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Within a microscopic three-cluster α + α+ n(p) model, which is a three-cluster version of the
algebraic approach to the resonating group method (AV RGM), we consider the spectra of the
low-lying states of mirror nuclei 9Be and 9B in the excitation energy range from zero to 5 MeV.
The obtained theoretical results are compared with the available experimental data.
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1. Introduction

We will study the spectra of low-lying states of nuclei
9Be and 9B. As is known, nucleus 9Be is bound only
in the ground state, whereas nucleus 9B, which is the
mirror one relative to 9Be, has no bound states at all.
In other words, except for the ground state of nucleus
9Be, we will deal mainly with resonance states, the
interest in which is determined by a number of the
following factors.

The study of the low-lying states of nucleus 9Be
is of interest for astrophysics, in particular, for the
problem of nuclear synthesis of elements. The reso-
nances lying above the threshold of disintegration of
9Be determine the rate of synthesis of this nucleus
under the bursts of supernovas. At sufficiently high
concentrations of neutrons and alpha-particles in a
star, the radiative capture reaction α(αn, γ)9Be can
run with high rate in the resonance mode. This re-
action is followed by 9Be (α,n)12C [1, 2]. Along with
the three-alpha capture α(αα, γ)12С, the mentioned
reactions can play a significant role in overcoming the
barrier for the creation of elements with A > 8. This
barrier is related to the absence of bound states of
the nuclei with A = 5 and A = 8 (5H, 5Li, 8Be), i.e.,
to the so-called “mass dip”.

Of interest is also the comparison of the spectra of
the low-lying states of mirror nuclei 9Be and 9B pre-
senting the example of the influence of the Coulomb
interaction of protons on the spectra of light atomic
nuclei. Especially, this concerns the states 1/2+,
1/2−, and 5/2+. Despite the many-year efforts, there
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is no complete information about the energies and the
widths of these resonances. In particular, the spins
are known not for all states. Especially, this is true
for 9B. Moreover, its state 1/2+, which is analogous
to that with an excitation energy of 1.68 MeV in nu-
cleus 9Be, was not given in the recent compiled work
[3] among the detected experimentally states of nu-
cleus 9B.

The interest in the situation concerning these nuclei
is manifested in a large number of experimental [4–
11] and theoretical works [12–21] (we have indicated
only a part of them) devoted to the consideration of
properties of nuclei 9Be and 9B.

The choice of a model for the description of proper-
ties of the nuclei under consideration is determined by
the domination of the three-cluster channels α+α+n
and α+α+p at small energies. The threshold ener-
gies of these channels are minimal among all chan-
nels. We note that the next-in-energy threshold of
the channel 7Li+d in nucleus 9Be (and 7Be+d in 9B),
where the α-cluster is broken, is much higher than
the threshold of the three-cluster channel (more than
15 MeV). Moreover, the α-clusters themselves have no
excited states below approximately the same energy.
Therefore, it is possible to assume surely that the
low-energy spectrum of these nuclei is formed by the
three-cluster channels α+α + n and α+α + p, where
the density distribution for nucleons in α-clusters can
be considered frozen. This is also indicated by the en-
ergy position of the bound state of nucleus 9Bе: it is
near the threshold of α+α + n, by 1.57 MeV below.
It is worth noting that the three-cluster systems un-
der consideration have no bound binary subsystems.
In this case, the lifetimes of nuclei 8Be and 5He in
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the ground state are, respectively, 0.97 × 10−16 and
1.1 × 10−21 s (4.4 × 10−22 s for 5Li). This indicates
that the cluster representation α+α+n (α+α+p) for
nucleus 9Be (9B) dominates at comparatively low en-
ergies. This circumstance must be taken into account
in a model for nuclei 9Be and 9B.

In the present work, we use the microscopic ap-
proach as such one, namely the three-cluster alge-
braic version of the resonating group method (see de-
tails in [22, 23]), where the function describing the
relative motion of clusters is expanded in the eigen-
functions of a six-dimensional harmonic oscillator in
hyperspherical coordinates.

The main positions of the model in use are briefly
presented in Section 2, and the results are given in
Section 3.

2. Method

The many-particle wave function of a three-cluster
system consisting of A nucleons (A = A1 +A2 +A3)
with the full account for the antisymmetrization can
be represented as

Ψ (q1, .., qA−1) = Â [Ψ1 (A1) Ψ2 (A2) Ψ3 (A3) ΨQ (Q)],
(1)

where Â is the operator of antisymmetrization. In
this case, we assume that the center-of-mass coor-
dinate for the A-nucleon system is excluded by the
transition to the Jacobi coordinates qi. This reduces
the problem to the consideration of the internal dy-
namics of the system. The functions Ψi (Ai) set the
internal structure of the i-th cluster. The function

ΨQ (Q) = ΨQ (q1, q2) (2)

characterizes the relative motion of clusters, depends
on the Jacobi coordinates q1 and q2, and can be ex-
panded in the approach under consideration in the
basis of a six-dimensional harmonic oscillator.

Since the wave functions of clusters are fixed in
our case and are constructed only on the (0s)-
orbitals, the problem of classification of the states
of the system after the expansion of the relative
motion function in the basis is completely trans-
ferred onto the basis states describing the interclus-
ter motion. In our specific case, such basis states
are the eigenfunctions of a six-dimensional harmonic
oscillator |nρ,K, l1, l2, LM〉. They are characterized

by the hypermoment K, number of quanta of hyper-
radial excitations nρ, partial angular momenta l1 and
l2 connected with the first and second Jacobi vectors,
respectively, total angular momentum L produced by
the coupling of the partial momenta l1 and l2, and its
projection M . In this case, the relation N = 2nρ+K
holds for each oscillator shell with the principal quan-
tum number N .

The expansion of the wave function of the relative
motion

ΨQ (q1, q2) =
∑
ν

CνΨν (q1, q2) , (3)

where

{Ψν} = |nρ,K, l1, l2, LM〉(ν = {nρ,K, l1l2, LM}),

leads to the infinite system of algebraic equations∑
ν′

[
〈ν|Ĥ|ν′〉 − E〈ν|ν′〉

]
Cν′ = 0 (4)

for the coefficients Cν . Totally, these coefficients
determine the wave function in the oscillator rep-
resentation.

System (4) is a consequence of both the choice of
a trial function in the form (1) and expansion (3),
while solving the many-particle Schrödinger equa-
tion. The quantities 〈ν|Ĥ|ν′〉 and 〈ν|ν′〉 are matrix
elements of the Hamiltonian and the identity opera-
tor on the antisymmetrized many-particle basis func-
tions |ν〉 = |nρ,K, l1, l2, LM〉. The presentation of
the technique of calculations of these quantities re-
quired for the following consideration is omitted here
for brevity (see works [22, 23] and references therein).
We note only that, like the solution of the problems
with a continuous or discrete spectrum, where the
asymptotic formulas for the wave functions at large
distances in the coordinate representation are used to
set the boundary conditions, the solution in the oscil-
lator representation involves a practically equivalent
procedure. At large values of the number of radial
oscillator quanta for the relative motion of clusters,
we use again the asymptotic formulas, but already for
the expansion coefficients Cν .

In view of the results of works [24, 25], the expan-
sion coefficients C(±)

nρ corresponding to incoming and
outgoing waves can be presented at large values of
the number of quanta of hyperradial excitations nρ
as follows:
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for uncharged clusters,

C(±)K
nρ '

√
2

{
H

(1)
K+2

(
kρnρ

)
H

(2)
K+2

(
kρnρ

)}, (5)

and, in the presence of the Coulomb interaction,

C(±)K
nρ '

√
2
{
Wiη,K+2

(
2ikbρnρ

)
/
√
ρnρ

W−iη,K+2

(
−2ikbρnρ

)
/
√
ρnρ

}
. (6)

In formulas (5) and (6), k =
√

2mE
~2 , the letters

H and W stand for the Hankel and Whittaker func-
tions, respectively, ρnρ = b

√
4nρ + 2K + 6, b is the

oscillator radius, and η is the Sommerfeld parameter.
We note that the asymptotic solutions for neutral

(uncharged) clusters depend exclusively only on the
hypermoment K, rather than on all values of quan-
tum numbers. In this case, the channels with different
K are uncoupled. In this sense, it is logical to rep-
resent the compound index ν = {nρ,K, (l1l2)LM}
as ν = {K, ν0}, by separating K among other quan-
tum numbers. The asymptotic solutions for charged
clusters depend on K and the partial angular mo-
menta (see [29] for details). For short-range forces,
the decoupling of channels at large values of nρ poses
practically no problems. The case of Coulomb forces
requires a somewhat higher attention, but we omit
the discussion of related questions analyzed in works
[22, 23]. Finally, we deal with the situation where
the states with different K and ν0 are connected by
means of nuclear and Coulomb forces only in the in-
ternal domain (the interaction domain), i.e., we arrive
at the approximation of coupled channels.

For the consideration of the asymptotics, it is con-
venient to write our system of equations in the form∑
K′,mρ

〈
nρ,K

∣∣∣Ĥ − E∣∣∣mρ,K
′
〉
CK

′

mρ = 0, (7)

where K stands for the collection of all indices
except for nρ.

Since we will use the S-matrix formalism while
solving the scattering problem, we represent the ex-
pansion coefficients CKnρ at large values of nρ as

CKnρ = C(0)K
nρ + δKiKC

(−)K
nρ − SKiKC(+)K

nρ , (8)

where, for each of the K-channels, C(0)K
nρ is the so-

called residual coefficient, and C
(±)K
nρ are asymp-

totic coefficients related to convergent and divergent

waves. The matrix elements SKiK describe the cou-
pling between the output channel K and the input
channel Ki.

The substitution of (8) in the equations of system
(7) gives the system of dynamical equations for the
multichannel problem. This system of equations will
be solved in order to determine the residual coeffi-
cients C(0)K

nρ and the S-matrix elements SK′K .
In order to optimally obtain the most exact ap-

proximation in the solution of the system, we will
distinguish some internal domain with nρ ≤ Nρ and
the asymptotic domain with nρ > Nρ. The choice
of Nρ should be such that the expansion coefficients{
C

(0)K
nρ

}
be characterized by the essential smallness

in the asymptotic domain.
Solving the system of dynamical equations for

each of Nch input channels, we obtain the S-matrix
||Sν,ν′ ||, which contains a detailed information about
the elastic and inelastic processes in the three-cluster
system. It is convenient to analyze the S-matrix, by
transforming it to the diagonal form. Such a repre-
sentation of the S-matrix is usually called the repre-
sentation of eigenchannels and leads to the so-called
eigenphases of scattering δα:

Sα = exp {2iδα}, α = 1, 2, ..., Nch, (9)

where α enumerates the uncoupled eigenchannels.
The eigenphases of scattering are used to determine

the parameters of resonances such as their energies
and widths. With the help of the well-known formula
for the r-th resonance in the α-eigenchannel, it is easy
to find the energy and the width of the resonance:

d2δα
dE2

∣∣∣∣
E=Eα,r

= 0, Γ = 2
(
dδα
dE

)−1 ∣∣∣∣
E=Eα,r

. (10)

3. Results

The results presented in this section are obtained with
the Minnesota potential, whose central part is taken
from work [26], and the spin-orbit one from work [27]
(version IV). In calculations, the oscillator radius b
was taken to be 1.285 Fm. This value of b minimizes
the binding energy of each separate α-particle. The
value of exchange parameter u in the potential is de-
termined to be such that the binding energy for the
ground state of nucleus 9Be relative to the α + α+n
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threshold is reproduced. To attain the suitable accu-
racy of calculations, we used all hyperharmonics with
hypermoments K ≤ 13 and K ≤ 14 for the states
with negative and positive parities, respectively, and
took the values of nρ from zero to 70 for each of the
channels. The total number of basis functions used
in calculations exceeded 3000. The solution of the
problem is somewhat simplified by the fact that the
binary α-α subsystem has only even momenta of the
relative motion of clusters due to the symmetry.

The choice of the Minnesota potential as a nucleon-
nucleon one is not accident. This potential was most
frequently used in microscopic calculations of the
properties of light atomic nuclei and, in particular,
9Be and 9B [12, 15, 17]. This circumstance facilitates
the comparison of our results with those obtained in
the other theoretical works. We note that the ex-
change parameter u of the potential in the mentioned
works was chosen to be 0.94 in order to reproduce
the properties of the binary subsystems α+α and
α+nucleon most properly. However, such a choice
of the parameter u implies that nucleus 9Be becomes
overbound, and a bound state appears in nucleus 9B.

Prior to the calculation of the three-cluster sys-
tems, we studied how strongly the choice of the pa-
rameter u of the Minnesota potential affects the char-
acteristics of the resonance states of two-cluster sub-
systems. In Table 1, we show the energies and the
widths of resonances of nuclei 8Be, 5He, and 5Li cal-
culated with u = 0.928 and u = 0.94.

The results of calculations of the spectra of nuclei
8Be, 5He, and 5Li performed by us with u = 0.94
are in good agreement with experimental data. Nat-
urally, the decrease of u to 0.928 somewhat increases
the energies of the resonances and their widths, since
the odd components of the nucleon-nucleon potential
grow, but their values remain reasonable.

In brief, we consider the results obtained for the
ground state of nucleus 9Be. It is a bound state, and
we can trace easily the convergence of its energy with
the use of Fig. 1, as the basis is extended. In this
figure, we present the binding energy E versus the
total number of basis states Nfun used in the calcu-
lation. The breaking point on the curve is located at
the point, where the basis functions with Lπ = 2−

are added to the states with Lπ = 1−. At this point,
the energy becomes negative (becomes less than the
three-particle threshold), which indicates the impor-
tance of the consideration of spin-orbit forces. We

Fig. 1. Binding energy of the ground state of nucleus 9Be
versus the number of basis functions used in calculations

recall that this calculation was performed with the
maximum value of hypermoment (K = 13).

For the analysis of the size of nucleus 9Be, we
present the proton, neutron, and mass root-mean-
square radii calculated by us: Rp = 2.27 Fm, Rn =
= 2.46 Fm, and Rm = 2.38 Fm. As would be ex-
pected, the radius of the neutron cloud is larger than
that of the proton one. We can compare the proton
radius with the experimental values. For example,
the recent work [28] gives Rp = 2.519(12) Fm, which
is close to the result in [17] and can indicate the higher

Table 1. Comparison of the parameters of the
resonance states of two-cluster subsystems calculated
with u = 0.928 and u = 0.940 with experimental
data. The energies and the widths of the
resonance states are given in MeV

AV RGM
Experiment

u = 0.928 u = 0.940

Nucleus Jπ E Γ E Γ E Γ

8Be 0+ 0.17 7.15×10−4 0.02 1.03×10−7 0.09 5.6×10−6

2+ 3.09 1.81 2.93 0.51 3.13 0.51
4+ 12.91 5.63 12.57 5.02 11.5 3.50

5He 3
2

− 1.06 1.17 1.00 1.04 0.80 0.65
1
2

− 2.26 8.63 2.24 8.38 2.07 5.57
5Li 3

2

− 1.93 2.00 1.86 1.80 1.69 1.23
1
2

− 3.11 10.24 3.10 9.96 3.18 6.60
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Table 2. Parameters of the lowest states of nucleus 9Be. The energy is measured
from the α+ α+ n threshold

AV RGM
Experiment [3]

First state Second state

Jπ E (MeV) Γ (keV) E (MeV) Γ (keV) E(MeV±keV) Γ (keV)

3
2

− –1.56 – 0.85 261.08 –1.57 –
1
2

+ 0.25 14.63 – – 0.11± 7 217± 10
5
2

− 0.99 0.54 2.11 448.24 0.85± 1.3 0.78± 13
1
2

− 0.79 142.77 1.68 458.23 1.23± 120 1080± 110
5
2

+ 1.48 315.92 2.60 264.30 1.48± 9 282± 11

Fig. 2. Contributions of various oscillator shells to the ground
state of nucleus 9Be

Fig. 3. Eigenphases of scattering for the state Jπ=3/2− of
nucleus 9Be

clusterization of the nucleus than that in our model.
On the whole, the experimental data deviate to the
larger side from ours not so strongly (see, e.g., [3],
where Rp = 2.3917 Fm).

To give a more complete information about the
structure of the ground-state wave function of nu-
cleus 9Be, we present Fig. 2 showing the weight
Wsh of the contribution of each oscillator shell to the
wave function, which is normalized to 1. The shells
are successfully enumerated so that the shell number
Nsh corresponds to the principal quantum number
N = 2×Nsh+3. The plot is cut on the right side at
Nsh=22, though the calculation involved all functions
of 70 oscillator shells. The plot indicates that the
wave function is distributed over a rather large num-
ber of shells, which is a manifestation of the strong
clusterization of the nucleus.

Before the consideration of the resonance states of
nuclei 9Be and 9B, we recall that our main tool for the
determination of parameters of the resonance states
are the eigenphases of scattering. Their behavior is
shown by Fig. 3 presenting the dependence of the
eigenphases of scattering on the energy for the state
Jπ = 3/2− of nucleus 9Be. From three curves, only
one reveals the resonance behavior, which allows us
to obtain, with the use of (10), the resonance pa-
rameters. To complete the pattern, we note that the
resonance can manifest itself in some cases in at least
two eigenphases.

The basic quantitative characteristics of the bound
and resonance states of nuclei 9Be and 9B, obtained in
our calculations, are presented in Tables 2 and 3 and
in Figs. 4 and 5 together with relevant experimental
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Table 3. Parameters of the lowest states of nucleus 9B. The energy is measured
from the α+ α+ n threshold

AV RGM
Experiment [3]

First state Second state

Jπ E (MeV) Γ (keV) E (MeV) Γ (keV) E(MeV±keV) Γ (keV)

3
2

− 0.29 0.39 1.30 460.99 0.28 0.54± 21
1
2

+ 0.59 121.65 – – – –
5
2

− 2.60 692.67 2.77 31.48 2.64± 5 81± 21
1
2

− 1.44 185.13 2.83 587.33 3.03± 300 3.130± 20
5
2

+ 1.90 459.19 3.77 851.76 3.07± 30 550± 40

data. In these calculations, we limited ourselves by
the excitation energies of at most 5 MeV. From the
viewpoint of the shell model, these are the energies, at
which the states of valent neutron (proton) dominate.

It is seen at once that the region of energies un-
der study includes two and more resonance states,
whereas only one state is usually observed in experi-
ments. It is worth noting that we have already met
a similar situation, for example, in the calculation of
parameters of the 0+ and 2+ resonances of nuclei 6He
and 6Be. In the reasonable agreement with experi-
ments, we obtained also some resonances with higher
energies and large widths [29].

First, such a situation was perceived by us as
some drawback of our approach caused by a too high
kinematic barrier in the three-particle exit channels.
However, the calculations performed with the Com-
plex Scaling Method [30, 31], which is not related to
the hyperspherical basis and the form of boundary
conditions, indicate also the possibility of the exis-
tence of similar resonances.

The spectra of nuclei 9Be and 9B are much richer
than those of 6He and 6Be; therefore, the situation
turns out, naturally, more complicated. In whole, our
model reproduces fairly well the experimental situa-
tions for 9Be, if we take “first resonance states” into
account. This can be seen in Table 2 and also in
Fig. 4, where we display our results, results of the
Complex Scalling Method (CSM) from Ref. [17], and
experimental data from Ref. [3]. Note that the width
of the 1/2+-resonance state, obtained in our model,
is smaller than its value deduced from experimental
data. As is seen in Fig. 4, the first excited state,

Fig. 4. Calculated and experimental spectrum of 9Be. Calcu-
lated spectrum is presented by results of our model (AV RGM)
and the Complex Scaling Method (CSM) from Ref. [17]. Ex-
perimental data is taken from Ref. [3]

determined within the CSM, is the 5/2− resonance.
However, this resonance in our model lies at a higher
energy, as it is observed in experiments. Note that, at
this energy, i.e. E ≈ 0.4 MeV, other methods, used in
Ref. [17], predict the existence of the 1/2+-resonance
state. The difference between the results of our model
and the CSM can be ascribed to the different values
of the parameter u of the Minnesota potential used
in our calculation and in Ref. [17]. This can be also
related to properties of the bases, involved in these
two calculations.

In the case of 9B, our results almost exactly co-
incide with the experimental energies of the 3/2−
ground state and the 5/2− resonance (see Fig. 5 and
Table 3). However, between these two states, our

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 7 633



A.V. Nesterov, V.S. Vasilevsky, T.P. Kovalenko

Fig. 5. Calculated and experimental spectra of 9B. Calculated
spectrum is presented by results of our model (AV RGM) and
the Complex Scaling Method (CSM) from Ref. [17]. Experi-
mental data are taken from [3]

model generates a set of resonance states, which are
not observed experimentally. In this energy range, we
display the experimental level the (Fig. 5), which is
marked as “1/2+?”. Here, we also have the 1/2+ res-
onance state, as well as other states. It is well known
that nucleus 9B is a rather complicated object for ex-
perimental investigations and has not been studied
thoroughly. Thus, we assume that these states can
be determined, for instance, in complete kinematic
experiments.

It is worth to note that there are two very close res-
onance states just above the 5/2− resonance in 9B.
In experiment, they are the 1/2− and 5/2+ states,
while, in our calculations, we have the 5/2− and 1/2−
states. Comparing results for the mirror nuclei 9Be
and 9B calculated within our model and the Com-
plex Scaling Method, we can evaluate the role of the
Coulomb interaction. One notices that the Coulomb
interaction shifts more strongly the excited states in
9B with respect to those of 9Be in the CSM than in
our model. In addition, this interaction in the CSM
does not change the order of excited states.

Among the states of nucleus 9B, the 1/2+-state is of
special interest. As was mentioned above, this state
was not included in the spectra in the recent work
[3], though its existence was discussed many times in
experimental works (see, e.g., [4,32–35] and references
therein), where its excitation energy varied from 0.8
to 1.8 MeV, and the width did from 400 to 1300 keV.
For this state, we predict a very low excitation energy
of about 0.3 MeV and a width of 122 keV, which are

less than those in the available theoretical works. For
example, Ex = 1.0 MeV, Γ = 1.8 MeV [36]; Ex =
= 0.94 MeV, Γ = 1.64 MeV [16]; Ex = 1.3 MeV, Γ =
= 2.0 MeV [37]; and Ex = 1.2 MeV, Γ = 1.3 MeV
[12]. In this case, we recall that the analogous state
1/2+ in nucleus 9Be obtained by us has a reasonable
value of excitation energy, but the width is less than
the experimental one.

As was indicated above, the problem under consid-
eration is a many-channel one. It includes the spe-
cific channels, which can be classified with the help
of the hypermoment K and the partial momenta l1
and l2. In this case, we associate the partial momen-
tum l2 to the binary subsystem α−α. The technique
of determination of the partial decay widths for such
channels was proposed in [38]. Our experience of the
calculation of partial widths indicates that the total
width is usually composed of contributions of a small
number of channels with the minimum values of hy-
permoment K and with the relevant values of partial
angular momenta. Probably, this is caused by a fast
increase in the height and the width of the kinematic
barrier with K for three-particle-decay channels. For
the comparatively narrow resonances, with which we
deal in the present work, the width is determined by
only a single channel. Indeed, 99% of the total width
of the state of nucleus 9Be with E3/2− = 0.85 MeV,
Γ3/2− = 261.08 keV are determined by the channel
with K = 1, l1 = 1, l2 = 0, and the total width of the
state of the same nucleus with E1/2+ = 0.25 MeV,
Γ1/2+ = 14.63 keV is completely determined by the
channel with K = 0, l1 = 0, l2 = 0.

4. Conclusions

Within the three-cluster microscopic model, we have
studied the spectra of the low-lying states of nuclei
9Be and 9B. To classify the channels of the three-
cluster continuum, we used the basis of hyperspher-
ical functions. In the numerical calculations of the
bound and resonance states of these nuclei, we in-
volve a large number of hyperspherical and hyperra-
dial states to achieve the convergence of results with
suitable accuracy. It is shown that the theory re-
produces satisfactorily the experimental structure of
excited states of nuclei 9Be and 9B. It turns out that
our theoretical spectra contain more states than the
available experimental ones. The dominating chan-
nels of decay of three-cluster resonances are revealed.
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О.В. Нестеров, В.С. Василевський, Т.П. Коваленко

СПЕКТРИ ЯДЕР 9Be ТА 9B У ТРИКЛАСТЕРНIЙ
МIКРОСКОПIЧНIЙ МОДЕЛI

Р е з ю м е

Iз застосуванням кластерного представлення α+α+n(p) в
рамках трикластерної мiкроскопiчної моделi – алгебраїчної
версiї метода резонуючих груп – розглянуто спектри низь-
колежачих станiв дзеркальних ядер 9Be та 9B, що належать
областi енергiй з енергiєю збудження до 5 МеВ. Отриманi
теоретичнi результати порiвняно з iснуючими експеримен-
тальними даними.
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