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EFFICIENT MPS ALGORITHM FOR PERIODIC
BOUNDARY CONDITIONS AND APPLICATIONS

We present the implementation of an efficient algorithm for the calculation of the spectrum of
one-dimensional quantum systems with periodic boundary conditions. This algorithm is based
on a matriz product representation for quantum states (MPS) and a similar representation
for Hamiltonians and other operators (MPO). It is significantly more efficient for systems
of about 100 sites and more than for small quantum systems. We apply the formalism to
calculate the ground state and the first excited state of a spin-1 Heisenberg ring and deduce the
size of a Haldane gap. The results are compared to previous high-precision DMRG calculations.
Furthermore, we study the spin-1 systems with a biquadratic nearest-neighbor interaction and
show the first results of an application to a mesoscopic Hubbard ring of spinless fermions,
which carries a persistent current.
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1. Introduction

It was recognized early on that the density matrix
renormalization group (DMRG) simulations of one-
dimensional (1D) quantum systems require signifi-
cantly more numerical resources for periodic bound-
ary conditions (PBC) than that for open boundary
conditions (OBC) [1]. Verstraete, Porras, and Cirac
(VPC) [2] addressed this issue, and they proposed an
algorithm in terms of matrix product states (MPS),
which scales significantly better with the matrix size
m of the MPS than the standard DMRG with PBC.
However, the intermediate steps of this algorithm re-
quire matrices of size m? xm?2, and the computer time
and memory necessary to determine the improved
representation still scale with m® as compared to m3
for OBC.

This issue was addressed by Pippan, White, and
Evertz (PWE) [3], who recognized that, for suffi-
ciently large systems, a much more efficient imple-
mentation is possible with the use of a singular value
decomposition (SVD) of products of certain transfer
matrices. In order to calculate such products with
sufficient accuracy, only rather few singular values
must be kept.
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The usefulness of the improved algorithm was
demonstrated in Ref. [3] by a calculation of the
ground state of the spin-1 Heisenberg Hamiltonian.
The authors showed that the accurate results for the
ground-state energy are obtained by a comparison
with highly accurate standard DMRG calculations.
As a result, it was concluded that, for large enough
systems, one obtains an algorithm that scales simi-
larly with m as calculations for systems with OBC.

In the present paper, we extend the PWE algo-
rithm in two respects: first, we propose an imple-
mentation of this algorithm in terms of MPS and ma-
trix product operators (MPO). To this end, we define
generalized transfer matrices, which are subjected to
an SVD. This enables further gains in the efficiency
in certain situations. Second, we extend the PWE
framework and include the calculation of the excited
states of 1D many-body Hamiltonians.

We apply this algorithm to a small collection of
spin models (bilinear and biquadratic spin-1), as well
as to a spinless fermion model. In the course of these
applications, it was found that the number of singular
values one must keep depends generally on the matrix
size m, i.e., the larger m, the more singular values must
be kept in order to produce high-precision results.

From the MPS representation, it is straightforward
to calculate correlation functions and other observ-
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ables. The results of such calculations will be pre-
sented elsewhere.

2. MPS-MPO Formalism for PBC

First, we rewrite the algorithm proposed in Ref. [2] in
terms of MPS and MPO: the states of a 1D quantum
system of size N (e.g., a spin system) are approxi-
mated in terms of a matrix product state (MPS),

1) = Tr B x ... x BNy, ..., on). (1)

Here, o; represent the local degrees of freedom at
the site j, and each B([,jj] represents a matrix of size
m X m, where m is called the bond dimension. In
the algorithm to be described, the elements of these
matrices are variational parameters to be adjusted
using a suitable optimization procedure. The trace
in Eq. (1) ensures periodic boundary conditions and
includes a sum over all o;.

Analogously, the operators are written as matrix
product operators (MPO)
o= w!!

N
1,000 WU['N],O’}V|0.17 "'7UN><0-17 ey U§V|a (2)

and the trace includes a sum over all o; and O‘;.

Again, each WSL, represents a matrix of size myy X
Xmyy, i.e., each W is a tensor of order 4. It turns
out that all operators of interest with short range
interactions (e.g., the Heisenberg Hamiltonian) can
be written in terms of W tensors with small bond
dimensions myy. The structure of the W tensors is
determined by the specific model under investigation.
We will provide the explicit MPO representation of
various operators in what follows.
The matrix elements of MPO in such states,

(@|Ol) = Tr EJN(A, B) x ... x EN(A, B), (3)

can be expressed in terms of the (generalized) transfer
matrices

B4, B) = 3 Wi @ (4l @ B, 4)
The matrices A and B characterize the states |¢) and
|t)), respectively. The Kronecker product ® in Eq. 4
obviously produces transfer matrices of size m2myy x

m2myy. For the later use, we also define the special
transfer matrix

EVN(A,B) =" 6,0(A)" @ BY. (5)

o,0’
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One advantage of the MPO formalism used here
over the formalism employed by VPC and PWE
is the fact that it takes care of the structure of
the effective Hamiltonian to be determined automat-
ically (as encoded in the MPQ), while the effec-
tive Hamiltonian in the VPC formulation depends
structurally on the Hamiltonian of the model under
consideration.

In order to find the ground state of a many-body
system, one solves a standard variational problem,
using the matrix elements of the MPS as variational
parameters. The optimization of the variational pa-
rameters of the MPS is implemented as a local up-
date step, which is repeated until the convergence is
achieved [2]. In the MPO formalism, such a local
update step amounts to the solution of a generalized
eigenvalue problem

H(Eﬁ ol = €l Niﬁ@m (6)

in terms of the effective Hamiltonian H.g and the
effective normalization matrix Neg given by

g = Y whle () | @
kl Lk
NOl - Eg <N,[§}~Ng]). ®)

The energy of the state is obtained from €l/!, and this
value will converge to the ground-state energy eventu-
ally. In fact, we stop the iterative update procedure,
if this quantity does not change any more with respect
to defined convergence criteria.

The updated MPS is obtained from ¢l = M, ;)
by a suitable partitioning of the vector into a tensor.
The tilde in (7) indicates the operation X(;jy ;) =
= X(ii/),(jj/) for each m? x m? submatrix of the brack-
eted quantities. As a consequence of this transpo-
sition, the effective Hamiltonian and the normaliza-
tion matrix are assured to be Hermitian matrices,
and the standard methods for the solution of gen-
eralized eigenvalue problems can be applied. (For
open boundary conditions, the normalization matrix
is unity, and only a standard eigenvalue problem
needs to be solved.)

The matrices H][-f], Ng] and H}[%], N}[%] are the
products of transfer matrices from all sites to the left
and to the right of the site j, where the MPS is up-
dated. The H matrices are obtained from generalized
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transfer matrices as defined in Eq. (4), while the N
matrices are formed from the transfer matrices de-
fined in Eq. (5), in both cases setting A = B = M
with M the MPS to be determined.

In the algorithm proposed by VPC, one sweeps
back and forth over the entire lattice several times
updating the MPS at each site until the convergence
of the energy el is achieved. Initially, one starts from
a randomly selected MPS. After each update step, the
updated matrix is regauged in order to keep the al-
gorithm stable. The standard regauging procedure,
which assures the relation

> BB =1 )

after each update step is described in more details in
Refs. [3] and [4].

Similarly, excited states will be constructed iter-
atively by finding the lowest state in the space or-
thogonal to the space spanned by the states already
found. We will denote the matrices of these MPS by
‘I’,[;j,]k’ where k enumerates these states (k = 0 for the
ground state, k = 1 for the first excited state, etc.). It
was pointed out in Ref. [4] that this construction can
also be implemented iteratively as an update step by
locally projecting to the orthogonal subspace. Here,
we need to determine the local projection operator
Pl with the property

Pyl —o vk (10)
with
v =0l oWlell ana vyl =0 it k£ m.

(11)
Here, the spin and m indices of the @g’]k matrices are
suitably combined to form a vector. For simplicity,
we will use the same symbol ®U! for these vectors (see
the analogous definition of ¢/l above).

The matrices O[Lj] and Og] are products of transfer
matrices as defined in Eq. (5) from all sites to the
left and to the right of the site j, respectively, and
setting B = M and A = &, with M the (excited)
MPS to be determined. The update procedure for
these matrices is implemented as a generalized eigen-
value problem (see Eq. (6)) for the projected effec-
tive Hamiltonian PUH g PUlT and the normalization
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matrices PUVIN.gPUlT. The (local) projection opera-
tor Pl will be constructed according to Eq. (10) by
finding a set of vectors orthogonal to the calculated
Yk[] J. A standard numerical orthogonalization routine
is employed for this purpose.

3. Efficient Implementation

In order to implement the local update steps just de-
scribed, one needs to calculate various products of
transfer matrices. These are standard matrix prod-
ucts. However, depending on the bond dimension of
the MPS and MPO, they may be numerically expen-
sive. Naively, the multiplication of two transfer ma-
trices (4) requires O(m®ms;,) operations, which may
be reduced in view of the structure of the transfer
matrices to O(m®m3,). In analogy to the proposal
by PWE, we will now describe a procedure to reduce
this operational count further. This reduction occurs
due to the structure of the W tensors and, in par-
ticular, for products of transfer matrices with many
factors, i.e., long products. Here (unlike Ref. [3]), we
consider the products of transfer matrices in terms of
MPSs and MPOs,

mwm2

E‘[,%/](A7B)X...XE%(A’B): Z ok uk®v;2. (12)
k=1

As was pointed out by PWE, the sum over k may be
cut at rather low values, which has two reasons for the
generalized transfer matrices. First, the rank mg of
the transfer matrices is in many practical situations
lower than mypym?2. This reduces the upper limit of
the sum to mg. For example, as will be indicated
below, the rank of the transfer matrices for the Ising
or Heisenberg model is 2m? and not 3m? or 5m?,
respectively, as expected naively. This reduction of
the summation limit is exact and does not depend on
the product length.

However, for long products, the upper limit may be
reduced to very low values due to the fact that only
very few singular values oy in expansion (12) are sig-
nificantly different from 0. For the ground state calcu-
lations of chains with about 100 sites and m = 10, one
needs to consider only about 20 singular values. This
is demonstrated for the Heisenberg model in Fig. 1.
This figure corresponds to Fig. 1 of Ref. [3] and shows
rather similar results for Ny. Here, we also plot the
singular values of Hy, and we see that only a few
more singular values than those for N are needed.
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Fig. 1. Distribution of the singular values of products of transfer matrices for m=10, Ny, (left) and Hy, (right), with 33 terms,

which is the minimum number of terms in our calculation for N = 100 sites on a ring with homogeneous nearest-neighbor

Heisenberg interactions

nl nr
hi hr

Fig. 2. Circular algorithm for a ring with N sites: the ring is
partitioned into three sections. Updating only happens in one
of them, so that we always deal with the products of transfer
matrices with minimum length N/3. For further discussion,
see the main text

(Beyond a certain limit, the singular values are set to
an irrelevant small constant by our computer imple-
mentation.)

In order to utilize this feature for the local update
algorithm described in the previous section, one needs
to implement the algorithm in such a way that only
sufficiently long products of transfer matrices occur
during the update process. Therefore, one cannot
use the standard sweeping procedure since the “short”
products of transfer matrices occur at the turning
points of the sweeps. Following PWE, we implement
the algorithm as a circular update procedure. The
ring of sites is separated into three sections as shown
in Fig. 2, and the update process occurs always in the
“active” section. The algorithm is then implemented
in 3 basic steps:

1. (Initialization step) Start from some initial ran-
domly created matrix product state |¢), as defined
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in Eq. (1). The bond dimension of all matrices
(j =1,...,N) is m. Partition the set of matrices into
three sections, as shown in Fig. 2.

Initialize section 3 with a singular value decompo-
sition (SVD) of the products of generalized transfer
matrices defined in Eqs. (4) and (5) and store this
SVD in the tensors hl and nl, respectively. Ini-
tialize section 2 with an SVD of the products of
transfer matrices and store this SVD in the tensors
hr and nr.

2. (Update step) Goto section 1. Initialize each
site of section 1 with the appropriate product of
transfer matrices moving counter-clockwise starting
from the product corresponding to section 2. Then
update and regauge the MPS in section 1 mov-
ing clock-wise using the previously calculated prod-
ucts of transfer matrices. Updating means solving
the generalized eigenvalue problem described above
for each site. (One immediately obtains an SVD of
the products of transfer matrices inside the up-
dated section by multiplication to the SVD of the
previous site, i.e., one does not need to calcu-
lated an SVD at each update step. This is an
important advantage of the algorithm using MPS
and MPO.)

Finally, copy the tensors nl and hl on the ten-
sors nr and hr and calculate the SVD of the product
of transfer matrices of section 1 with the just up-
dated MPS matrices and store this SVD in the ten-
sors nl and hl.

3. Goto section 2 and do analogous calculations as
described for section 1 above. Continue with further
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steps moving clockwise to the neighboring section un-
til convergence is achieved.

An important prerequisite for the implementation
of the algorithm is an efficient SVD. This has been de-
scribed in Ref. [3], but we have a few remarks: let M
be a product of transfer matrices. Then, according to
the procedure outlined in Ref. [3], one has to form the
products of these matrices M with some matrices x
and 3’ of size pxm?, e.g., y = xM and z = My'T. In
order to do this efficiently, one must not calculate the
matrix M explicitly, but rather multiply each trans-
fer matrix in M recursively to x or 3y’ starting from
one or the other end of the sequence of factors in M.
Then the multiplication of M to the matrices z or y’
can be done in O(Npm?), where N is the number of
transfer matrices in M.

Similar steps, as is outlined above for ground state
calculations, are required for the determination of ex-
cited states. In other words, for each excited state,
we use the same algorithm searching for the optimal
MPS in the space orthogonal to the states already
found. We have implemented the described algorithm
within a few pages of Mathematica code.

4. Matrix Product Operators

In order to apply the algorithm developed above
to specific problems, we must define the relevant
degrees of freedom, the size of the local Hilbert
space, and the interaction in terms of a suitable
MPO. Once this MPO is defined, the implementa-
tion of the algorithm takes care of the details of the
calculation.

The simplest examples to be considered are spin
models, e.g. the spin-S unisotropic Heisenberg Hamil-
tonian in an external magnetic field B,

N
H=J> SfeSH, +S/esY +

i=1

N
+AS; ® 7 — BY S, (13)
=1

with the exchange interaction J, and the unisotropy
A. In what follows, we will set J = 1. The Hamil-
tonian is written in terms of the spin operators S; =
= %oi. For spin—%, the o matrices correspond to the
standard Pauli matrices. Periodic boundary condi-
tions correspond to setting N + 1 — 1.
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Construction of the MPO for periodic boundary
conditions is not difficult,

—-BS, §* SY §* e
0

0 0 0 S°
whl = 0 0 0 0 sSv | (14)
0 0 0 0 AS?
0 0 0 0 0
e 0 0 0 0
‘ ST 0 0 0 0
wll — SY 0 0 0 0 fori=2,...N
S 0 0 0 0
—BS. 5% SY AS* e

with e to be a unit matrix. The local single-body
Hilbert space has dimension 25+ 1, and the bond di-
mension is dyy = 5. However, the rank of the transfer
matrices, which determines the cost of the calcula-
tion, is not 5m?, as expected naively, but only 2m?.
The first matrix has a different structure as compared
with the other matrices in order to fulfill the required
boundary conditions.

For a bilinear-biquadratic spin-S ring with the
Hamiltonian

N
H = ZaSi ®8Sit1+b(Si ®Sit1)?,

i=1

(15)

one easily finds an explicit MPO representation with
the bond dimension dy = 14. Here, again, the rank
of the transfer matrices is not 14m? but only 2m?2,
which reduces the calculational cost significantly.

The calculation of matrix elements for observ-
ables (e.g., the magnetization or correlation func-
tions) is straightforward in the MPS representation
either with an MPO representation of the operators
or without. For these calculations, one may take ad-
vantage of the fact that such calculations are just
products of transfer matrices (see Eq. (3)) and use
expansion (12) for long products. In the present pa-
per, we will use this feature for the calculation of the
variance of the Hamiltonian, as is discussed in the
next section.

5. Applications

In order to test the implementation of the pro-
posed algorithm, we start out with calculations of the
isotropic Heisenberg model also studied in Ref. [3].
Of course, it is easy to calculate the energy spectra
for small systems (10-50 sites) using our implemen-
tation, and we have calculated up to 30 excited states
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Fig. 3. Distribution of the singular values of products of transfer matrices for m = 30, N (left) and Hj, (right), with 33
terms, which is the minimum number of terms in our calculation for N = 100 sites on a ring with homogeneous nearest-neighbor

Heisenberg interactions

for such systems. However, then one must consider
most or all of the singular values in the expansion
of the transfer matrices. In order to take advantage
of a significant reduction of the number of singular
values, the system size should be about 100 sites or
more, and we present results for systems with 100
sites in this paper.

In order to run such calculations, three important
parameters, which determine the precision of the re-
sults, must be set: the bond dimension m, the number
of singular values to be included in the expansion of
various transfer matrices p and p’, and the number of
update steps N, where p and p’ are the numbers of
singular values retained in the expansions of the Ny
matrices and the Hx matrices, respectively.

Of course, a large m is desirable. However, the
algorithm scales at least with p'm3N, so we are
presently limited to about m = 50 in practice. We
shall demonstrate below that the number of singular
values to be taken into account increases with m, and
one must be careful not to take too few terms in ex-
pansion (12). Unfortunately, the convergence of the
update process is rather slow close to the minimum of
the energy. Therefore, for high-precision results, we
need more and more update steps. Usually, we choose
their number dynamically by observing the change of
the calculated energy within one sector. If this change
(averaged over the whole section) is below a certain
limit, we stop the update process.

One purpose of the present calculations is to gain
experience in the parameter setting for m,p,p’, and
N, in order to find, e.g., the Haldane gap in a spin-
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1 ring with sufficient precision. The gap is obtained
from a difference of two large energies of similar val-
ues, so the two energies must be calculated with
rather good precision. (Let us note parenthetically
that the m required in the present algorithm is sig-
nificantly smaller than the corresponding quantity in
standard DMRG calculations.)

In Fig. 3, we show the distribution of singular val-
ues of the transfer matrices obtained at the end of
a calculation with m = 30 for the isotropic spin-
1 Heisenberg model; i.e., the calculations shown in
Fig. 1 and Fig. 3 only differ in the choice for m.
From a comparison of these results, one concludes
that if we increase m, we also need to increase the
number of singular values to be taken into account.
Our experience shows that the necessary increase is
quite significant, depending on the m one wants to
use for a particular calculation. This fact was not
mentioned in Ref. [3]. However, after this paper was
nearly completed, we became aware that a similar ob-
servation was made in Ref. [5] for the standard PWE
algorithm without MPO.

The MPS-MPO formalism employed here allows us
to straightforwardly test how well the calculated MPS
approximates an eigenstate of the Hamiltonian. To
this end, we calculate the variance
AH = (H?) — (H)?, (16)
which should be zero for an eigenstate. Since, from
the algorithm, we obtain an explicit representation of
the state, we can, at least in principle, easily evaluate
this quantity, if we find a suitable MPO representa-
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Table 1. Ground-state energy Ep, first excited state energy E1, and Haldane
gap E1 — Ep for an isotropic spin-1 Heisenberg ring of N = 100 sites. A/E is the relative difference
between our calculated result and the value calculated by DMRG given in Ref. [3]

m Eyg/N A/E E1/N (3) E1 — Ey
10 —1.40122726344 1.83 10~ —-1.39621210860 0.50153
20 —1.40145874749 1.47 1075 —-1.39730198769 0.41566
30 —1.40148324293 5.83 10~ 7 —1.39736419879 0.41192
40 —1.40148390219 9.73 1078 —-1.39737237500 0.41115
DMRG |3] —1.4014840386(5) - -
DMRG (infinite) [1] —1.40148403897 - —-1.39737901875 0.41050
Table 2. Ground-state energy Ejo, first excited state energy E1, and gap E; — Ep
for a biquadratic spin-1 Heisenberg ring of N = 100 sites (a = 0, b = —1 in Eq. (15)).
A /E is the relative difference between the Bethe ansatz results and the numerical
values obtained. (p = 30, p’ = 60), AH is the variance of the Hamiltonian
m Ey/N ( A/E) AH Ei/N (A/E) AH Ey — Ey
10 —2.794 020 092 (1.04 10—3) 1.08 —2.793 830 121 (1.05 10~3) 1.10 0.018 997
20 ~2.795 792 099 (4.07 10~%) 0.44 ~2.795 632 899 (4.12 10~%) 0.44 0.016 077
30 ~2.796 790 186 (5.03 107?) 0.03 ~2.796 675 842 (3.95 107?) 0.28 0.011 452
Bethe ansatz [7] —2.796 930 734 —2.796 786 305 0.014 442

tion of H2. The bond dimension of H? is m,, but
its rank is often significantly lower, which is used to
significantly reduce the cost for the calculation of 2
using expansion (12).

The results obtained so far for the isotropic Heisen-
berg model are summarized in Table 1. The ground-
state energy is in good agreement with that reported
in Ref. [3]. In addition, we show results for the
first excited state, from which we determine the Hal-
dane gap, whose value agrees with the infinite system
DMRG calculations of Ref. [1] to two significant dig-
its. Haldane [6] conjectured on the basis of a field
theoretical study that generically integer spin chains
are gapped, while half-integer spin chains are gapless
in the thermodynamic limit. For specific examples
(spin—% and spin—%), we can confirm this numerically
with our calculations.

For the ground state, we judge the precision of the
obtained results by a comparison to a high-precision
result obtained within DMRG as quoted in Ref. [3]
and assume that this value is numerically exact for
the Heisenberg ring with 100 sites. In fact, this result
is quite close to the infinite system value obtained
in Ref. [1].

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7

A second interesting test of the implementation
of the proposed algorithm is the biquadratic chain,
Eq. (15) (with @ = 0 and b = —1), investigated
by Sgrensen and Young [7] in detail with the use
of a mapping of the biquadratic spin-1 ring to the
XX7Z spin—% system, which can be solved, using
Bethe ansatz techniques. In Table 2, we present
some preliminary results for this system, using our
technique, which are compared to the high-precision
Bethe ansatz results of Ref. [7]. In the thermody-
namic limit, one expects a doubly degenerate ground
state and a small gap to the next excited state. Of
course, for finite systems, the degeneracy is lifted.
This system is an interesting testing ground for our
numerical techniques, as there are extremely precise
results available for systems up to 1000 spins. Only
for such large systems, one expects to be close to the
thermodynamic limit.

The results indicate good agreement with the Bethe
ansatz results. However, for a high precision, one
needs large m (e.g., for m = 30, one needs about
30-60 singular values to be taken into account). The
convergence of the energies at a particular m, depend-
ing on the precision required, may be slow. Therefore,
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Table 3. Energies of the half-filled ground state

Ep and the next higher/lower state E; of a spinless
fermion ring described by Hamiltonian (17)

for N =128, m =30, U =1,and V=0

é Eo n Eq n

0 -63.98647233 64 —63.98581164 64
w/2 -64.00411240 64 -64.94361781 63
T -64.01004832 64 —64.94770847 63

we recommend to calculate firstly with a few different
m in order to see the m dependence before the iter-
ation with the chosen m to the high precision. How
well the calculated MPS approximates an eigenstate
is measured by a calculation of AH.

As a last example, we apply the proposed algo-
rithm to a Hubbard model of spinless fermions and,
in particular, to a mesoscopic ring filled with elec-
trons pierced by a magnetic field such that persistent
currents can be observed. The Hamiltonian of this
system is given by

N
H= —tz <c}c@+1e_i¢/N + h.c.) +

N (=1

-|-UZ nengy1 +Vnr.
=1

(17)

Here, ¢ is the magnetic flux piercing the ring, U the
nearest-neighbor Coulomb interaction, and V' the lo-
cal interaction of an impurity at site 1. Here, cf
and c¢ are the creation and destruction operators of
fermions, and n is the density operator. The hopping
energy t will be set to 1, and the periodicity requires
toset N+ 1+ 1.

More details about this Hamiltonian and its physics
may be found in Refs. [8] and references therein.
The Hamiltonian is U(1)-symmetric, and the particle
number is a good quantum number to label the states.
Due to the impurity, the model is not homogeneous:
it is one advantage of our MPS implementation that
it can handle inhomogeneous problems, since it does
not assume the translational invariance of a system.

Since we are considering spinless fermions, the local
single-body Hamiltonian describes a two-level system,
which is analogous to a spin—% system. The matrix
representations of the single-body operators read

t_ (01 _ (00 _ 1. _ (10 18
= (00 = (80) me=cla=(} ) a9
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Together with the 2 X 2 unit matrix, these matrices
(like the Pauli matrices) form a complete set.

One then obtains the following MPO representa-
tion for this problem,

(V —p)n —cle /N —ce?/N Un e
0 0 0 0 c
whl = 0 0 0 0 ],
0 0 0 0 n
0 0 0 0 0
e 00 0 O
ce”’N 00 0 0
W= e=ie/N g o 0 o fori=2,..,N
n 00 0 O
—un ¢t c Un e

in terms of the matrices defined in Eq. (18); the pa-
rameters of the Hamiltonian and a chemical potential
w1 will be discussed below. The minus signs in the first
row of WU arise due to the anti-commutativity of the
creation and destruction operators on different sites.

In order to study persistent currents, one needs
to calculate the ground-state energy as a function
of the magnetic flux and then to find the persis-
tent current j using the Hellmann—Feynman theorem,
j=—0Ey()/0¢.

Since experiments are usually made for systems
with fixed particle number, it would be necessary
to develop the algorithm in such way that it re-
spects the U(1) symmetry of the Hamiltonian. At
this stage, our implementation does not respect this
symmetry. Of course, it is always possible to shift
to the ground state of the sector with the desired
particle number, using an appropriate chemical po-
tential ;. However, this chemical potential is usually
not known, and one would need to use an iteration
process to find the chemical potential such that the
resulting state contains the desired number of par-
ticles. Only for half-filled systems, it is known that
the required chemical potential to find the ground
state equals the interaction U. Therefore, we concen-
trate here on half-filled systems and shift the spec-
trum accordingly.

First results are shown in Table 3 for a ring with
N = 128 sites. In order to be able to calculate per-
sistent currents, using the Hellmann-Feynman the-
orem, one must be able to precisely distinguish the
ground-state energies for different ¢, which requires
rather high-precision calculations. The energy de-
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termined for the ground state agrees with the re-
sult given in Ref. [8]. We also calculate the en-
ergy of the next higher/lower state and the num-
ber of particles n it contains. Clearly, the ground
state is half-filled, while the next higher/lower state
contains one particle less. At ¢ = 0, one finds
a degenerate ground state in the half-filled sector.
(Here, our procedure to calculate “excited” states may
yield even a lower lying state, since, within the spec-
trum, there exist states below the ground state of
the half-filled sector.) For the future calculations,
an implementation respecting the U(1) symmetry is
desirable.

6. Summary

In this paper, we suggest a new version of the ef-
ficient MPS algorithm for one-dimensional systems
with periodic boundary conditions. Unlike the orig-
inal proposal [3], the present version uses the MPO
representation. We also extend the algorithm for the
calculation of excited states. We report about the
first results obtained with this algorithm and inves-
tigate the necessary parameter settings in order to
obtain high precision results for systems with 100
sites. The advantage of the algorithm is that one
obtains an explicit representation of the many-body
quantum state, which can be used then to calcu-
late observables such as correlation functions. We
will report about such calculations in a forthcoming
publication.
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E®EKTUBHUI AJITOPUTM

JJI1sI MATPUYHOJOBYTKOBUX

CTAHIB (MJIC) 3A TTEPIOINYHNX
KPAMOBUX YMOB TA M1OI'O 3ACTOCYBAHHS

Peszmowme

3aIponoHOBAaHO peastizalio eeKTUBHOIO AJITOPUTMY JJIsd PO3-
PaxyHKy CIEKTPa OJHOBUMIPDHUX KBAHTOBUX CHCTEM 3 IePioiu-
YHUMY KPafoBUMHU yMOBaMu. AJITOPUTM I'DYHTYETHCA HA MIPEI-
CTaBJIEHHI KBAHTOBUX CTaHIB 3a JIOIIOMOT'OI0 MaTPUYHHX JI00Y-
TKiB (MaTpmaHOnOOyTKOBI cramm (MJIC)) i Ha amasoriuxOMYy
[peJICTaBIeHH] TaMinbToHiaHIiB Ta iHmMX omepaTopis (Marpu-
aHOn00yTKOBI oneparopu (MJ10O)). Bin npaitoe nabararo ede-
KruBHile s cucteM 3i 100 i 6ibIlie 9YaCTUHOK, HIXK U1 Ma-
Jaux KBaHTOBUX cucTeM. PopmasisM 3acTOCOBAHO JJisl pO3pa-
XYHKY OCHOBHOI'O CTaHy i IEepIIOro 30y»KEHOr0 CTaHy raii3eH-
6eproBoro KiJibliid 3i cuinoM 1 Ta /it BUSHAYEHHS PO3Mipy 30HHU
Xouigeitna. Pesynbraru 3icTaBiieHO 3 monepeaHiMU BUCOKOTO-
YHUMU PO3PaxXyHKaMH METOIOM DPEHOPMIDYIIM MAaTPUI I'yCTH-
uu (PI'MTI'). Kpim Toro, posrisigaloTses cucreMu 3i crinoM 1 i
OIKBaJPATHOIO B3aEMOJICI0 MiXK HAWOJIMAKIUMU CyCiaHIMM 4a-
cruHkamu. HaBesieHO mepini pesysibTaTu 3aCTOCYBaHHS aJjiro-
PUTMy [0 ME30CKOIIYHOIO Xab0apmoBOro KijibIls 6e3CrmiHOBIX
depMioHiB, 1[0 TEPEHOCUTDH He3aracaJbHUIl CTPYM.
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