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We investigate bound and resonance states of 11B and 11C. For this aim, we make use a three-
cluster microscopic model which is a combination of the resonating group method and the
hyperspherical harmonics Method. The model employs the basis of hyperspherical harmon-
ics to enumerate channels and to describe the three-cluster continuum. The parameters of
bound states and the nature of resonance states imbedded in the three-cluster continuum are
investigated in detail.
K e yw o r d s: nuclei, three-cluster microscopic models, resonating group method, hypersphe-
rical harmonics method.

1. Introduction

We are going to study the spectra of bound and reso-
nance states in two mirror nuclei 11B and 11C within
a three-cluster microscopic model. The three-cluster
configurations such as

4He + 4He + 3H,

4He + 4He + 3He

are involved in consideration. They allow us to con-
sider the dominant two-cluster channels 7Li+4He and
7Be+4He, respectively. We restrict ourselves, by con-
sidering the bound and scattering states of 11B and
11C that lie below and above the three-cluster thresh-
old 4He+4He+3H and 4He+4He+3He, respectively.

Nucleus 11B is a very interesting object. It has
ten bound states, which is unusual for nuclei of the p-
shell. We recall that, for example, neighbor nuclei 12C
and 10B have 2 and 5 bound states, respectively. The
ground state in 11B is a deeply bound state, whose
energy is 11.13 MeV with respect to the three-cluster
4He + 4He + 3H threshold or 8.88 MeV with respect
to the two-cluster 7Li + 4He threshold. In addition,
11B has very narrow resonances, the widths of two of
them do not exceeds 5 eV [1]. These resonances are
imbedded in the two-cluster 7Li + 4He continuum.
There are also a large number of resonance states,
which reside above the three-cluster threshold.

A similar picture is observed for 11C. This nucleus
has 8 bound states. Due to the Coulomb interaction,
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the ground state of 11C is less bound than the ground
state of 11B. However, it is also a deeply bound state.
The ground-state energy of 11C is 7.543 MeV with
respect to the lowest two-cluster 7Be + 4He thresh-
old and 9.13 MeV with respect to the three-cluster
4He + 4He + 3He threshold. This nucleus, as 11B, has
a large set of resonance states below and above the
three-cluster threshold.

Nuclei 11B and 11C were subjects for numerous
experimental investigations [1–12]. Several micro-
scopic methods [13–17] were applied to describe vari-
ous properties of these nuclei. However, no resonance
states above the three-cluster threshold were consid-
ered. The exception are works [15, 16], where the or-
thogonality condition model combined with the com-
plex scaling method was used to study the resonance
states in 11B.

One of the main aims of the present investigation
is to fill a gap in studying the properties of resonance
states in the three-cluster continuum of 11B and 11C.

To this end, there is a quest for the Hoyle state
in the literature (see, e.g., [15, 16]). Recall that the
Hoyle state is a very narrow 0+ resonance state in
12C, whose width is 8.5 eV, and it lies at 0.4 MeV
above the three-cluster α + α + α threshold. Hoyle
suggested that the triple collision of alpha particles is
a dominant way of creating 12C in the Universe. Note
that the nature of the Hoyle state and other reso-
nances of 12C have been investigated in [18] within
the three-cluster model, which is also used in the
present paper.

Within this model, we study both the bound and
resonance states of 11B and 11C. The model, which
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implements proper boundary conditions, provides the
correct description of three-cluster discrete and con-
tinuous spectrum states. For the set of bound states,
we calculated the parameters which determine the
size and the shape of these states. The nature of res-
onance three-cluster states is investigated in detail.
The total and partial widths of the resonance states
are calculated, and the dominant decay channels for
the resonances are found.

In Section 2, we briefly present our microscopic
model. In Section 3, we give details of calculations
and discuss properties of bound states. In this sec-
tion, we also analyze the parameters of resonance
states and determine the most probable ways (i.e.,
channels) for the decay of three-cluster resonances.
Concluding remarks are presented in Section 4.

2. Model

We employ a microscopic model which is a combina-
tion of the resonating group method and hyperspheri-
cal harmonics method. This model is called the Alge-
braic Model with the Hyperspherical Harmonic Basis
(AMHHB) [19–21], as it uses the full set of the hy-
perspherical harmonics to expand the many-particle
wave function and to represent the Schrödinger equa-
tion in the matrix form.

The wave function of discrete and continuous-
spectrum states is constructed in the form

ΨJ =Â
{
[Φ1(A1, b)Φ2(A2, b)×

×Φ3(A3, b)]S [fJLS(x,y)]
}
J , (1)

where Φα (Aα, b) is a shell-model wave function for
the internal motion of a cluster α (α = 1, 2, 3), con-
sisted of nucleons Aα (1 ≤ Aα ≤ 4), and fJLS (x,y) is
a function describing the relative motion of clusters.
The relative position of clusters is determined by a
a fixed set of the Jacobi vectors x,y, where x is the
Jacobi vector proportional to the distance between β
and γ clusters, while y is a Jacobi vector connect-
ing the α cluster to the center of mass of the β and
γ clusters.

It is worth noting that the shell-model wave func-
tion Φα (Aα, b) explicitly depends on the oscillator
length b. In different realizations of the many-cluster
model, this parameter is used as a variational or ad-
justable parameter. As a rule, the oscillator length is

selected to minimize the bound state energy of clus-
ters or to reproduce their size (i.e., mass or proton
root-mean-square radius). Within our model, we use
the common oscillator length for all clusters involved
in calculations.

In Eq. (1), we presented the function fJLS (x,y) in
a short form, by omitting all quantum numbers. Ac-
tually, this function has to be expanded in the states
with definite values of the partial orbital momenta λ
and l, associated with the Jacobi vectors x and y, in
the following way:

fJLS (x,y)⇒
∑
λ,l

f
(LS;J)
λ,l (x, y) {Yλ (x̂)Yl (ŷ)}LM , (2)

where x̂ and ŷ are vectors of unit length. Thus, λ is
the orbital momentum of the two-cluster subsystem
and l is the orbital momentum related to a rotation
of the third cluster around the center of mass of the
two-cluster subsystem. The vector sum of the partial
orbital momenta yields the total orbital momentum
L. As we use the LS coupling scheme, the total an-
gular momentum J is determined by the vector sum
of the total spin S of the three-cluster system and the
total orbital momentum L.

The set of functions
{
f

(LS;J)
λ,l (x, y)

}
has to be de-

termined by solving a system of coupled equations
originated from the Schrödinger equation for the to-
tal wave function ΨJ (1) with proper boundary con-
ditions. To solve this system and to implement the
necessary boundary condition, we involve the full set
of hyperspherical harmonics. For this aim, we intro-
duce the hyperspherical coordinates ρ and θ

x = ρ sin θ, y = ρ sin θ (3)

and expand the function f (LS;J)
λ,l (x, y) in the oscillator

functions parametrized by the hyperspherical coordi-
nates

f
(LS;J)
λ,l (x, y) = f

(LS;J)
λ,l (ρ, θ) =

=
∑
nρ,K

C
(λ,l,LS;J)
nρ,K

Φ(K)
nρ

(ρ)χ(λ,l)
K (θ). (4)

In Refs. [19], [20], [22], one can find the definition
and detailed information on hyperspherical harmon-
ics χ(λ,l)

K (θ) and the function of a hyperradial excita-
tion Φ(K)

nρ (ρ). The hypermomentum K and the par-
tial angular momenta λ and l define the three-cluster
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geometry and characterize different scattering chan-
nels. These three quantum numbers along with the
total orbital momentum L and the total spin S will
be collectively denoted as c = {K; l, λ;L, S}.

Having calculated the wave function of a bound
state, we can determine the three-cluster spectro-
scopic factor in the following way:

SF JLS =

√∫
dxdy

∣∣fJLS (x,y)
∣∣2.

The definition of the three-cluster spectroscopic fac-
tor is similar to the definition of a two-cluster spec-
troscopic factor. Both of them are related to the so-
called asymptotic normalization constant and explic-
itly demonstrate effects of the Pauli principle on the
wave function of the compound systems.

To obtain additional information on the geometry
of the three-cluster system in bound and resonance
states, we calculate the average amplitudes of motion
along the vectors x and y

ax =
∑
L,S

∫
dxdy

∣∣fJLS (x,y)
∣∣2 x2,

ay =
∑
L,S

∫
dxdy

∣∣J
LS (x,y)

∣∣2 y2. (5)

We also calculate the average distances between clus-
ters by using the relations

rx = ax

√
Aβ +Aγ
AβAγ

, ry = ay

√
Aα +Aβ +Aγ

(Aβ +Aγ)
. (6)

These quantities determine the triangle connecting
the centers of mass of interacting clusters. This def-
inition of average distances or amplitudes (Eq. (5))
is correct for bound states only, when the total wave
function is normalized by the condition〈
ΨJ |ΨJ

〉
= 1.

The integrals in Eq. (5) diverge, when the wave func-
tion of continuous spectrum states is involved. How-
ever, to evaluate average distances between the clus-
ters for resonance states, one may use only the inter-
nal part of the wave function, describing a resonance
state in the many-channel model. For this aim, the
internal part of the wave function has to be normal-
ized as a bound-state function. How can the inter-
nal region of a many-channel system be defined? We

define the border of an internal region by the value
of hyperradius ρi or the number of hyperradial ex-
citations nρ,i. There are large effects of the Pauli
principle and the interaction between clusters inside
this region. On the border of the internal region, we
match the internal part of the wave function with its
asymptotic part. As a result, we obtain the wave
function in the whole space and matrix elements of
the scattering S matrix (see details in Refs. [19, 20]).

3. Results

To calculate the spectrum of bound and resonance
states in 11B and 11C, we make use of the Minnesota
potential (MP) [23] with IV version of the spin-orbit
interaction [24]. The oscillator length b is selected
to minimize the energy of the three-cluster thresh-
old 4He +4 He + 3H. We take b = 1.322 fm both for
11B and 11C. There is one additional parameter in
the present calculations. This parameter is denoted
as u and connected with odd components of the Min-
nesota potential (see details in [23]). There are sev-
eral options for selecting the parameter u of the MP.
First, one can adjust this parameter to reproduce the
bound and resonance states in 7Li (7Be) within the
two-cluster α+ t (α+ 3He) representation. We recall
that α+ t and α+ 3He are dominant two-cluster sub-
systems in 11B and 11C. Second, one can find values
of the parameter which reproduce the ground-state
energy determined with respect to the three-cluster
4He + 4He + 3H or two-cluster 7Li + 4He thresholds.
We use the second way and thus select u = 0.920.
This value of u gives the bound-state energy of 11B,
which is very close to the experimental value. The
comparison of the theoretical and experimental val-
ues of the ground-state energy will be discussed later.

To study the bound and resonance states in 11B
and 11C, we involve all hyperspherical harmonics with
K ≤ 13 for negative-parity states and K ≤ 14 for
positive-parity states. In order to cover a large range
of inter-cluster distances, where the interaction be-
tween them is strong (prominent), and to reach the
asymptotic region, we take all hyperradial excitations
into account in the range 0 ≤ nρ ≤ 70. The choice
of Kmax (equals 13 or 14) and nρmax = 70 is dic-
tated by the compromise between the computational
burden and the precision of calculations.

As for the three-cluster configuration 4He +4 He+
+3H (4He + 4He + 3He), the total spin S of the
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Table 1. Spectrum and parameters of the bound states
in 11B. Energy is in MeV accounted from the three-cluster threshold

Jπ 3
2

− 1
2

− 5
2

− 3
2

− 1
2

+ 5
2

+ 3
2

+

EJ−1/2, MeV −8.598 − −6.930 −0.307 −2.623 −2.701 −
E, MeV −11.055 −9.646 −7.380 −5.667 −2.771 −2.749 −1.544

W(J−1/2) 59.32 − 94.92 42.57 98.74 99.71 0.96
W(J+1/2) 40.68 100.00 5.08 57.43 1.26 0.29 99.04
SFJ−1/2 0.5938 − 0.9070 0.4499 1.6163 1.5043 0.0258
SFJ+1/2 0.3888 1.0068 0.0563 0.5478 0.0369 0.0048 1.4300
Rm, fm 2.162 2.213 2.224 2.342 3.048 2.857 3.147
ry , fm 2.597 2.791 2.604 2.900 5.474 4.745 5.474
rx, fm 2.878 2.993 3.047 3.381 5.784 5.332 5.784

Table 2. Spectrum and parameters of the bound ststes
in 11C. Energy is in MeV accounted from the three-cluster threshold

Jπ 3
2

− 1
2

− 5
2

− 3
2

− 1
2

+ 5
2

+ 3
2

+

EJ−1/2, MeV −6.698 − −5.013 − −1.152 −1.138 −
E, MeV −9.073 −7.722 −5.446 −3.835 −1.283 −1.182 −0.098

W(J−1/2) 59.72 − 95.06 42.39 98.85 99.75 0.94
W(J+1/2) 40.28 100.00 4.94 57.61 1.15 0.25 99.06
SFJ−1/2 0.6013 − 0.9117 0.4517 1.623982 1.5110 0.0240
SFJ+1/2 0.3859 1.0138 0.0552 0.5518 0.0332 0.0044 1.4307
Rm, fm 2.174 2.227 2.244 2.365 3.117 2.929 3.231
ry , fm 2.640 2.848 2.650 2.971 5.692 4.920 5.359
rx, fm 2.904 3.021 3.083 3.433 5.838 5.471 5.944

compound system equals 1/2 (it coincides with the
spin of 3H (3He)), then the total angular momen-
tum J is constructed from two values of total or-
bital momentum L = J − 1/2 and L = J + 1/2.
There is one exception from this rule: the total an-
gular momentum Jπ = 1/2− can be constructed only
from the total orbital momentum Lπ = 1−, because
there is no negative parity state with Lπ = 0− in
the three-s-cluster systems. In the present calcu-
lations, we selected the Jacobi vector x to connect
the center of mass of two alpha particles. Thus,
the orbital momentum λ, associated with this vec-
tor, has only even values. We recall that the par-
ity π of the three-s-cluster system is determined by
the partial orbital momenta π = (−1)l+λ, which
means that the parity of a state in 11B (11C) is de-
termined by the orbital momentum l of 3H (3He)
rotation around the center of mass of two alpha
particles.

In what follows, the energy of bound and resonance
states are measured from the three-cluster threshold.

3.1. Bound states

Consider the parameters of bound states. To these
parameters, we include the bound-state energy E,
weights of different total orbital momenta in the
bound-state wave function WL, mass root-mean-
square radius Rm, the spectroscopic factor for a de-
composition of the compound nucleus into three clus-
ters SFL (= SF JL,1/2), and average distances between
clusters rx and ry.

In Tables 1 and 2, we display the spectrum of bound
states of 11B and 11C, respectively, calculated with
the Minnesota potential.

To study the role of spin-orbit interaction, we
show the bound-state energy EJ−1/2 (second row) ob-
tained with only one value of total orbital momentum
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Table 3. Calculated and experimental
spectra of bound states in 11B and 11C

Jπ AMHHB Exp. AMHHB Exp.

3
2

− −11.052 −11.132 −9.071 −9.130

1
2

− −9.644 −9.007 −7.721 −7.130

5
2

− −7.377 −6.687 −5.442 −4.812

3
2

− −5.663 −6.111 −3.832 −4.326

1
2

+ −2.759 −4.340 −1.270 −2.652

5
2

+ −2.736 −3.846 −1.168 −2.226

3
2

+ −1.532 −3.154 −0.085 −1.631

Table 4. Spectrum of positive and negative
parity resonance states in 11B. Energy is in MeV
and measured from the three-cluster threshold

Jπ E, MeV Γ, keV Jπ E, MeV Γ, keV

3
2

− 0.755 0.581 1
2

+ 0.437 15.262
1.402 185.178 0.702 12.300
1.756 143.716 1.597 15.949

1
2

− 1.436 374.644 3
2

+ 1.147 1.498
1.895 100.951 1.367 8.577
2.404 450.072 1.715 41.244

5
2

− 0.583 5.140× 10−4 5
2

+ 1.047 1.542
1.990 32.633 1.951 40.200
2.251 138.869 2.265 54.734
2.905 120.456 2.748 167.613

Table 5. Spectrum of positive and negative
parity resonance states in 11C. Energy is in MeV
and measured from the three-cluster threshold

Jπ E, MeV Γ, keV Jπ E, MeV Γ, keV

3
2

− 0.805 9.929× 10−3 1
2

+ 0.906 162.936
1.920 105.082 1.930 59.884
2.324 619.759 2.679 86.686

1
2

− 1.142 0.7084 3
2

+ 2.268 34.250
2.266 790.977 2.478 159.280
3.014 366.151 2.850 115.190

5
2

− 1.897 5.771 5
2

+ 1.460 0.899
3.026 182.685 2.346 82.716
3.491 392.962 3.179 122.748

L = J − 1/2, and the energy E (third row) calculated
with two values of total orbital momentum. In the
table, we also present the weights of L = J − 1/2

and L = J + 1/2 orbital momenta in a wave function
of the Jπ bound state. We recall that the coupling
between states with different values of total orbital
momentum is determined solely by the spin-orbit in-
teraction. Comparing EJ−1/2 and E, we see that the
total angular momentum L = J − 1/2 is dominant
for the main part of bound states in 11B and 11C.
This is also confirmed by the weights W(J−1/2) and
W(J+1/2). There are a few bound states (e.g., sec-
ond 3

2

− and first 3
2

+ states), where L = J + 1/2 is
dominant. These results indicate that the spin-orbit
components play an important role in the formation
of bound states in 11B and 11C.

The quantities rx and ry displayed in Tables 1 and 2
indicate that the deeply bound states are compact, as
the distances between interaction clusters are small.
Contrary to deeply bound states, the weakly bound
states are loosely states, as the distance between two
alpha particles exceeds 5 fm, and 3H or 3He moves
off the center of mass of two alpha particles by 5 fm.

In Table 3, we compare the spectrum of bound
states in 11B and 11C, obtained within our model,
with available experimental data. Experimental data
are taken from Ref. [1].

One can see that the ground states of both nu-
clei are very close to the experimental value. How-
ever, the first excited 1

2

− state overbound by approx-
imately 0.6 MeV. Starting from the excited 3

2

− state,
all other states are underbound. This can be at-
tributed to the peculiarities of spin-orbit components
of the Minnesota potential and partially to the size of
a basis involved in calculations. Indeed, one needs a
rather small basis of hyperspherical harmonics to de-
scribe a deeply bound (and, consequently, very com-
pact) state. However, much more the hyperspherical
harmonics have to be used to obtain the energy of
loosely bound states with necessary precision, as it
was, for example, demonstrated in Ref. [18].

The results displayed in Tables 3 show that the
Coulomb interaction, which is more stronger in 11C,
reduces the energy of bound states by 1.5–2.0 MeV.
This interaction decreases the number of bound states
from 10 in 11B to 8 in 11C.

3.2. Three-cluster resonance states

We present now the parameters of resonance states
imbedded in the three-cluster continuum. These re-
sults are obtained within the AMHHB model. In Ta-
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ble 4, we display the energy and the width of reso-
nance states in 11B. The resonance states with neg-
ative and positive parities are presented in different
columns.

The parameters of resonance states in 11C are
shown in Table 5.

The results presented in Tables 4 and 5 show that,
for all values of total angular momentum, the effective
barrier created by the centrifugal and Coulomb forces
is very large, which accommodates three resonance
states in the energy range 0 ≤ E ≤ 5 MeV above
the three-cluster threshold. Some of the resonances
( 5
2

− in 11B and 3
2

− in 11C ) are very narrow, as their
total width is less than 10 eV. There are also many
resonances (11 in 11B and 7 in 11C ) with total width,
which does not exceed 100 keV. Our model predicts
the existence of wide resonance states in 11B and 11C
in the energy range 0 ≤ E ≤ 5 MeV. They are the 1

2

−

resonance in 11B with the total width Γ = 450 keV
and the 1

2

− resonance in 11C with Γ = 791 keV.

3.3. Coulomb effects

The mirror nuclei help us to understand the role of
Coulomb force in the formation of bound and reso-
nance states. The most interesting is the effect of the
Coulomb repulsion on the parameters of resonance
states. There are twofold effects of the forces. First,
the Coulomb interaction increases the effective bar-
rier in a three-cluster system and, thus, may reduce
the width of a resonance state. Second, the Coulomb
interaction reduces the effective potential well in the
internal region and, consequently, may push up res-
onance state (by increasing the resonance energy)
and simultaneously increase its width. Comparing
Tables 4 and 5, we see that, for the major part of
resonance states obtained within our model, the sec-
ond scenario is realized. For instance, all 1/2+ res-
onances in 11C have larger energy and larger width
than those of such resonances in 11B. The same is
true for 1/2+, 3/2+, and 5/2− resonances in the
mirror nuclei. However, there are few resonances
which realize the first scenario. Indeed, comparing
two lowest resonance states with the total angular
momentum Jπ = 3

2

−, we observe that the energy
of the resonances in 11C is a little larger than that
of the resonance in 11B. But their width is smaller
or much more smaller. There are also some exam-
ples when both the energy and the width of reso-

nance states in 11C are smaller than the correspond-
ing values in 11B (e.g., this is true for the first 1/2−

resonance state).

3.4. Partial widths

Our method allows us to calculate not only the total
width Γ of a resonance state, but also partial widths
Γc. (Details can be found in Ref. [21].) The par-
tial widths determine the dominant decay channels
for resonance states in a many-channel system. We
recall that the total width is a sum of partial widths
Γ =

∑
c Γc.

Now, we consider the partial widths of two reso-
nance states. Partial widths are defined for two dif-
ferent trees of the Jacobi vectors. This is done in
order to throw more light on the nature of resonance
states in the three-cluster continuum.

In the first tree, we take the vector x as a distance
between two alpha particles. This tree is used in the
calculations of the spectrum and wave functions of
bound and resonance states. In the second tree, we
select the Jacobi vector x to connect the center of
mass of an alpha particle and 3H or 3He. To this end,
the first tree of the Jacobi vectors is more suitable
for considering the two-cluster configuration 3H+8Be
(3He + 8Be), while the second tree is appropriate for
describing the clusterization 4He + 7Li (4He + 7Be).

The partial widths of the 5/2− resonance in 11B
are presented in Table 6. We see that this resonance
prefers to decay through the channel, in which the
hypermomentum K = 3, the orbital moment of two
alpha particles equals λ = 2, and orbital momentum
of 3H l = 1. The 5/2− resonance in 11B may also
decay by omitting 4He and 3H with the orbital mo-
mentum λ = 1 and the second alpha particle with the
orbital momentum l = 2.

In Table 7, we display the partial decay widths for
the 3/2− resonance in 11C. This resonance state has
also one dominant channel for the decay. In first
tree, the dominant channel has the following quan-
tum numbers: hypermomentum K = 1, partial or-
bital momentum of two alpha particles λ = 0, and
orbital momentum of 3H l = 1. In the second three,
the orbital momentum of relative motion of 4He and
3H is λ = 1, and the orbital momentum of the second
alpha particle l = 0.

In Table 8, we display the partial decay widths
for 1/2+ resonance in 11B. One notices that this
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Table 6. Dominant decay channels
for the first 5/2− resonance state in 11B

E = 0.583, Γ=0.5140 eV

i Γi, eV {K; l, λ;L} Γi, eV {K; l, λ;L}

1 0.512 {3; 1, 2; 2} 0.403 {3; 2, 1; 2}
2 0.001 {3; 1, 2; 2} 0.110 {3; 1, 2; 2}
3 0.0003 {3; 1, 2; 2} 0.0003 {3; 0, 3; 3}

Tree 3H + (4He + 4He) 4He + (4He + 3H)

Table 7. Dominant decay channels
for the first 3/2− resonance state in 11C

E = 0.805 MeV, Γ = 9.929 eV

i Γi, eV {K; l, λ;L} Γi, eV {K; l, λ;L}

1 9.612 {1; 1, 0; 1} 7.552 {1; 0, 1; 1}
2 0.157 {3; 1, 2; 2} 2.060 {1; 1, 0; 1}
3 0.155 {3; 1, 2; 1} 0.123 {3; 2, 1; 2}

Tree 3He + (4He + 4He) 4He + (4He + 3He)

Table 8. Dominant decay channels
for the first 1/2+ resonance state in 11B

E = 0.437 MeV, Γ = 16.756 keV

i Γi, keV {K; l, λ;L} Γi, keV {K; l, λ;L}

1 16.756 {0; 0, 0; 0} 16.756 {0; 0, 0; 0}
2 <10−8 {2; 0, 0; 0} <10−8 {2; 0, 0; 0}
3 <10−10 {4; 0, 0; 0} <10−8 {2; 1, 1; 0}

Tree 3He + (4He + 4He) 4He + (4He + 3He)

resonance decays with the total orbital momentum
L = 0, the hypermomentum K = 0, and, thus, with
l = λ = 0. This is true for both trees of the Ja-
cobi vectors or two different types of two-body clus-
terization of 11B. It is important to underline that
the dominant channel exhausts 99.99 % of the total
width. Identical results are obtained for the 1/2+ res-
onance (E = 0.906 MeV, Γ = 162.943 keV) in 11C. A
similar result is obtained for the 0+ resonance state
in 12C. The Hoyle state, as was shown in Ref. [18],
decays through the channel with the zero value of
hypermomentum, K = 0.

3.5. Hoyle states

We consider the 1/2+ resonance states in 11B and
11C as main candidates to the Hoyle state. Both res-

onances are accommodated close to the three-cluster
threshold: the energies of resonances are E = 0.437
and E = 0.906 MeV in 11B and 11C, respectively.
However, these resonances are much broader (Γ =
16.756 keV and Γ = 162.943 keV) than the Hoyle
state in 12C (Γ = 8.5 eV). As we indicated above,
there are two very narrow resonance states in 11B
and 11C with the quantum numbers Jπ = 5

2

− and
Jπ = 3

2

−
, respectively. Both resonances lie not far

from the three-cluster threshold (E = 0.583 MeV and
E = 0.805 MeV) and their total width (Γ = 0.5140 eV
and Γ = 9.929 eV) is comparable with the width of
the Hoyle state. Where is the Hoyle state true in 11B
and 11C? To answer this question, we need more infor-
mation or additional criteria for selecting the Hoyle-
analog states.

Let us analyze the wave function of the Hoyle state
and selected resonance states in 11B and 11C. To sim-
plify this task, we calculate and display the weights of
basis functions of each many-particle oscillator shell.
We denote these weights as Wsh and define as

Wsh =
∑

nρ,K∈nsh

∑
L,S

∑
l,λ

∣∣Cnρ,K;,l,λ;LS

∣∣2.
The sum over nρ and K involves all hyperradial and
hyperangular states which satisfy the relation

2nρ +K = 2nsh +Kmin,

where nsh = 0, 1, 2, ..., Kmin = Lmin for the normal
parity state, and Kmin = Lmin+1 for abnormal parity
states (Lmin = J − 1/2). Thus, Wsh is a function of
the single variable nsh.

First of all, we consider the weights Wsh for the
Hoyle state in 12C. They are calculated with the input
parameters of Ref. [18]. One can see (Fig. 1) that the
weights Wsh of the Hoyle state have large values, and
the main contribution originates from the oscillator
shells with a small value of nsh < 30. This indicates
that the Hoyle state is a compact formation. These
weights will be used as additional criteria for selecting
an analogue of the Hoyle state in 11B and 11C. Note
that the wave functions of the continuous spectrum
are normalized by the condition〈
ΨJ (E) |ΨJ

(
Ẽ
)〉

= δ
(
k − k̃

)
,

where k =
√

2mE/}2.
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Fig. 1. Weights of the basis functions of different oscillator
shells in the wave function of the 0+ resonance state in 12C

Fig. 2. Weights of various oscillator shells in the wave function
of the 1/2+ resonance state

Fig. 3. Weights of various shells in the wave function of the
very narrow 5/2− resonance state in 11B and 3/2− resonance
state in 11C

Fig. 4. Shape of a triangle for candidates to the Hoyle state
in 11B and 11C
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Now, we turn to the resonances in 11B and 11C. In
Figs. 2 and 3, we display the weights of different shells
in the wave function of four resonance states, which
are candidates to the Hoyle state in 11B and 11C.
As we see, the wave functions of the 1/2+ resonance
states in these nuclei concentrate on large values of
nsh, which indicates that the compound nucleus is
very large in this state. In addition, the weights Wsh

are very small as compared with those of the Hoyle
state in 12C. Contrary to the 1/2+ resonance state,
the 5/2− resonance state in 11B and the 3/2− reso-
nance state in 11C have wave functions which are sim-
ilar to the wave function of the Hoyle state in 12C.
The weights Wsh of these two states are very large
and represented by shells with small values of nsh.

By using Eqs. (5) and (6), we calculate the average
distances rx and ry to quantify the size of a three-
cluster triangle. We consider the all candidates for
the Hoyle states. In Fig. 4, we show the most proba-
ble shape of a triangle connecting the center of mass of
interacting clusters. We recall that rx is the distance
between two alpha particles, and ry is a displacement
of 3H or 3He from the center of mass of two alpha
particles. One sees that the 1/2+ resonance states
in 11B and 11C are very dispersed, which is in agree-
ment with the weights of different oscillator shells in
the wave function of these resonances (see Fig. 2).
We note that the narrow resonance states 5/2− in
11B and 3/2− in 11C are compact states. It is worth
to note that the distance between two alpha parti-
cles for all four resonance states is approximately the
same and equals rx ≈ 7 fm, whereas the distance ry
between 3H or 3He and the center of mass of two al-
pha particles for a compact resonance is around 5 fm,
and, for dispersed states, ry is approximately 10 fm.
We believe that the compact resonance states have
more chance than the dispersed states to transform
into a bound state of the compound nucleus.

The results presented above lead us to the conclu-
sion that 11B can be synthesized in a triple collision
of clusters α+ α+3H with the total angular momen-
tum Jπ = 5/2−. There is a high probability that the
triple collision of two alpha particles and 3He with
Jπ = 3/2− can synthesize nucleus 11C.

4. Conclusions

We have studied the bound and resonance structure
of 11B and 11C nuclei. The microscopic model, which

is based on the resonating group method, provides
a reasonable description of the 11B and 11C discrete
and continuous spectrum states. We have found the
optimal parameter of the nucleon-nucleon potential,
which allowed us to reproduce the ground-state en-
ergy. With this potential, we obtained the correct
position of other bound states of 11B and 11C. We
have demonstrated that the spin-orbit components of
the NN potential play an important role in the for-
mation of bound and resonance states. Spectroscopic
factors for a virtual decay of the bound states in 11B
and 11C into three independent clusters are deter-
mined. They numerically manifest the effects of the
Pauli principle on the wave functions of compound
three-cluster systems. We calculated the parameters,
which determine the shape and the size of the bound
state, and investigated how they depend on the en-
ergy of the excited state.

We investigated the properties and the nature of
resonance states imbedded in the three-cluster contin-
uum. It is shown that they are generated mainly by
one channel, which is weakly coupled to other chan-
nels of the three-cluster continuum.

We have discovered very narrow resonance states
in 11B and 11C, which can be treated as an analog of
the Hoyle state. The dominating decay channel for
such state is revealed, and the most probable shape of
a triangle connecting the center of mass of interacting
clusters is determined.

1. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).
2. N. Soić, M. Freer, L. Donadille et al., Nucl. Phys. A 742,

271 (2004).
3. N.C. Summers, S.D. Pain, N.A. Orr et al., Phys. Lett. B

650, 124 (2007).
4. T. Kawabata, H. Akimune, H. Fujita et al., Nucl. Phys. A

790, 290 (2007).
5. T. Kawabata, H. Akimune, H. Fujita et al., Nucl. Phys.

A 788, 301 (2007).
6. T. Kawabata, H. Akimune, H. Fujimura et al., Phys. Rev.

C 70, 034318 (2004).
7. H. Yamaguchi, T. Hashimoto, S. Hayakawa et al., Phys.

Rev. C 83, 034306 (2011).
8. M. Yosoi, H. Akimune, I. Daito et al., Phys. Lett. B 551,

255 (2003).
9. H.T. Fortune and R. Sherr, Phys. Rev. C 83, 054314

(2011).
10. M. Freer, N.L. Achouri, C. Angulo et al., Phys. Rev.

C 85, 014304 (2012).
11. R.J. Charity, S.A. Komarov, L.G. Sobotka et al., Phys.

Rev. C 78, 054307 (2008).

552 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 6



Microscopic Model of 11B and 11C

12. N. Curtis, N.I. Ashwood, W.N. Catford et al., Phys. Rev.
C 72, 044320 (2005).

13. P. Descouvemont, Nucl. Phys. A 584, 532 (1995).
14. N.K. Timofeyuk, P. Descouvemont, R.C. Johnson, Phys.

Rev. C 75, 034302 (2007).
15. T. Yamada and Y. Funaki, J. Phys. Conf. Ser. 321, 012025

(2011).
16. T. Yamada and Y. Funaki, Phys. Rev. C 82, 064315 (2010).
17. Y. Kanada-En’yo, T. Suhara, and F. Kobayashi, J. Phys.

Conf. Ser. 321, 012009 (2011).
18. V. Vasilevsky, F. Arickx, W. Vanroose, and J. Broeckhove,

Phys. Rev. C 85, 034318 (2012).
19. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeck-

hove, Phys. Rev. C 63, 034606 (2001).
20. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeck-

hove, Phys. Rev. C 63, 034607 (2001).
21. J. Broeckhove, F. Arickx, P. Hellinckx et al., J. Phys. G

Nucl. Phys. 34, 1955 (2007).
22. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeck-

hove, Phys. Rev. C 63, 064604 (2001).
23. D.R. Thompson, M. LeMere, and Y.C. Tang, Nucl. Phys. A

286, 53 (1977).

24. I. Reichstein and Y.C. Tang, Nucl. Phys. A 158, 529
(1970). Received 29.03.13

В.С. Василевський

МIКРОСКОПIЧНИЙ ТРИКЛАСТЕРНИЙ
ОПИС ЯДЕР 11B та 11C

Р е з ю м е

Спектр зв’язаних та резонансних станiв дзеркальних ядер
11B i 11C дослiджено в рамках мiкроскопiчної трикластер-
ної моделi, яка поєднує в собi метод резонуючих груп та ме-
тод гiперсферичних гармонiк. Ця модель залучає базис гi-
персферичних гармонiк для нумерацiї каналiв трикластер-
ного континууму та реалiзацiї необхiдних граничних умов.
Детально вивчено спектр зв’язаних станiв ядер 11B i 11C
та визначено параметри, якi характеризують форму i роз-
мiри ядер у цих станах. Розраховано спектр резонансних
станiв, що зануренi в трикластерний континуум α + α+3H
i α + α+3He та встановлено домiнуючi канали розпаду та-
ких станiв. Виявлено дуже вузькi резонанси, якi є аналогом
станiв Хойла.
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