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We show that, in anharmonic one-dimensional lattices, the pairing of electrons or holes in
a localized bisoliton (called also bisolectron) state is possible due to a coupling between the
charges and the lattice deformation that can overcome the Coulomb repulsion. We show that
bisolitons are dynamically stable up to the sound velocities in lattices with cubic or quartic
anharmonicities, and have finite values of energy and momentum in the whole interval of
bisoliton velocities up to the sound velocity in the chain. We calculate the bisoliton binding
energy and the critical value of Coulomb repulsion at which the bisoliton becomes unstable and
decays into two independent electrosolitons. We estimate these energies for chain parameters
that are typical of biological macromolecules and some quasi-one-dimensional conducting sys-
tems and show that the Coulomb repulsion in such systems is relatively weak as compared with
the binding energy. Our analytical results are in a good agreement with the results of numerical
simulations in a broad interval of the parameter values.
K e yw o r d s: lattice anharmonicity, bisoliton, bisolectron, Coulomb repulsion, electron, hole,
exciton, polaron, model Hamiltonian.

1. Introduction

The electron-phonon interaction leads to the lower-
ing of the energy of quasiparticles (electrons, holes,
excitons, etc.) [1–6]. Depending on the strength of
the coupling and the ratio between the Debye energy
of phonons and the resonant (exchange) energy in the
lattice, a quasiparticle is either in an almost free band
state or is trapped in a large polaron or small polaron
state [1–6]. For instance, at moderate values of cou-
pling, large polarons correspond to the lowest energy
of the system [6]. From the point of view of conduct-
ing properties, a large polaron is the most important
case, and there is a wide class of crystals, in which
large polarons exist. In one-dimensional molecular
crystals, such large polarons have been described by
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G. RÖPKE, M.G. VELARDE, 2013

a system of nonlinear equations which admit solu-
tions in the form of the so-called Davydov’s solitons
[6–8]. It has been shown that, in a harmonic lattice,
the pairing of two electrons or holes with opposite
spins in a bisoliton state takes place [9–11]. Here,
we study how the lattice anharmonicity affects the
electron pairing in a one-dimensional lattice with ac-
count of the Coulomb repulsion. Below, we define the
Hamiltonian of the system, which consists of an an-
harmonic lattice and two extra electrons (or holes)
with opposite spins. We derive the corresponding
system of equations in the adiabatic approximation
for the bisolectron wave function and a lattice de-
formation. First, we neglect the Coulomb repulsion
between the electrons and find analytical solutions in
the form of traveling localized structures of the cor-
responding evolution equations for the case of cubic
and quartic anharmonic lattice potentials. Then, us-
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ing these solutions, we take the Coulomb repulsion
between electrons into account and find conditions
for the bisoliton stability with respect to the decay
into two isolated solitons.

2. Model Hamiltonian
and Dynamic Equations

Let us consider two excess electrons in an infinitely
long one-dimensional lattice formed by unit cells of
mass M at equilibrium lattice spacing a. Such a sys-
tem can be described by the Fröhlich Hamiltonian in
the form

H = Hel +Hlat +Hint +HCoul. (1)

Here, the electron Hamiltonian is written as

Hel =
∑
n,s

[
E0B

†
n,sBn,s − JB†n,s

(
Bn+1,s +Bn−1,s

)]
,

(2)

where E0 is the on-site electron energy, J is the elec-
tron exchange interaction energy, and B†n,s, and Bn,s
are the creation and annihilation operators of an elec-
tron with spin s = 1, 2 on the lattice site n.

The Hamiltonian of the lattice with one phonon
mode only has the form

Hph =
∑
n

[
p̂2
n

2M
+ Û

(
β̂n

)]
, (3)

where β̂n is the operator of a displacement of the n-
th unit cell from its equilibrium position, p̂n is the
operator of the canonically conjugated momentum,
and Û is the operator of the potential energy of the
lattice, whose properties will be defined below.

The Hamiltonian of the electron-lattice interaction
in the case where the on-site electron energy depen-
dence on the longitudinal displacements of unit cells
(acoustical mode) dominates the intersite dependence
is given by the expression

Hint = χ
∑

n,s=1,2

(
β̂n+1 − β̂n−1

)
B†n,sBn,s, (4)

where χ is the electron-lattice coupling constant.
The Coulomb repulsion between the electrons is

given by the Hubbard-type Hamiltonian

HCoul =
∑

n,m,s=1,2

VnmB
†
n,sBn,sB

†
m,sBm,s, (5)

where Vnm is the corresponding matrix element of the
Coulomb interaction.

In the adiabatic approximation, we can set

|Ψ(t)〉 = |Ψel(t)〉|Ψph(t)〉. (6)

Here, the vector state of the lattice has the form of
the product of the operator of coherent displacements
of unit cells and the vacuum state of the lattice, |0〉ph,

|Ψph(t)〉 = exp

{
− i

~
∑
n

[
βn(t)p̂n − pn(t)β̂n

]}
|0〉ph,

(7)

where βn(t) and pn(t) are, respectively, the mean val-
ues of the displacements of unit cells from their equi-
librium positions and their canonically conjugated
momenta in state (6).

The electron state vector for two excess electrons
has the form

|Ψel(t)〉 =
∑

n1,n2,s1,s2

Ψ(n1, n2, s1, s2; t)B†n1,s1B
†
n2,s2 |0〉el.

(8)

In the absence of a magnetic field, we can repre-
sent the singlet electron function Ψ(n1, n2, s1, s2; t)
for two electrons with antiparallel spins as the prod-
uct of the symmetric coordinate function Ψ(n1, n2, t)
and the antisymmetric spin function χ(s1, s2). Using
such a state vector, we can calculate the Hamiltonian
functional H = 〈Ψ(t)|H|Ψ(t)〉, corresponding to the
Hamiltonian operator (1).

We are interested in functions slowly varying in
space that correspond to solutions of the soliton class.
Therefore, we can use the continuum approximation
n → x ≡ na. Minimizing the functional H with re-
spect to electron and phonon variables and neglect-
ing the Coulomb repulsion, we derive the system of
equations

−i~∂Ψ
∂t
− ~2

2m

(
∂2Ψ
∂x2

1

+
∂2Ψ
∂x2

2

)
=

= χa

(
∂β(x, t)
∂x

∣∣∣∣
x=x1

+
∂β(x, t)
∂x

∣∣∣∣
x=x2

)
Ψ, (9)

∂2β

∂t2
− V 2

ac

∂2U

∂ρ2

∂2β

∂x2
− α ∂4β

∂x2∂t2
=

=
a

M
χ

(∫
dx2

∂|Ψ|2

∂x1

∣∣∣∣
x1=x

+
∫
dx1

∂|Ψ|2

∂x2

∣∣∣∣
x2=x

)
. (10)
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Here, ρ(x, t) = −∂β(x, t)/∂x is the local deformation
of the lattice, and Vac is the linear sound velocity in
the chain. On the left-hand side of the latter equa-
tion, we have included an extra term proportional
to the fourth derivative of the lattice displacement to
take a nonlinear dispersion of the lattice into account,
if any (see, e.g., comments in [12]).

The potential energy of the lattice U(ρ) has a min-
imum in the equilibrium lattice. We assume that it is
increasing with the electron-induced compression of
the lattice (ρ > 0) (see [12–14]):

∂U(ρ)
∂ρ

|ρ=0 = 0,
∂2U(ρ)
∂ρ2

> 0. (11)

The two-electron wave function can be represented
as the symmetrized product of ’one-electron’ wave
functions. Introducing the running wave coordinate
ξ = (x − x0 − V t)/a, we can rewrite the system of
equations in the following form:

d2Φj
dξ2

+ σρΦj = λjΦj , j = 1, 2, (12)

dF

dρ
= D(Φ2

1 + Φ2
2), (13)

where F is the effective lattice potential

F = U(ρ)− 1
2
s2ρ2, s2 =

V 2

V 2
ac

, (14)

and the following dimensionless parameters are intro-
duced:

λj = −Ej
J
, σ =

χa

J
, D =

χa

MV 2
ac

, (15)

with Ej being the electron eigenenergy, and Φj be-
ing the envelope function of the corresponding ’one-
electron’ wave functions Ψj in the two-electron state.

We can rewrite Eq. (12) in the form(
dΦj
dξ

)2

= λjΦ2
j − σQj , (16)

where the notation

Qj(ξ) =

ξ∫
−∞

ρ(x)dΦ2
j (x), j = 1, 2, (17)

is introduced. For localized solutions, the correspond-
ing functions attain some maximum values denoted as

Φj,0 and ρ0, respectively. In one-dimensional systems,
the deformational potential has at least one bound
state, which can be occupied by two electrons with
opposite spins. When the Coulomb repulsion is very
weak, the minimum energy state corresponds to the
case where the maxima of ’one-electron’ functions co-
incide [9–11] and

λ1 = λ2, Φ1(ξ) = Φ2(ξ). (18)

Therefore, we can omit index j in what follows.
In the general case, the maximum values of the

’one-electron’ wave functions are shifted along the lat-
tice by some value l0 due to the Coulomb repulsion,
which will be considered in the corresponding section
below.

From Eq. (16), we obtain the expression for the
electron eigenenergies:

λ = σ
Q(0)
Φ2

0

. (19)

From Eq. (13), we get the equation which deter-
mines the lattice deformation

dρ

dξ
= ±2

dF/dρ

d2F/dρ2

√
λ− σG(ρ), (20)

where

G(ρ) = ρ− F (ρ)
dF/dρ

(21)

and

λ = σG(ρ0). (22)

Integrating Eq. (20), we get

ξ(ρ) = ± 1
2
√
σ

ρ0∫
ρ(ξ)

d2F/dρ2

dF/dρ

1√
G(ρ0)−G(ρ)

dρ. (23)

From the normalization condition for ’one-electron’
wave functions, we find the expression for their
maximum

Φ0 =

√
1

2D

(
dF

dρ

) ∣∣∣∣
ρ=ρ0

G(ρ0). (24)

To get the explicit solutions, we have to specify the
lattice potential. Below, we will consider two cases
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of cubic and quartic anharmonic potentials. Respec-
tively, we assign subscript ’c’ or ’q’ to the functions:

Uc(ρ) =
1
2
ρ2 +

α

3
ρ3, Uq(ρ) =

1
2
ρ2 +

β

4
ρ4. (25)

Substituting these expressions into Eq. (14), we get

Fc(ρ) =
α

2
ρ2

(
2
3
ρ+ δc

)
, Fq(ρ) =

β

4
ρ2
(
ρ2 + 2δq

)
.

(26)
From Eq.(21), we find

Gc =
ρ

6
4ρ+ 3δc
ρ+ δc

, Gq =
ρ

4
3ρ2 + 2δq
ρ2 + δq

, (27)

where the dynamically modulated inverse anhar-
monic stiffness coefficients are introduced as

δc =
1− s2

α
, δq =

1− s2

β
. (28)

Substituting the explicit form of G into Eq. (23),
we can rewrite the expression in the form

ξν(ρ) = ± 1
2
√
σ

ρ0(ν)∫
ρ(ξ)

Kν(ρ, ρ0(ν))
ρ
√
ρ0(ν) − ρ

dρ, ν = c, q, (29)

where the kernel of the integral for both types of an-
harmonic potentials Kν in view of the explicit form of
Gν is very close to unity (see the numerical solution
in [15, 16]). From Eq. (29) after the integration, we
find that the deformation of the lattice is given by
the soliton solutions of the B-KdV equation [6, 17–
23] and the Zakharov–Davydov system of nonlinear
equations [6, 8]:

ρν(ξ) = ρ0(ν)Sech2(κνξ), (30)

the width of which, κ, is determined by the maximum
value of the deformation

κc =
√
σρ0(c)

2

√
4ρ0(c)

(
ρ0(c) + 2δc

)
/3 + δ2c

2ρ0(c) + δc
, (31)

κq =
1
2

√√√√σρ0(q)

(
3ρ2

0(q) + 2δq
)

ρ2
0(q) + 2δq

, (32)

which can be approximated by the expression

κν ≈
√
σρ0(ν)

2
. (33)
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∆
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0.10
0.12
0.14
Ρ0
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∆

0.05
0.10
0.15
0.20
0.25
0.30
Ρ0

a b
Fig. 1. Maximum value of the lattice deformation as a func-
tion of the dynamically modulated inverse anharmonic stiffness
coefficient δ in lattices with cubic (thin line) and quartic (thick
line) anharmonicities for gν=0.05 (a) and gν=0.2 (b)

In its turn, ρ0(ν) is determined by the corresponding
equation

ρ0(c)

(
4
3
ρ0(c) + δc

)2

= g2
cθc(ρ0(c)), (34)

ρ0(q)

(
8
5
ρ2
0(q) + δq

)2

= g2
qθq(ρ0(q)), (35)

where gν is a constant determined below,

g2
c =

D2σ

α2
, g2

q =
D2σ

β2
, (36)

and the following notations are introduced:

θc(ρ0(c)) =
4ρ0(c)(ρ0(c) + 2δc) + 3δ2c

6(ρ0(c) + δc)2
, (37)

θq(ρ0(q)) =
3ρ4

0(q) + 7δqρ2
0(q) + 2δ2q

4
(
ρ2
0(q) + δq

)2 . (38)

The numerical solutions of Eqs. (34) and (35) are
shown in Fig. 1 for two different values of the coupling
constant.

It follows from Fig. 1 that (i) the maximum lattice
deformation depends on the soliton velocity; (ii) the
soliton amplitude increases, and its width decreases,
as the velocity increases, and attain some finite values
at the sound velocity, V = Vac (i.e., δ = 0); (iii) the
soliton amplitude increases with the electron-lattice
coupling; (iv) the quartic anharmonicity is dominant
at small values of δ (large velocities), while the cubic
anharmonicity is dominant at larger values of δ (small
velocities).

From Eqs. (13), we obtain

Φ2(ξ) =
1

2D
dF (ρ)
dρ

. (39)
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Using the explicit expression for F from Eq. (26), we
find the electron wave function

Φc(ξ) =
√
ρ0(c)

2D
Sech(κcξ)×

×
√

1− s2 + αρ0(c)Sech2(κcξ), (40)

Φq(ξ) =
√
ρ0(q)

2D
Sech(κcξ)×

×
√

1− s2 + βρ2
0(q)Sech4(κqξ). (41)

Finally, we write down the energy and the momen-
tum of the system described by Hamiltonian (1)–(4)
in the bisolectron state (6)–(8):

E
(bs)
tot (V ) = mV 2 + E(bs)(V ) +W (V ), (42)

P(bs)(V ) =
[
2m+M

√
2
σ

ρ0∫
0

K(ρ, ρo)
ρ√

ρ0 − ρ
dρ

]
V ≈

≈
[
2m+

4
3
M

√
2
σ
ρ
3/2
0

]
V. (43)

Here, we reckon the energy from the electron energy
E0, m = ~2/(2Ja2) is the effective band mass of an
electron, E(bs)(V ) = −2λJ is the bisoliton energy,
and W is the energy of the lattice deformation:

W (V ) = 2MV 2
ac

0∫
−∞

(
F (ρ) + s2ρ2

)
dξ, (44)

or, in terms of the F and G functions given by ex-
pressions (14), (21), respectively:

E(bs)(V ) = −2DG(ρ0)MV 2
ac, (45)

W (V ) =
MV 2

ac√
σ

ρ0∫
0

d2F/dρ2

dF/dρ

F (ρ) + s2ρ2√
G(ρ0)−G(ρ)

dρ. (46)

Using now the bisolectron solutions (30) and (40)
for the cubic anharmonicity, we obtain

E(bs)
c (V ) = −DMV 2

acρ0(c)

4ρ0(c) + 3δc
3(ρ0(c) + δc)

, (47)

Wc(V ) ≈ MV 2
ac

3
√

2σ
ρ
3/2
0(c)

(
8
15
αρ0(c) + 1 + s2

)
. (48)

For solutions (30) and (41) in a quartic anharmonic
lattice, we have

E(bs)
q (V ) = −1

2
DMV 2

acρ0(q)

3ρ3
0(q) + 2δq
ρ2
0(q) + δq

, (49)

Wq(V ) ≈ 8
MV 2

ac√
2σ

ρ
3/2
0(q)

[
1
3

(
s2 +

1
2
δβ

)
+

2
35
βρ2

0(q)

]
.

(50)

Two important conclusions follow from the above
expressions. First of all, comparing the bisolectron
energies with the energies of solectrons (see [12–14]),
we conclude that there is the positive binding en-
ergy of a bisolectron in the whole interval of velocities
V 2 ≤ V 2

ac

E
(bs)
bind(ν)(V ) = 2E(s)

tot(ν)(V )− E(bs)
tot(ν)(V ), ν = c, q,

(51)

which means that an anharmonic lattice soliton can
capture two electrons with opposite spins, and such a
bisolectron state is energetically favorable as compar-
ing with two independent solectrons (lattice soliton
bound with one electron). Here, E(bs)

tot(ν)(V ) is the to-
tal energy of the system in the bisolectron state with
account of the energy of the lattice deformation, and
E

(s)
tot(ν)(V ) is the energy of the system with one elec-

tron in a soliton state with account of the energy of
the lattice deformation.

Second, we see that the bisolectron energy and the
energy of the lattice deformation take finite values at
the velocity of the bisolectron equal to the velocity of
the sound in the chain, namely:

E
(bs)
tot(c)(Vac) = mV 2

ac −
2
3
χaρ0(c) +

16
45
χaαρ2

0(c), (52)

E
(bs)
tot(q)(Vac) = mV 2

ac −
3
2
χaρ2

0(q) +
8
35
χaβρ3

0(q). (53)

At small velocities, the bisolectron energy increases
with the velocity, according to the law

E
(bs)
tot(c)(V ) = mV 2−

−1
3
χaρ0(c)

(
1− 2s2 − 1

15
αρ0(c) + 7αρ0(c)s

2

)
, (54)

E
(bs)
tot(q)(Vac) = mV 2−
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−1
3
χaρ0(q)

(
1− 2s2 + 3βρ2

0(q)s
2 − 129

35
βρ2

0(q)

)
. (55)

From the above two equations, we can calculate the
bisolectron band bottom energy level and the bisolec-
tron effective mass in the effective mass approxima-
tion:

E
(bs)
0(c) = −2

3
Jg2

(
1− 1

15
α

2Jg2

χa

)
, (56)

M (bs)
c = 2m+

4
3
Jg2

V 2
ac

(
1− 7α

Jg2

χa

)
, (57)

E
(bs)
0(q) = −2

3
Jg2

(
1− 129

35
β4g2 J2

χ2a2

)
, (58)

M (bs)
q = 2m+

4
3
Jg2

V 2
ac

(
1− 6β

J2g4

χ2a2

)
. (59)

Here, g is the dimensionless electron-lattice cou-
pling constant,

g ≡ χ2

2Jw
. (60)

3. Bisolectron with Account
of the Coulomb Repulsion

Let us now take into account the Coulomb repul-
sion between the electrons. The total energy of sys-
tem (42) in the bisolectron state with account of the
Coulomb repulsion is

E(bs)
tot(ν)(V ) = E

(bs)
tot(ν)(V ) + ECoul. (61)

In the systems, whose parameters satisfy the con-
dition of the adiabatic approximation (intermediate
value of the electron-lattice coupling and a relatively
small non-adiabaticity parameter), a bisolectron is
extended over a few lattice sites. Therefore, the en-
ergy of the Coulomb repulsion can be written as

ECoul ≈
e2

4πεla
, (62)

where e is the effective electron charge with account
of its screening in the lattice due to the surrounding
and the complex structure of a unit site, and ε = εmε0
is the dielectric constant of the lattice, which contains
the dielectric constant εm of the medium.

Above, we have obtained the soliton solutions for
two electrons with antiparallel spins, bound with
the lattice soliton, in the approximation of a very

weak Coulomb repulsion. In such a case, both ’one-
electron’ wave functions have maximum values at the
same position in the lattice. In the general case, the
corresponding maximum values are shifted along the
lattice by some value l0, which is determined by the
balance between the Coulomb repulsion between the
electrons and their attraction due to the interaction
with the lattice:

Φj(ξ) = Φj(ξ ± l0/2)fj(l0), (63)

where fj(l0) takes into account the change of the ’one-
electron’ wave functions due to the Coulomb repul-
sion. For localized states extended over few lattice
sites, the repulsion is expected to be weak: fj(l0) ≈
≈ 1 + ε(l0), where ε � 1 is a smallness parameter.
Therefore, in the lowest order approximation with re-
spect to ε, the maxima of ’one-electron’ functions co-
incide at ξ = 0, as was considered in the previous
section.

According to Eq. (63),we have the following ex-
pressions for the wave functions for the cubic anhar-
monicity in the presence of the Coulomb repulsion
(see (40)):

Φj(c)(ξ) =
√
ρ0(c)

2D
Sech

(
κc(ξ ±

l

2
)
)
×

×

√
1− s2 + αρ0(c)Sech2

(
κc(ξ ±

l

2
)
)
. (64)

For a lattice with quartic anharmonicity (see (41)),
we have

Φj(q)(ξ) =
√
ρ0(q)

2D
Sech

(
κq(ξ ±

l

2
)
)
×

×

√
1− s2 + βρ2

0(q)Sech4

(
κq(ξ ±

l

2
)
)
. (65)

The distance between the maxima of the ’one-
electron’ wave functions, l, can be determined from
the condition of the minimum of the total energy of
the system with account of the Coulomb repulsion.
To calculate it, let us consider, for simplicity, the
case of a bisolectron at rest, V = 0. Substituting
function (64) (or (65) ) and the corresponding lat-
tice deformation (30) into the Hamiltonian H and
expanding the result with respect to l in the assump-
tion l < µ = 2π/κν , we obtain, after the integration,

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 6 567
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Fig. 2. Results of numerical simulations for the electron den-
sity (green dashed line) and the velocity distribution (red solid
line) at Ū = 20 (a). Blue curve corresponds to bisolectron
density profile q(x) is based on the analytical results (64) at
l = l0 = 4 (b)

the total energy of the system including the Coulomb
repulsion (62):

E(bs)
tot(ν)(0) =

2
3
J
κν
D
ρ0(ν) −

4
3
χa

κνD
ρ2
0(ν)

(
1− l2κ2

ν

)
+

+wa2ρ2
0(ν)

[
2
3

+
1
2
ςνρ

2
0(ν) − l

2κ2
ν

(
1
3

+
1
2
ςνρ

2
0(ν)

)]
+

+
e2

4πεla
, (66)

where ςc ≡ α, ςq ≡ β, and the energies are counted
from the energy of the electron band bottom E0. Ex-
pression (45) can be represented in the general form

E(bs)
tot(ν)(0) = E

(bs)
tot(ν)(0) +

1
2
ζν l

2 +
e2

4πεla
, (67)

where the first term is the bisolectron energy in the
absence of the Coulomb repulsion, the second term is

due to a modification of the wave functions, and the
last term is the Coulomb repulsion.

Minimizing this expression with respect to l, we get
the equilibrium distance between the maxima of the
one-electron functions:

l0 =
(

e2

4πεaζν

)1/3
, (68)

where we used the notation

ζq =

[
4
3

χaρ2
0(q)κq

D
− wa2ρ2

0(q)κ
2
q

(
1
3

+
1
2
βρ2

0(q)

)]
. (69)

Expression (68) can be approximated as

l0(ν) =

(
3De2

4πεχa2ρ2
0(ν)κν

)1/3
. (70)

Substituting these results into Eq. (61), we obtain
the final expression for the total energy of the system
at V = 0

E(bs)
tot(ν)(0) = E

(bs)
tot(ν)(0) +

3
2

(
e2

4πεa

)2/3
ζ1/3
ν +

e2

4πεl0a
.

(71)

Here, l0 is given by Eq. (70).
Such a state is stable with respect to the decay of

the bisolectron into two solectrons, if the bisolectron
binding energy E(bs)

bind(ν)(0) is positive,

E(bs)
bind(ν)(0) ≡ 2E(s)

tot(ν)(0)− E(bs)
tot(nu)(0) > 0, (72)

i.e., when the inequality

2E(s)
tot(ν)(0)−E(bs)

tot(nu)(0)+
3
2

(
e2

4πεa

)2/3
ζ1/3
ν > 0 (73)

is valid.

4. Comparison
with the Numerical Simulations

In this section, we compare the above-obtained ana-
lytical results with the numerical results in [26,29] for
a discrete lattice with the Morse interaction with two
added electrons, described by the Hubbard Hamilto-
nian. The Morse potential

UMorse(r) = D[(1− e−B(r−a))2 − 1]. (74)
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Fig. 3. Results of numerical simulations for the electron den-
sity (green dashed line) and the velocity distribution (red solid
line) at Ū = 60 (a). Blue curve corresponds to bisolectron
density profile q(x) is based on the analytical results (64) at
l = l0 = 8 (b)

can be approximated near the minimum with high
degree of precision by the anharmonic potential Uc
(see Eq. (25)) (for more details, see [30]).

The parameter values used in the simulations were:
η = 2.5a, J0 = 0.02 (2D), τ = J0/(~ ΩMorse) = 20,
for three different values of the Hubbard parameter
Ū = U/~ΩMorse, namely Ū = 20, 60, 70, 100, the low-
est of which, Ū = 20, for the parameters of alpha-
proteins corresponds to U = 0.004–0.02 eV, and the
upper value Ū = 100, respectively, corresponds to
U = 0.02–0.1 eV.

The results of numerical simulations for the elec-
tron density and the velocity distribution of solectron
pairs with Hubbard repulsion on the Morse lattice are
shown of Figs. 2–5 (a). In Figs. 2–5 (b), we show the
charge density function within our analytical model
for various values of the Coulomb repulsion, which

-0.02

 0

 0.02

 0.04

 0.06

  10  20  30  40 n

v ,pn n

0

a

b
Fig. 4. Results of numerical simulations for the electron den-
sity (green dashed line) and the velocity distribution (red solid
line) at Ū = 100 (a). Blue curve corresponds to bisolecttron
density profile q(x) is based on the analytical results (64) at
l = l0 = 14 (b)

determines the distance between the maxima of the
one-electron functions. We define the charge density
function in elementary charge units in a usual way
as q(ξ) = Φ2

1(ξ) + Φ2
1(ξ), where Φi(ξ) are functions

determined by expressions (64), and l = l0 as given
by relation (70).

Although the numerical and analytical results are
obtained in slightly different models of the anhar-
monic lattice and the Coulomb repulsion, there is a
good qualitative agreement in both approaches. In
particular, we see that electrons are localized in the
bisolectron state, the profile of which depends on the
strength of the Coulomb repulsion with the tendency
to the splitting of one maximum into two maxima, as
the Coulomb repulsion increases.

Notice that the parameter values used in the nu-
merical simulations correspond to a relatively high
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Fig. 5. Results of numerical simulations for the electron den-
sity (green dashed line) and the velocity distribution (red solid
line) at Ū = 100 (a). Blue curve corresponds to bisolecttron
density profile q(x) is based on the analytical results (64) at
l = l0 = 20 (b)

non-adiabaticity of the system and a strong anhar-
monicity. Nevertheless, the comparison of the figures
corresponding to four different values of the Hubbard
term in numerical simulations and, respectively, the
Coulomb term in the analytical model shows that our
analytical model gives rather good results even for
quite a strong electron repulsion. In the lowest order
of the continuum approximation used in our model,
the functions are smooth with one or two maxima
depending on the strength of the Coulomb repulsion.
The dynamics of the bisolectron and the account of
the lattice discreteness manifested in the presence of
the Peierls–Nabarro potential [31, 32] will modify the
profile of functions and will lead to some radiation
of sound waves, which we can see in the results of
numerical modeling in Figs. 3–5.

5. Conclusions

We have shown that, in one-dimensional crystal lat-
tices, the anharmonicity of the intersite interactions
favors not only the self-trapping of an extra elec-
tron, but also the pairing of two electrons with op-
posite spins in a single lattice soliton deformation
well, resulting in the formation of a stable bisolec-
tron state. Such a bisolectron is the bound state of
the lattice soliton and two self-trapped electrons in a
singlet bisoliton state. This conclusion generalizes the
concepts of polaron and bipolaron [1–5] and proves
the existence of bisolitons not only in harmonic one-
dimensional systems [9–11, 24], but in anharmonic
lattices as well. Our analytical model explains the
results of numerical simulations for lattices with an-
harmonic Morse potential describing the intersite in-
teractions, with two extra electrons in it [25–28]. We
have found explicitly the expressions for the lattice
deformation and the two-electron wave functions for
lattices with cubic and quartic anharmonicities. We
have also calculated the energies of the bisolectrons
for these two types of anharmonicities and shown that
the bisolectrons can move with velocities up to the ve-
locity of sound in the lattice, and the corresponding
energy and momentum are finite in the whole interval
of bisolectron velocities.

We have studied the role of the Coulomb repul-
sion in the formation of bisolectrons in anharmonic
lattices. We have shown that, with account of the
Coulomb repulsion between the electrons, their en-
velope function in a bisolectron state can have one
or two maxima, the distance between which is deter-
mined by the balance of the gain of energy due to
the binding to the lattice deformation and the loss
of energy due to the Coulomb repulsion. The re-
sults of the analytical study of two electrons in a lat-
tice with cubic anharmonicity with account of their
Coulomb repulsion are in good agreement with the
numerical simulations of two electrons in an anhar-
monic Morse lattice with account of the Hubbard
electron-electron repulsion in a broad range of pa-
rameter values.

The results obtained here are valid for systems,
whose parameter values satisfy the adiabaticity con-
ditions, i.e., for systems with intermediate val-
ues of the electron-lattice coupling and the not
too large nonadiabaticity parameter (the ratio be-
tween characteristic phonon energy and electron band
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width). This is a large class of low-dimensional com-
pounds, including biological macromolecules (DNA
and α-helical polypeptides) [6, 8, 23, 33], polydi-
acetylene [34–36], conducting platinum chains and
conducting polymers [37], salts of transition met-
als (PbSe, PbTe, PbS) [38–41], superconducting
cuprates [42–46], etc. These compounds find numer-
ous applications in microelectronics and nanotech-
nologies or play the important role in living sys-
tems. This explains our interest in studying the non-
linear effects in such systems. In the following pa-
pers, we will study a possibility of the pairing
of two electrons in a triplet state in anharmonic
lattices.
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СТАБIЛIЗУЮЧА РОЛЬ АНГАРМОНIЗМУ
ҐРАТКИ У ДИНАМIЦI БIСОЛIТОНIВ

Р е з ю м е

В роботi показано можливiсть зв’язування двох електро-
нiв або дiрок у локалiзованому бiсолiтонному станi, який
називається також бiсолектроном, завдяки взаємодiї з ло-

кальною деформацiєю ангармонiчного ланцюжка, яка може
перевищувати кулонiвське вiдштовхування мiж зарядами.
Показано, що бiсолiтони є динамiчно стiйкими також при
швидкостi, рiвнiй швидкостi звуку у ланцюжку, а їх енергiя
та момент кiлькостi руху мають скiнченне значення в усьо-
му iнтервалi швидкостей аж до швидкостi звуку. Розрахова-
но енергiю зв’язування та критичне значення кулонiвського
вiдштовхування, при якому бiсолiтон розпадається на два
вiльнi електросолiтони. Оцiнено значення цих величин для
параметрiв, що типовi для макромолекул i деяких електро-
провiдних одновимiрних систем та показано, що кулонiв-
ське вiдштовхування в них є достатньо слабким порiвняно
з енергiєю зв’язування. Результати нашої аналiтичної мо-
делi добре пояснюють результати чисельного моделювання
в широкому iнтервалi параметрiв задачi.
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