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L.M. GARCÍA-RAFFI 4

1 Grupo de F́ısica No Lineal. Universidad de Sevilla. Departamento de F́ısica,
Aplicada I. ETSI Informática,
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We consider a model made out of identical particles that repel each other with the Coulomb
interaction. We study numerically and analytically the existence and properties of supersonic
kinks, showing that they are very easy to be produced and propagate long distances. They
have a wide range of velocities and energies. We are motivated by a special characteristic of
the muscovite mica mineral. Tracks from particles such as muons can be distinguished in a
complex decoration, but the only explanation to most of the tracks is localized excitations called
quodons. They move in the cation lattice, sandwiched between the silicate layers, along the
lattice directions. Quodons have also been observed experimentally [EPL 78 (2007) 1005].
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1. Introduction

Charged particles are known to produce tracks in
solids in what now is a well-established discipline
called solid-state nuclear tracks detectors (SSNTDs).
Usually, the first finding is attributed to Young in
1958 [1] in a lithium fluoride crystal, followed very
closely by Silk and Barnes in 1959 [2], who found
tracks from fission fragments in natural mica. Later,
Price and Walker in 1962 reported on the observation
of fossil particle tracks also in natural mica [3].

In natural minerals, tracks are a record of phenom-
ena occurring in geological times during millions of
years and in inaccessible places like the interior of
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the Earth or the outer space, both because the min-
eral is found inside meteorites [4]. Minerals can also
integrate events for extremely long times far beyond
the laboratory possibilities, by recording, therefore,
very rare or infrequent events. They show different
responses to different particles, filtering out the back-
ground of particles that would blur the tracks of par-
ticles or energies of interest.

They have been used, for example, to find the ex-
otic spontaneous emission of 14C clusters by 223Rn
[5] or to find the long tracks produced by the natu-
ral decay of superheavy elements (𝑍 > 110) already
disappeared [6]. Natural minerals are also useful for
the fission track dating, oil search, and many other
applications. See Refs. [7, 8] for reviews. Tracks are
produced very often only under some specific condi-
tions of the temperature and the pressure of a cool-
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ing process during the mineral formation in the so-
called sensitive period. The tracks become fossilized
thereafter.

Muscovite mica is a layered silicate, which can be
split in thin films due to its layered structure. The
layers are composed of a layer of silicate octahedra
between two layers of silicate tetrahedra sharing oxy-
gen atoms. About one of four tetrahedral Si4+ is
replaced by Al+3 leading to a net negative charge,
which is compensated by a layer of K+ cations joined
feebly the silicate sheets [9]. The height of the sil-
icate layers is about 7 Å, and that of an interlayer
is 3.36 Å, where the K+ ions are sitting. The K+

ions form a two-dimensional lattice, which is approx-
imately hexagonal with close packed lines at angles
very close to 60∘. The muscovite structure can be
seen at the top of Fig. 1 and the interlayer lattice at
the bottom.

Very thin sheets of muscovite can be easily sepa-
rated down to a thickness of, theoretically, a few Å.
About a half of the K+ ions remains attached to each
layer, but the silicate structure remains intact. This
gives a possibility of inspecting the interior of a min-
eral without actually breaking it. Many specimens of
muscovite show dark lines, made out of iron oxide,
Fe being a common impurity in muscovite. Most of
the lines are parallel to one another along the three
main directions of the 2D lattice, but about 1% are
at random directions, which means that they are not
related to the lattice structure.

The close inspection of the random lines reveals
that they are not exactly straight but show many
small kinks, like a charged particle interacting with
nuclei of a crystal. The measurements of the lengths
and the kink angles of the minority lines were consis-
tent with the Coulomb scattering of muons produced
by neutrinos in cosmic rays, which can penetrate into
a deep underground [10]. The evidence of electron
showers caused by muons [11] and positrons emitted
by the decay of 40K [12–14] was also found. The
recording process was described as the precipitation
of iron oxide that would grow by accretion.

The research described above showed that mica has
an amazing capability of recording the disturbances
produced by charged particles over a wide range of
energies, but this leaves the majority of the lines ori-
ented along the close packed lines of the 2D cation
lattice to be unexplained. Those lines are straight,
suggesting that they are not produced by a particle

Fig. 1. Crystal structure of muscovite. The circles represent
the potassium ions forming the interlayer sheet. The unit cell
includes two silicate layers and two K+ ions with parameters
𝑎 = 5.19 Å; 𝑏 = 9.02 Å; 𝑐 = 20.0 Å; and 𝛽 = 95.7∘

scattered by nuclei. More likely, such lines have to be
produced as some kind of an anharmonic excitation
traveling along the lattice without dispersion [15, 16]
in the form of a nonlinear quasi-one-dimensional exci-
tation or quodon, a name originally proposed in [17].

The experimental confirmation of the existence of
quodons was obtained by launching an alpha particle
against a mica specimen and detecting the ejection
of an atom a few millimeters apart at the opposite
boundary, at angles corresponding to the lattice main
directions [18].

The particular fast kinetics of the reconstructive
transformation of muscovite has been related to the
existence of transversal breathers or localized nonlin-
ear vibrations [19–21]. However, they are not good
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Fig. 2. Sketch of Coulomb’s chain. The yellow spheres repre-
sent K+ ions surrounded by the negative charge of the silicate
layers above and below

candidates for quodons, as they move slowly, radiate,
and have energies of only a few eV.

The cation lattice presents an important charac-
teristic, which, in our opinion, has not been taken
into account, even being quite evident: cations ex-
perience repulsive interactions which decay with the
distance, generating a repulsive lattice. The inter-
action is mainly of the Coulomb type, but also there
exist repulsive short-range forces at shorter distances.
There are also the van der Waals forces, but they are
smaller in magnitude with respect to the other forces.
There is also the interaction with the other atoms in
the silicate layers which produces a periodic poten-
tial. To make it clear, let us enumerate what repul-
sive lattices do not have, though it is usually used in
a modeling: a) They do not have an equilibrium dis-
tance, as the Lennard-Jones, Morse, or Toda poten-
tials have, as they are always repulsive; b) The pair
potential does not increase with the relative distance,
as this happens in 𝛼- and 𝛽-FPU lattices, which are
the first terms of a Taylor series and, consequently,
are strictly valid only for relatively small amplitude
vibrations.

As the first step to study the implication of our
hypothesis, we construct a minimal model, where we
keep only explicitly the Coulomb interaction between
the cation atoms, although other contributions will
be taken implicitly, as explained below.

We observe that supersonic kinks [22] with as much
energy as desired can propagate long distances unaf-
fected by phonons and rebounding with others.

2. Model

We construct a minimal model of K+ in the cation
layer in order to observe the properties of a repulsive
lattice. It will be augmented in future works. Our
hypotheses are: (a) We assume the system is one-
dimensional and oriented along a close packed line
with unit distance 𝑎 = 5.19 Å. Moreover, the move-
ment of particles is longitudinal and limited to the
same direction. (b) The electric field and other inter-
actions with the silicate layers are not taken into ac-

count explicitly, but they are implicitly, as they bring
about the actual lattice unit 𝑎 in equilibrium. (c) We
consider here, for simplicity, only the nearest neigh-
bor Coulomb interaction (the effect of more neighbors
is shortly discussed later). (d) The effect of the in-
teraction with the silicate layers is also taken into
account as something fixing the particles in place at
a distance 𝑎 in equilibrium. Figure 2 shows a sketch
of the model.

The justification of (b) is that the neutrality of the
crystal by itself will produce a two-dimensional lat-
tice with the actual positive charge density so as to
compensate the negative charge in the silicate lay-
ers. Then, it also determines the interatomic spacing
within a close packed hexagonal structure.

The equation of motion of a K+ ion is given by

𝑚�̈�𝑛 = − KC𝑒
2

(𝑥𝑛+1 − 𝑥𝑛)2
+

KC𝑒
2

(𝑥𝑛 − 𝑥𝑛−1)2
. (1)

We can write the equation in dimensionless form
by choosing 𝑎 = 5.19 Å, 𝜏 =

√︀
𝑚K𝑎3/KC𝑒3 =

= 0.1989 ps ≃ 0.2 ps, and 𝑚K+ = 39.1 amu as
the units of distance, time, and mass, respectively.
We define the displacement with respect to the equi-
librium position 𝑢𝑛, measured in lattice units as
𝑥𝑛 = 𝑎𝑛 + 𝑎𝑢𝑛. The dimensionless units of other
magnitudes correspond to the following approximate
values: velocity 2.6 km/s; energy 2.8 eV, and fre-
quency 5 THz.

The dimensionless dynamic equations become:

�̈�𝑛 = − 1

(1 + 𝑢𝑛+1 − 𝑢𝑛)2
+

1

(1 + 𝑢𝑛 − 𝑢𝑛−1)2
. (2)

There are two fixed particles at the borders so as
the system is confined between its boundaries. How-
ever, we do not pretend to model a realistic border, as
we are interested in what is happening far away from
it, which does not depend on the specific boundary
conditions.

3. Phonons

For small amplitudes, Eq. (2) reduces to

�̈�𝑛 = c2(𝑢𝑛+1 + 𝑢𝑛−1 − 2𝑢𝑛), (3)

where c =
√
2 with our scaling is the speed of sound.

The dispersion relation and velocities are well
known; we include them here for comparison with
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what follows later. The phonon frequencies are

𝜔ph = 𝜔M sin(𝑞/2),

𝑞 =
2𝜋𝑚

𝑁
, 𝑚 = 0, 1, ..., 𝑁−1,

(4)

with 𝜔M = 2c being the maximum frequency, corre-
sponding to the mode with the wave number 𝑞 = 𝜋.
The phase velocity 𝑉ph = 𝜔/𝑞 and the group velocity
𝑉g = 𝜕𝜔/𝜕𝑞 are given by

𝑉ph = 𝑐
sin(𝑞/2)

𝑞/2
, 𝑉g,ph = 𝑐 cos(𝑞/2). (5)

In the limit of long wavelengths, both velocities are
equal to the speed of sound 𝑐, which is also the max-
imum value. Note that the group velocity becomes
zero at the top of the phonon band 𝑞 = 𝜋.

The maximum frequency in physical units is about
2.2 THz, which is larger than that obtained with
molecular dynamics and neutron spectroscopy to be
about 1.6 THz [24–26]. This is understandable due to
the simplicity of our model considering just one type
of atoms compared with the complexity of real mica,
but it is within the same range of values. Figure 3
shows the phase and group velocities in physical units.
Note that the predicted speed of sound is similar to
that found in Ref. [23] to be 3.4–3.7 km/s.

Note that, for phonons, we have taken periodic
boundary conditions, as we are interested in traveling
waves far from the borders of the system.

4. Tails

4.1. Tail analysis

We are interested in traveling nonlinear localized so-
lutions supported by the Coulomb lattice. Although
they correspond to the full nonlinear equation, their
tails have small amplitude and can be studied with
the linear equation above. Note that the tails do
not exist by themselves, but they give useful infor-
mation about the kinks, solitons, or breathers, to
which they belong. Figure 4 shows a soliton with
front and back tails.

As it is standard, we propose the following tail so-
lution:

𝑢𝑛 = exp(−𝜉(𝑛− 𝑉 𝑡)) exp(𝑖(𝑞𝑛− 𝜔𝑡)). (6)

Supposing that the tail is moving to the right with
velocity 𝑉 > 0, the front tail correspond to 𝜉 > 0, and
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Fig. 3. Phase (continuous line) and group (dotted) velocities
in Coulomb’s chain as a function of the wave number. In the
limit of long wavelengths, both give the sound velocity, which
can be compared with the values of 3.4–3.7 km/s obtained in
Ref. [23]

Fig. 4. Profile of the transitory state of a soliton with low am-
plitude moving to the right showing the front and back tails.
The subsonic oscillatory back tail will be left behind the super-
sonic soliton. The front tail becomes so steep that, in practice,
it becomes the abrupt end of a perturbation. Therefore, the
soliton will transform to a kink, and the back tail without the
support of the soliton will be dispersed in phonons. Dimen-
sionless units

it is also valid ahead of the center of the excitation,
i.e., for 𝑛 > 𝑉 𝑡. The back tail corresponds to 𝜉 < 0,
and it needs that 𝑛 < 𝑉 𝑡. The modulus of 𝜉 is the
localization parameter, and its inverse Λ = 1/|𝜉| is
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Fig. 5. Comparison of the numerical (circles) and theoretical
(continuous line) decay lengths as a function of the velocity
for a kink with magic wave number (see text). Dimensionless
units

the decay length. We recover the phonons for the
limit of zero localization, that is 𝜉 = 0.

The substitution in Eq. (3) allow us to obtain the
frequency and the velocity of the tails as a function
of the wave number and the localization parameter.
The tail frequency 𝜔 is given by

𝜔 = cosh(𝜉/2)𝜔ph = cosh(𝜉/2)𝜔M sin(𝑞/2), (7)

with 𝜔ph being the phonon frequency given in Eq. (4).
The velocity of the tail is given by

𝑉 =
sinh(𝜉/2)

𝜉/2
𝑉g,ph =

sinh(𝜉/2)

𝜉/2
𝑐 cos(𝑞/2), (8)

𝑉g,ph being the phonon group velocity given in
Eq. (5). These equations were first obtained by one of
the authors [27] for the analysis of discrete solitons.

As sinh(𝜉/2)/(𝜉/2) and cosh(𝜉/2) are both larger
than unity and monotonically increasing functions
of |𝜉|, we conclude that the tails oscillate and move
faster than the phonons.

The relationship between the decay length Λ =
= 1/|𝜉| and 𝑉 given by the equation above is in ex-
cellent agreement with the numerical results, as can
be seen in Fig. 5.

4.2. Breathers

If 𝜔 ̸= 0, the tails are oscillating and may correspond
to breathers, localized oscillating solutions with a fre-
quency above the phonon band. The conditions for

the existence of breathers in FPU systems can be
analyzed [15, 28] in terms of the derivatives of the
pair potential 𝑉 (𝑦). If 𝑉 ′(0) = 0, 𝑉 ′′(0) = 1 and
𝑉 (4)(0)/2 < |𝑉 (3)(0)|2 < 2𝑉 (4)(0), there are no small
amplitude breathers, but there are large amplitude
breathers (LAB).

Small amplitude breathers are those that can be
continued down to the phonon band, while there are
the energy and amplitude gaps for large amplitude
breathers.

The above condition cannot be directly applied
to the Coulomb potential, as it has no local mini-
mum. However, we can consider another pair poten-
tial 𝑊 (𝑦) = 1/|1 + 𝑦|+ 𝑦, defined for 𝑦 > −1, with a
derivative 𝑊 ′(𝑦) = 1−1/(1+𝑦)2 which is zero at 𝑦 =
= 0. For the total potential 𝑊𝑇 =

∑︀
𝑛 𝑊 (𝑢𝑛−𝑢𝑛−1),

we obtain that �̈�𝑛 = −𝑊 ′(𝑢𝑛 − 𝑢𝑛−1) + 𝑊 ′(𝑢𝑛+1−
−𝑢𝑛) = −𝑉 ′(𝑢𝑛 − 𝑢𝑛−1) + 𝑉 ′(𝑢𝑛+1 − 𝑢𝑛), as the
constant terms in the derivatives cancel out. The
derivatives of 𝑊 are 𝑊 (n)(0) = 𝑉 (n)(0) = (−1)𝑛𝑛!,
for 𝑛 > 1, and it is easy to check that the condition
for the existence of LABs holds.

Therefore, large amplitude breathers should exist
in our system, but to find them numerically is not
trivial. The continuation from an artificial solution
has to be done during a long path, where annihilation
bifurcations are encountered. We have not been able
to find them, and it is also possible that the theorems
on the LAB existence do not hold in our system due
to the slow convergence of the Taylor series for the
Coulomb potential. In addition, it may be due to the
fact that 𝑊 is a mathematical trick, as there is no real
minimum of 𝑉 at 𝑦 = 0. We can construct similar
potentials 1/𝑟+𝛼𝑟 with minima at any distance. The
subject is interesting enough, and we continue doing
the research on it, but breathers are not the main
interest of this article, centered in moving kinks.

4.3. Oscillating tails

The frequency and the velocity given by Eqs. (7) and
(8) may correspond not only to a breather but also
to the front or back tails of a soliton or a kink. We
can see that both the frequency and the velocity in-
crease with the localization |𝜉|, but they depend on
the wave number 𝑞 in opposite ways, as the frequency
is maximum for 𝑞 = 𝜋, when the velocity is zero,
and the velocity is maximum for 𝑞 = 0 and zero
for 𝑞 = 𝜋.
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If the frequency of the tails is inside the phonon
band, the tails become unstable, the mode 𝑞 = 𝜋
would be the most stable, as its frequency is always
larger than 𝜔𝑀 , but its velocity is zero. On the other
hand, large values of |𝜉| are unrealistic because, in
practice, they mean a steep end of the nonlinear ex-
citation. So, there is the need to balance the effects
of the wave number and the localization.

A particular value of the wave number, with inter-
esting properties, is 𝑞 = 2𝜋/3, the so-called magic
number [22]. It allows analytical estimations, as will
be explained below. The frequency and the velocity
become

𝜔 =
√
3𝑐 cosh(𝜉/2); 𝑉 =

𝑐 sinh(𝜉/2)

𝜉
. (9)

For the frequency of the tail to be above the phonon
band, we need that 𝜉 > 𝜉0 = 1.0986. For 𝜉 = 𝜉0, each
particle amplitude is exactly one third smaller than
the previous one, and the velocity 𝑉 ≈ 𝑐/3, one third
of the sound velocity. To attain the sound velocity,
the localization has to be about 𝜉 = 6.5, but this
value corresponds to a change in the amplitude of
three orders of magnitude in the particle amplitude,
which describes an abrupt end of the soliton or kink
and not an actual tail.

This is the procedure to produce a supersonic kink,
the subsonic back tail is left behind, while the su-
personic front tail is, in reality, a sudden beginning
of a kink.

4.4. Tails of solitons and kinks

Solitons are localized, traveling non-oscillatory exci-
tations, that is, with 𝑉 ̸= 0 and 𝜔 = 0. From Eq. (7),
it follows that sin(𝑞/2) = 0 or 𝑞 = 0 (solitons are in-
phase modes). Substituting into Eq. (8), we obtain
the soliton velocity as a function of the localization 𝜉:

𝑉sol =
sinh(𝜉/2)

𝜉/2
𝑐. (10)

Two important conclusions arise: a) Solitons do not
have an internal structure, as they come from the
mode 𝑞 = 0, all the atoms are in-phase, and the min-
imum value of the velocity of a soliton is 𝑐, the sound
velocity, which is also the maximum phonon veloc-
ity. Therefore, the solitons, differently from oscillat-
ing tails, are supersonic.

As commented above, it is possible to have different
tail solutions for the front and the back. For exam-
ple, in principle, it is possible to have a front soliton
followed by a simple translation 𝑥𝑛 = 𝑎, which would
be a kink that leaves behind the atoms displaced one
lattice unit, or the back tail may be an oscillatory
tail, traveling at a subsonic speed, being left behind
by the supersonic soliton at the front, as shown in
Fig. 4. The front tail needs to be so steep to move in
front of the soliton, which means in practice that the
front of the soliton finishes abruptly, and the soliton
becomes a kink. Of course, if these properties hold,
the study of the full system with full potentials is re-
quired, which will be done in the next sections, but
it is also essential to know the behavior of the system
at low amplitudes, because a part of the system cor-
responds to the description, when there is a localized
nonlinear solution.

5. Kinks with Magic Wave Number

The previous subsections refer to the tail analysis,
which actually is the same for any system, whose
linear equation is Eq. (3). We can obtain much
more information about the nonlinear excitation of
the full system using the Rotating Wave Approxima-
tion (RWA) [29]. It consists in performing a Fourier
transformation of the dynamical equations and ap-
proximating it to the first harmonic.

It is convenient to define a new variable, the relative
displacement or strain of the chain, as 𝑣𝑛 = 𝑢𝑛−𝑢𝑛−1.
From Eq. (2), we can easily obtain the evolution equa-
tion for the strain as

𝑣𝑛 = 2𝐹𝑛 − 𝐹𝑛+1 − 𝐹𝑛−1; with 𝐹𝑛 =
1

(1 + 𝑣𝑛)2
.

(11)

Kinks are characterized by a very steep profiles,
with only a few particles moving at a given time.
A solution presenting this behavior is given (in the
strain representation) by a half-wavelength structure
with the magic wave number 𝑞 = 2𝜋/3. Following
Ref. [22], we propose the following ansatz describing
a kink traveling to the right:

𝑣𝑛 = −𝐴

2
(1 + cos(𝑞𝑛− 𝜔𝑡)) if − 𝜋 < 𝑞𝑛− 𝜔𝑡 < 𝜋

(12)

and 𝑣𝑛 = 0 otherwise. Equation (12) represents a so-
lution, where 3 particles (the kink core) are in motion,
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Fig. 6. Comparison between analytical and numerical results:
(top) spatial profile of the kink traveling to the right. 𝑢𝑛 are
the coordinates of the particles relative to their initial displace-
ments 𝑢𝑛, and 𝑣𝑛 = 𝑢𝑛 − 𝑢𝑛−1 are the strains. (Bottom)
Evolution in time with a particle when reached by the kink
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Fig. 7. Numerical (circles) and theoretical (continuous line)
velocities of kinks within the RWA, for the magic wave number
𝑞 = 2𝜋/3. Dimensionless units

while the others remain at rest. Figure 6 shows the
profiles and the temporal evolution of a kink given
by this equation and compared with the numerical
results.

When we substitute (12) in the equation of motion
(11), the nonlinearity generates multiple frequencies.
The RWA approximation states that the nonlinear
contributions higher than the second harmonics can
be neglected. This implies that the force terms can be
approximated by their first-order Fourier expansions,
as 𝐹𝑛 = 𝑎0 + 𝑎1 cos(𝑞𝑛−𝜔𝑡). On the other hand, the
left-hand side of Eq. (11) gives, after the substitution
of Eq. (12), 𝑣𝑛 = (𝐴/2)𝜔2 cos(𝑞𝑛−𝜔𝑡) which is equal
to the first harmonic term on the right-hand side. The
zero harmonic cancels out due to the dependence of
the right-hand side on 𝐹𝑛. The first harmonic of 𝐹𝑛

is given by

𝑎1 =
1

𝜋

𝜋∫︁
−𝜋

cos(𝜃)d𝜃

(1− 𝐴
2 − 𝐴

2 cos(𝜃))2
. (13)

For 𝐴 < 1, we obtain

𝑎1 =
𝐴

(1−𝐴)3/2
. (14)

Therefore, substituting 𝑣𝑛 and 𝐹𝑛 = 𝑎0 + 𝑎1 cos(𝑞𝑛−
−𝜔𝑡) in Eq. (11), we obtain the frequency and the
velocity as functions of the amplitude 𝐴:

𝜔 =
1

(1−𝐴)3/4
𝜔M sin(𝑞/2);

𝑉 =
𝜔

𝑞
=

1

(1−𝐴)3/4
𝑐
sin(𝑞/2)

𝑞/2
.

(15)

These magnitudes are equal to the corresponding ones
for phonons, multiplied by a factor 1/(1 − 𝐴)3/4,
which, of course, tends to 1, when 𝐴 is small, but
it diverges, when 𝐴 approaches 1. The kink veloc-
ity as a function of the amplitude is shown in Fig. 7,
where the quite good agreement with the numerical
and theoretical results is observed. It is not so good
when the amplitude approaches 1, when the RWA is
less precise.

6. Numerical Simulations of Kinks

Kinks can be easily excited by sinusoidally perturbing
the first particle of the lattice during half a period, so
as it comes back to its initial position [22]. The am-
plitude 𝐴0 and the frequency 𝜔0 of the initial pertur-
bation are significant in the results, as they influence
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the energy of a kink. In this way, we can create sin-
gle kinks or, by increasing the initial amplitude, any
number of kinks, as shown in Fig. 8. These kinks re-
bound at the borders and when they encounter each
other, as it is the only physical possibility when two
particles changing a position in different directions
encounter each other. The evolution of two super-
sonic kinks is shown in Fig. 9.

The velocities of the kinks obtained numerically are
very similar to the theoretical ones obtained within
the RWA, as has been already presented in Fig. 7.

6.1. Kink profiles and energies

In Fig. 6, we show the kink profile, and the temporal
evolution of the coordinates of a particle far enough
from the borders. Both the displacements 𝑢𝑛 with re-
spect to the initial position and the relative displace-
ments or strains 𝑣𝑛 = 𝑢𝑛 − 𝑢𝑛−1 are shown. The
points represent the values obtained numerically, and
the lines represent the values of 𝑣𝑛 given by Eq. (12)
for the magic wave number 𝑞 = 2𝜋/3. The theoretical
values of 𝑢𝑛 are obtained as 𝑢𝑛(𝑡) =

∑︀
𝑣𝑚(𝑡). It can

be seen that there is a very good agreement for both
quantities.

The energies of kinks can be obtained easily, as the
perturbed part of the lattice consists of almost only
three particles, if we exclude the tails and the phonons
that have been left behind. The kinetic energy is
very close to 𝐾 = 1/2𝑉 2, which means that the kink
behaves itself as a quasiparticle of unit mass (or a K+

ion mass in physical units).
The energies of the kink in physical units are rep-

resented in Fig. 10 as a function of the kink velocity.
The total energy 𝐸 is constant, but the kinetic 𝐾
and potential 𝑈 energies change in time, so the val-
ues plotted are the maximum kinetic and potential
energies, which are not attained at the same time.
Because of that, the sum 𝐾 + 𝑈 is different from
𝐸. As it can be seen, energies of hundred of eV are
obtained. Increasing the frequency of the initial ex-
citation, it is possible to obtain even keV. Of course,
it is not known, if these energies can be obtained in
real mica.

6.2. Evolution of the local energies

We can observe the evolution of the densities of ki-
netic, potential, and total energies for different kink
amplitudes, considering a particle at a fixed site (e.g.,
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Fig. 8. Velocity and number of kinks as functions of the initial
excitation amplitude 𝐴0. Dimensionless units
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Fig. 9. Evolution of two kinks with more than four times the
sound speed. Dimensionless units

𝑛 = 30) and the corresponding maximum values
of the particle energy (kinetic, potential, and total
ones), when the kink arrives to this position. In this
case, the energy grows as soon as the amplitude of
the kink approaches 1. The increase in the potential
energy is in agreement with the repulsive character
of the potential. The increase of the kinetic energy is
also in agreement with the dependence of the veloc-
ity on the amplitude, as it is shown in Fig. 7 that has
been obtained in the RWA approximation.

The behavior of the particle can be seen in more
details in Fig. 11. When the kink arrives to the site
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Fig. 11. Potential, kinetic, and total energies as functions of
the amplitude for a fixed particle at site 𝑛 = 30. The points are
numerical values and the lines (dotted, dashed, and continuous
ones for the potential, kinetic and total energies, respectively)
represent the values deduced from the analytical solution for
the relative displacements 𝑣𝑛(𝑡) from Eq. 12, and 𝑢𝑛(𝑡) =

=
∑︀

𝑣𝑛(𝑡). The amplitude of the kink is 𝐴 = 0.78

𝑛 = 30, the particle starts moving, returning, after
some time, to the rest position. This situation is rep-
resented in this figure, by plotting the energies (po-
tential, kinetic, and total ones) for the amplitude of
the kink 𝐴 = 0.78. It can be seen that the evolution of
the local potential energy with time is a curve close
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Fig. 12. Evolution of a supersonic kink in a lattice, where the
Coulomb interaction with the nearest four neighbors has been
taken into account. Dimensionless units

to a double Gaussian peak. This can be explained
by the process of double pushing with the neighbors
that suffers the particle. When the kink arrives to
the site, the left-hand side neighbor of the particle
pushes it to the right, increasing the displacement
with high acceleration. But simultaneously, as the
particle approaches the neighbor on the right-hand
side, this neighbor pushes it just in the opposite di-
rection, producing a deceleration as a result of the
balance between these two forces, because the poten-
tial we have considered is repulsive. The valley at the
center between the double peak becomes deeper as 𝐴
reaches values closer to 1. For low values of the ampli-
tude, peaks become wider, producing the unique wide
peak flattened on top. The lines in Fig. 11 (dashed,
dotted, and continuous ones) represent the values of
these energies (potential, kinetic, and total ones) ob-
tained from 𝑢𝑛(𝑡) =

∑︀
𝑣𝑛(𝑡), where 𝑣𝑛(𝑡) is given by

Eq. (12). The disagreement observed with the nu-
merical values can be explained as a consequence of
the limitation of the validity of 𝑣𝑛(𝑡) from Eq. (12)
that has been obtained within the RWA.

6.3. Kinks with particles interacting
between several neighbors

We have also checked that the kinks continue to exist
if we extend the Coulomb interaction beyond nearest
neighbors, although they become wider. Figure 12
shows the evolution of a kink, where we have consid-
ered the interaction with the first four neighbors. The
localization and the supersonic speed of the kink are
evident. However, the larger the number of neigh-
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bors, the wider becomes the kinks. But we do not
think that many neighbors should be taken because
in the ions are not isolated a real crystal, and the rest
of the crystal produces an screening effect.

Note that to consider a true long-range interaction
with all neighbors is a completely different problem
that we do not address here. As is known, this leads
to a dependence of the sound speed on the number of
particles as 𝑁 log(𝑁), which would be extremely large
in a macroscopic crystal and diverges for 𝑁 → ∞.
Solitons and kinks closer to the continuum limit have
been studied in several different models with a long-
range interaction. See Refs. [30, 31] and references
therein.

7. Conclusions

There is the compelling evidence that, in muscovite
mica, there exists some excitation that propagates
extremely long distances, as compared with the lat-
tice constant, even centimeters. Some specimens of
muscovite show dark lines which are precipitations or
iron oxide. Some of these lines have been shown to be
tracks produced by elementary charged particles, like
muons and positrons. This proves that, at some sen-
sitive period of its formation, muscovite has had an
amazing recording capability of disturbances. Most
of the lines are not produced by charged particles but
by some kind of excitation, called quodon, propagat-
ing in the cation layer along close packed lines. The
experiment have shown that this excitation can travel
a few millimeters with enough energy to eject an atom
at the surface. However, its exact nature is yet not
well known.

The models proposed so far have overlooked that
the cations have an exclusively repulsive interaction
without an equilibrium point. We have proposed a
minimal model of repulsive particles. It does not
intend to reproduce exactly the extremely complex
structure and properties of the mineral, but to explore
the peculiarities of a repulsive lattice with respect to
the propagation of localized excitations.

We have found that the kinks are easily excited and
propagate along the lattice. Basically, any perturba-
tion with sufficient energy produces them and can be
modulated to produce any number of them with al-
most any energy. The relationship between the kink
velocity and the amplitude has been obtained, and
we have shown that it has good agreement with the

numerical results. The kink velocities can be an order
of magnitude larger than the speed of sound, and its
energy can be of hundreds of eV, even keV.

The study of a more realistic version of this system
is under way. The first step will be to add a short-
range potential of the type used in ion collisions that
will prevent the particles to become too close. The
results will be reported elsewhere in due time, but
we anticipate that the supersonic kinks with large
energies will also appear.
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РУШIЙНI ЗБУДЖЕННЯ В КАТIОННИХ ҐРАТКАХ

Р е з ю м е

Розглянуто модель з тотожними частинками, якi вiдштов-
хують одна одну завдяки кулонiвськiй взаємодiї. Чисельно
i аналiтично дослiджено питання про iснування i властиво-
стi надзвукових кiнкiв, якi дуже легко генеруються i про-
ходять великi вiдстанi. Кiнкi мають швидкостi i енергiї в
широкому дiапазонi. Нас мотивувала особлива характери-
стика мiнералу мусковiт. У складнiй структурi можна роз-
рiзняти треки вiд частинок, таких як мюони, i бiльшiсть
трекiв може бути пояснено в термiнах локалiзованих збу-
джень, званих кодонами. Вони рухаються в ґратцi катiонiв
мiж шарами силiкату вздовж напрямкiв ґратки. Кодони ви-
явлено експериментально в роботi EPL 78, 1005 (2007).
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