
0.042 1.20 .000025 —.001510 —.007163 —.712164 -1.194750

The change of a section of the attractor of As « increases from 0.032706 (Fig. 1, b) to 0.032866
quasiperiodic cycle ~9-2! in the interval o € (Fig. 2, a), the oscillations on a toroidal surface
€ (0.0327,0.032694) is shown in Fig. 1, b. At a = of attractor 9-2° cease, and the ordinary periodic
= 0.03269609, we see the sudden appearance of reg-  9-fold cycle is restored (Table 1). But, the fur-

ular attractor 9 - 2° on a torus.
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ther increase in « (Fig. 2, a) leads to its aperiodic

681



V.I. Grytsay, 1.V. Musatenko
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Fig. 2. Phase-parametric characteristic of the system for a € (0.032866,0.032884) (a); projection of the phase portrait of a
strange attractor at the point of the mutual transition “chaos-chaos™ 9-2% « 8- 2% (a = 0.032874) (b)

fracture and to the formation of strange attractors
9 - 2% = 0.03287086). On the phase-parametric
characteristic (Fig. 2, a), we observe the formation
of the zones of stability and instability of a regular
attractor with the appearance of the mutual transi-
tions “order-chaos-order™ 9-2° < 9.2% « 9.2° The
further increase in « causes the instability of strange
attractors 9 - 2% and their self-organization in strange
attractors 8 - 2%.

In Fig. 2, b, we show the projection of the phase
portrait of a strange attractor at the point of the mu-
tual transition “chaocs-chaos™ 9 -2* < 8-2%(a =
= 0.032874). At o = 0.032875, there occur the con-
traction of phase trajectories and the appearance of
regular attractor 8 - 2° on a torus. As «a increases,
the given regular attractor becomes unstable, and
strange attractors 8-2% (a = 0.0328765, Table 1) are
formed. The further growth of o causes their ape-
riodic destruction and their alternation with regular
attractors 8 - 2° and 8- 2! on a torus. In the inter-
val a € (0.03287980,0.0328808) (Fig. 2, a), regular
attractors 8 - 2° are conserved. Then, in the interval
a € (0.0328809,0.0328828), strange attractors 8 - 2*
alternating with regular attractors of the 8-fold pe-
riod are formed. The transitions at the onset and
the end of this interval, 8 - 2% < 8.20 « §8.2%
in both directions, are realized through the period
doubling bifurcation and the intermittence. Then,
at o = 0.032884, attractor 8 - 20 arises again on a
torus and conserves its stability up to a = 0.033117.
Then it contracts in an ordinary periodic 8-fold cycle
(o =0.0331) (Table 1).
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The further variation of the multiplicity of an os-
cillatory process with increase in the dissipation of a
kinetic membrane potential can be traced with the
use of the whole phase-parametric characteristic (see
Fig. 3, a and Table 1).

Let us consider Fig. 3, a from right to left. At
a = 0.042, we observe a single periodic cycle 1-2°. As
« decreases, it is deformed, and its period increases
due to the bifurcation: 1-2° — 2.29 The further
decrease in « causes a deformation of the new cycle
and the appearance of 3-fold regular attractor 3 - 29
from this cycle. Then the scenario is repeated. The
appropriate cycle is deformed, and its multiplicity in-
creases by 1 at the points of bifurcations. We see the
successive increase in the multiplicity of regular at-
tractors. In Fig. 3, b, we present the projections for
some examples of regular attractors formed in the in-
terval o € (0.0328,0.042) with the following order of
the growing multiplicity of periods:

1-2%a =0.042) — 2- 2% = 0.039) —

— 3-2%a =0.0375) — 4-2%(a = 0.0348) —
—5-2%a =0.0346) — 6 - 2°(a = 0.0338) —
— 7-2%(a =0.0332) — 8-2°(a = 0.0331).

As a characteristic specific feature of such transi-
tions, we mention the absence of strange attractors on
the given part of the phase-parametric characteristic.
As « decreases, the multiplicity of autooscillations in
the metabolic process in a cell varies discretely due
to the the self-organization. We observe the “order-
order” transitions.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7
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Fig. 3. Phase-parametric characteristic of the system for o € (0.032,0.042) (a); projections of the phase portraits of regular
attractors (b): 1-20 (a = 0.042); 2-29 (a = 0.039); 3-2° (a = 0.0375); 4-2° (a = 0.0348); 5-2° (@ = 0.0346); 6-2° (o = 0.0338);

7-29 (@ =0.0332); 8-2° (a = 0.0331); 9- 20 (a = 0.0328)

At the increase of « from 0.0331 to 0.032884
(Fig. 2, a), regular attractor 8 - 29 holds.

In addition, Fig. 3, a demonstrates a change of
the dynamics of the metabolic process. In works
[22-23], this part of the phase-parametric character-
istic was studied in detail, and the following sce-
nario of variation of the multiplicity of attractors
was found:

8-2%(a = 0.0331) — 8- 27(a = 0.0328812) —
— 9-27(a = 0.03287086) — 9 - 2°(a = 0.032866) —
— 9-2%(a = 0.03269) — 10 - 2%(a = 0.0326735) —

— 10 - 2%(av = 0.032554) — 10 - 2%(av = 0.03254) —
— 11-2%(a = 0.032517) — 11 - 2%(ar = 0.0325) —

— 11-2%(a = 0.0324) — 12 - 2% (a = 0.032387) —

— 12 2% = 0.032386) — 12 - 2% (a = 0.03229) —
— 13- 2%(a=0.03227575) — 13 - 2°(a=0.032275) —
— 13- 2%(a = 0.03222) — 14 - 2%(a = 0.03217) —
—an - 29(a=0.03215962) — 14 - 2°(a=0.0321596) —

. 8-27(a = 0.03211295) — 8 - 2°(cv = 0.0321107) —
—1-2%a =0.032).

The transitions between multiple modes occur
through the intermediate formation of strange attrac-
tors. Here, we observe the “order-chaos-chaos-order”
transitions. At the limiting points of the interval cov-
ered by Fig. 3, a, regular attractors 1 -2° are estab-
lished for the minimum and maximum dissipations.
Inside the interval, we see the appearance of regular
and strange attractors with various multiplicities as
a result of bifurcations and the self-organization.

We now consider the fractality of strange attrac-
tors. As an example, we take strange attractor

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7

(9 « 8)-2% (v = 0.032874) for the transition between
9- and 8-fold cycles. By separating a small rectan-
gular region of the projection of the phase space in
Fig. 2, b, we map it onto Fig. 4, a. We now sep-
arate a small rectangular region in Fig. 4, a, which
includes one of the phase curves and present it as
Fig. 4, b. As is seen, the character of the geometric
structure of the given strange attractor is repeated
on small and large scales of the projection of the
phase portrait. Each arisen curve of the projection
of a chaotic attractor is a source of formation of
new curves. Moreover, the geometric regularity of
a structure of trajectories in the phase space is re-
peated. In Fig. 4, ¢, we show in detail that the ge-
ometric structure of the fractality is conserved also
in the mixing funnel of the given strange attractor.
This geometric structure reminds a two-scale Cantor
parametric set.

Since the direct calculation of the fractal dimension
of an attractor is an extremely complicated problem,
and no standard algorithms are available for its solu-
tion, we restrict ourselves only by the calculation of
their Lyapunov dimension Dg, Eq. (2).

We obtain that the Lyapunov dimension of all reg-
ular attractors of simple periodic cycles is equal to
1 and that of the regular attractors on a toroidal
surface, which correspond to quasiperiodic cycles, is
equal to 2.

We now calculate the fractal dimension for certain
strange attractors (see Table 2). In addition, we cal-
culate also the KS-entropy h Eq.(3) and the Lya-
punov index tmin Eq. (4).

683



V.I. Grytsay, 1.V. Musatenko

0.07

£

0.094 F——

0.518

0.078
0.534G 0.5310

b

0.14
0.5318G 0.24

Fig. 4. Reconstruction of the fractal structure of strange attractor (9 < 8)-2* (o = 0.032874); a) part separated by the dotted
line in Fig. 2, b; b — part separated by the dotted line in Fig. 4, a; ¢) region of the formation of a deterministic chaos in the

mixing funnel (see Fig. 2, b) in the phase plane (G, F1)

Table 2. Total spectra of Lyapunov indices for the strange attractors in Fig. 5
(We do not show Ag — A9, because they are not important for our conclusions)

o Attractor A1 A2 A3 A10 A
.0328715 8.2% .000377 .000008 —.005274 —.520953 —.931419
.032168 14-2% 727 .000633 .000032 —.003070 —.504745 —.901347
.0321646 7-2% .000424 .000013 —.001350 —.515424 —.903255
.03211295 8.2% .000264 .000044 —.002043 —.507700 —.898147

Their phase portraits are presented in Fig. 5. At
a = 0.0328715, strange attractor 8 - 2% appears
(Fig. 5, a). Inside itself, it forms a funnel, where we
observe the mixing of diverging trajectories of this
unstable period. The deterministic chaos is forming.
The further decrease of « is accompanied by a com-
plication of the structure of the strange attractor. For
example, at a = 0.032168 (Fig. 5, b), a more compli-
cated strange attractor arises as a result of the inter-
mittence of two chaotic processes: 14 - 2% and 7 - 2*.
Inside it, a funnel is located. The attractor is formed
by two sources of chaotic autooscillatory processes:
the transformation of steroids G — P — B and a
change of the activity of a respiratory chain due to
variations of the kinetic membrane potential . Ac-
cording to the definition given by Pomeau and Man-
neville, such a transition is called an intermittence of
the first kind [30-33].

At a = 0.0321646 (Fig. 5, ¢), strange attractor
7 - 2% appears. Its specific feature is the absence of
a funnel. Nevertheless, the attraction regions of an
unstable 7-fold cycle are clearly distinguished on the
phase portrait.

At o = 0.03211295 (Fig. 5, d), we see strange at-
tractor 8 - 2. It differs significantly from strange at-
tractor 8 - 2 (Fig. 5, a), has also no funnel, and the
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attraction regions of its trajectories are closed narrow
strips with 8-fold period.

In this case, the KS-entropies of these modes de-
crease in the following sequence: 0.000665 (Fig. 5, b);
0.000437 (Fig. 5, ¢), 0.000385 (Fig. 5, a), and
0.000308 (Fig. 5, d). The KS-entropy indicates the
value of unpredictability for the motion of the phase
trajectory of a strange attractor and characterizes the
value of chaoticity of its deterministic chaos. The
higher the KS-entropy, the greater the exponential
divergence of phase trajectories along the perturba-
tion vector corresponding to A; and A;. For the
rest vectors corresponding to the negative values of
A3 — Ao (Table 2), the phase trajectories exponen-
tially contract to the own attractor. As the KS-
entropy increases, the structure of a chaos is com-
plicated (compare Fig. 5, d, a, ¢, b). Among the
modes under study, the mode shown in Fig. 5, d is
the most ordered.

In the same figures, we show the values of “pre-
dictability horizon” and the fractal dimension of
strange attractors. The mode shown in Fig. 5, d
(tmin = 3247) turns out to be the most predictable as
compared with those shown in Fig. 5, a (t;in = 2597),
Fig. 5, ¢ (tmin = 2288), and Fig. 5, b (tmin = 1504).
In these modes of deterministic chaos, the metabolic
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The Structure of a Chaos of Strange Attractors

Fig. 5. Structure of the chaos of strange attractors: 8 - 2% (a = 0.0328715), tmin = 2597, h = 0.000385, Dg, = 2.073000,
A = —0.931419 (a); 14 - 2% < 7 - 2% (a = 0.032168), tmin = 1504, h = 0.000665, Dp, = 2.216612, A = —0.901347 (b); 8 - 2%
(v = 0.0321195), tmin = 3247, h = 0.000308, Dg, = 2.150759, A = —0.898147(d)

process is predictable only in the determined time in-
tervals tmin-

As distinct from the KS-entropy, the Lyapunov
dimension of the given modes, which characterizes
the fractality of these strange attractors, increases
by a somewhat different sequence: Fig. 5, a (Dp =
= 2.073000), Fig. 5, d (Dg = 2.150759), Fig. 5, b
(Dgy = 2.216612), and Fig. 5, ¢ (Dg = 2.323704).

This can be explained by that the Lyapunov dimen-
sion for these modes is determined not only by A; and
A2, but also by |A3] Eq.(2), which characterizes the
deformation of an element of the phase volume along
the relevant perturbation vectors. The deformation
increases with Ay and with decrease in |A3].

In addition, the deformation of the total volume
is also determined by the values of remaining nega-
tive Lyapunov indices Ay — Ajg (Table 2). On the
whole, the magnitude of such a change of the vol-
ume is determined by the divergence of a relevant
mode (Table 2), namely: A = —0.898147 (Fig. 5, d),
A = -0.901347 (Fig. 5, b), A = —0.903255 (Fig. 5, c)
and A = —0.931419 (Fig. 5, a).

The mode in Fig. 5, d is the most functionally sta-
ble for a cell. The metabolic process in a cell is self-
organized, so that it possesses the least dissipation
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and the highest “predictability horizon”. At the given
coefficient of dissipation of the kinetic membrane po-
tential, « = 0.03211295, the insignificant variations
of parameters of the system do not cause a change of
the dynamics of the metabolic process.

Analyzing the presented typical strange attractors,
it is possible to indicate a certain regularity of the
hierarchy of the chaotic behavior in the metabolism of
a cell. The structures different in their characteristics
replace one another. As a result, the cell adapts to
varying conditions of the environment and conserves
its functionality.

4. Conclusions

With the help of the mathematical model of a cell,
we have performed the study of the dynamics of the
metabolic process in the mode of oscillations under
the enhanced dissipation of a kinetic membrane po-
tential. The scenarios of formation and destruction
of regular and strange attractors with various peri-
ods and types are determined. The boundaries of the
phase-parametric characteristics of regions, where the
bifurcations and the transitions “chaos-order”, “order-

chaos”, “chaos-chaos”, and “order-order” arise, are
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given. The total spectra of Lyapunov indices and the
divergences are calculated. For some typical types
of strange attractors, we have determined Lyapunov
dimensions of their fractality, KS-entropies, and “pre-
dictability horizons”. The structure of the chaos of
attractors, the hierarchy of their kinds, and the in-
fluence of the chaos on the stability of the metabolic
process, and the adaptation and the functioning of a
cell are studied.

One of the purposes of the present work is to
demonstrate a possibility to apply the mathemati-
cal apparatus of nonlinear dynamics to the study of
the dynamics of metabolic processes within a spe-
cific model. This allows us to consider the structural-
functional connections in a cell and the laws of its self-
organization. These systems are the excellent field for
applying the methods of nonlinear dynamics to the
analysis of the multidimensional systems of nonlinear
differential equations.

The work is supported by the project
No. 0112U000056 of the National Academy of
Sciences of Ukraine.
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B.J. I'puyati, I.B. Mycamenxo

CTPYKTVYPA XAOCY JIMNBHUX ATPAKTOPIB
MATEMATUYHOTI MOAEJII METABOJII3MY KJIITUHU

Peszmowme

Iana poboTa € IPOJOBXKEHHSIM JIOCJII/I2KEHb TOOYI0BaHOI pa-
Hillle MaTeMaTU4HOI MOJEeJi MeTabOJIYHOTrO MPOIECY KJITH-
HU. JIOCHPKYIOTBCSI aBTOKOJIMBAHHS, 1110 BUHUKAIOTH Ha PiB-
Hi dPepMeHT-CyOCTPATHBIX B3AEMO/IIN 1 JUXAJBHOTO JIAHIIOTA.
IIpu aBTOKaTAaNi3l BiAOYBAETHCs IX CAMOOPraHi3allisi B €IUHOMY
MeTabostiuHoMy 1porneci Kiaituau. [IpomoBKyeTbest 10CIii2KeH-
He (pasonapaMeTpUYHOl XapaKTEPUCTUKHU DU ITiIBUINEHIH Tu-
cunanil KiHeTUYHOro MeMOpaHHOro noreHmiasy. JlocitimkeHo
BCi MOXKJIMBI KOJIMBaJIbHI PEXKMMHU CHCTEMH. BUBYEHO cIlieHa-
piit dopmMyBamus i pyiiHanil peryasipHUX Ta AUBHUX aTPAKTO-

piB. 3uaiineno 6Gidypkanii nepexonis “nopsmgok-xaoc”,

opsiIoK”,

Xa0c-
xa0c-xa0c” 1 “IopsiIOK-NopsiioK”. 3HalIeHO MTOBHI
CIIEKTPHU ITOKa3HUKIB JIsmyHoBa i quBeprenuii jjsi BCix BUIIB
aTpakTOpiB Ha JIAHIN da30mapaMeTPUIHOl XapaKTEPUCTHKU,
IO PO3IIISAA€ThCs. [y pi3HUX THIIB JUBHUX aTPAKTOPIB PO3-
pPaxoBaHO 1X JIAMYHOBCBKI poamipHocti, KC-enrpomii Ta “ropu-
30HTH nepen6aIyBaHoCTi’. 3po0IeHO BUCHOBKHY IIPO CTPYKTYPY
XaoCy IMBHHUX aTPAKTOPIB i HOro BILUIMB Ha CTiiikicTb meTabo-
JIMHOTO MIPOIECY KJIITHHH.
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