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Within the microscopic model based on the algebraic version of the resonating group method,
the role of the Pauli principle in the formation of the continuum wave function of the α+
+ t+ n nuclear system has been investigated. The norm kernel for the α+ t+ n three-cluster
system has been constructed in the Fock–Bargmann space. The complete classification of the
eigenfunctions and the eigenvalues of the 8Li norm kernel by the eigenvalues of the 7Li = α+t,
5He = α+ n, and 4H = t+ n binary subsystems has been given.
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1. Introduction

In the present paper, we will analyze the role of
the Pauli principle in the formation of the contin-
uum wave function of the α + t + n nuclear system
within the microscopic model based on the algebraic
version of the resonating group method. Our prin-
cipal concern has been with the study of exchange
effects contained in the genuine three-cluster norm
kernel, i.e., taking the eigenvalues of Pauli-allowed
states into account.

Near the neutron and proton drip-lines, novel be-
havior modes of nuclei, such as the cluster decay, two-
proton radioactivity, neutron halo, disappearance of
magic numbers, were observed. Hence, the investi-
gation of the structure and the decay of neutron-rich
and proton-rich nuclei is very important for under-
standing the properties of nuclear matter under ex-
treme conditions.

The majority of states in neutron-rich nuclei are
unbound. For example, 8Li nucleus has only two
states below the 8Li→7Li+n decay threshold (see Fig-
ure). In view of the proximity of the latter thresh-
old to the ground state of 8Li nucleus, 8Li can be
considered as a 7Li+n two-cluster system in the
states with the energy falling in the range Eg.s. <
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< E < 4.5 MeV. At the energy E = 4.5 MeV above
the ground state of 8Li, the 8Li→ α + t + n decay
becomes possible, and, hence, all states of 8Li nu-
cleus located above this threshold have three-cluster
structure. The main difficulty in studies of resonances
in a three-cluster system consists in the formulation
of correct asymptotic boundary conditions for a wave
function in the continuum. Such boundary conditions
should ensure a continuous transition from the region
of small distances between the clusters forming the
system in question, where exchange effects are oper-
ative, to the asymptotic region, where the formation
of the scattering matrix occurs.

In Ref. [2], we have shown that, in the case of
three-cluster systems composed of an s-cluster and
two neutrons, the correct asymptotic boundary con-
ditions can be found, by employing a complete basis
of Pauli-allowed harmonic-oscillator states (classified
with the use of the SU(3) symmetry indices and de-
fined in the Fock–Bargmann space) along with their
eigenvalues. Analyzing the structure of the eigenfunc-
tions and the behavior of the eigenvalues of the an-
tisymmetrization operator of 3H + n + n system, we
observed that the asymptotic behavior of basis func-
tions consistent with the requirements of the Pauli
principle gives an indication of possible decay chan-
nels of 5H nucleus and allows us to specify the most
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important decay channels. We have shown that such
asymptotic behavior corresponds to the subsequent
decay 5H → n+4H → n + n+3H rather than to the
direct decay of 5H nucleus.

In Ref. [3], the complete classification of the eigen-
functions and the eigenvalues of the 12C norm ker-
nel by the 8Be= α + α eigenvalues has been given
for the first time. We have demonstrated that the
Pauli-allowed states of the 3α system can be arranged
into branches and families. The eigenvalues belong-
ing to a given branch tend to the same limit value
λ

8Be
2k of the 2α subsystem with the number of quanta

increasing. The branches, which share limit eigenval-
ues, are combined in a family of eigenstates, which
asymptotically corresponds to a certain binary decay
channel of the 3α system into a 2α subsystem oc-
curring in a particular harmonic-oscillator state and
a remaining α-particle. Hence, the excited states of
12C nucleus should decay via the subsequent stage
12C → 8Be +α→ α+α+α rather than in a “demo-
cratic” way 12C → α+ α+ α usually associated with
hyperspherical harmonics.

8Li nucleus is an example of a three-cluster sys-
tem composed of three different clusters. We have
shown that the eigenvalues of binary subsystems of
a three-cluster system play a crucial role in the
classification of the eigenvalues of the three-cluster
norm kernel and rather determination of dominant
decay channels of a three-cluster system. Based on
the results of Refs. [2, 3], we can conclude that, in
the case where a binary subsystem of the three-
cluster system is characterized by unit eigenval-
ues of the antisymmetrization operator, the corre-
sponding binary decay channel of a three-cluster
system into the above-mentioned subsystem and a
remaining cluster is not realized. In 8Li nucleus,
all possible binary decay channels can be real-
ized, because the eigenvalues of the antisymmetriza-
tion operator in all two-cluster subsystems differ
from unity.

2. Theoretical Approach

Following the resonating group method (RGM) [4], it
will be supposed hereafter that the considered nu-
clear system consists of three clusters. An RGM
wave function is built in the form of an antisym-
metrized product of cluster internal wave functions
and a wave function of their relative motion. The in-

Energy levels of 8Li nucleus taken from [1]

ternal wave functions of the clusters are fixed1, and
the wave function of relative motion of the clusters,
which depends only on two Jacobi vectors of the con-
sidered three-cluster system, is found by solving an
integro-differential equation. The latter is obtained
by substitution of the RGM wave function into the
Schrödinger equation followed by integration with
respect to single-particle coordinates. The integro-
differential equation can be transformed into a system
of linear equations by expanding the wave function of
the cluster relative motion into the complete basis
of the Pauli-allowed harmonic oscillator states, as the
RGM suggests. Another important simplification can
be achieved by transformation from the coordinate
space to the space of complex generator parameters
(the Fock–Bargmann space [5]), in which the basis
functions are of an especially simple form and are
expressed via powers of complex vectors. Thus, the
wave functions of the considered discrete represen-
tation are reduced to power series with an infinitely
large convergence radius. The validity of this state-
ment is indicated by the fact that all the wave func-
tions in the Fock–Bargmann space are entire and an-
alytic. Therefore, the series of these functions in pow-

1 Here, we shall assume the intrinsic cluster wave functions
to be the simplest functions of a translation-invariant shell
model.
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ers of complex vectors converge in any finite region of
the complex space.

First and foremost, the RGM calls for the construc-
tion of a complete basis of Pauli-allowed harmonic
oscillator states and their classification. This is ac-
complished by solving the problem of eigenvalues and
eigenfunctions for the norm kernel, i.e., the overlap
integral of the two Slater determinants composed of
the single-particle orbitals:

I({Sj}, {Rj}) =
∫

Φ({Sj}, r)Φ({Rj}, r)dτ. (1)

Here, the integration is performed over all single-
particles vectors, {Rj} (or {Sj}) identifies the col-
lection of three complex vectors determining the po-
sition of the center-of-mass of clusters in the Fock–
Bargmann space. For the spatial part of the single-
particle wave functions, we used the modified Bloch–
Brink orbitals:

φ(ri) =
1

π3/4
exp

(
−1

2
r2
i +
√

2(Rjri)−
1
2
R2
j

)
, i ∈ Aj ,

where Aj is the number of nucleons in the j-th clus-
ter. Each of these orbitals is an eigenfunction of the
coordinate operator r̂i:

r̂i =
1√
2
(Rj + ∇Rj

); Rj =
ξj + iηj√

2
,

which is defined in the Fock–Bargmann space and cor-
responds to the eigenvalue ri, and ξj and ηj are the
vectors of coordinate and momentum, respectively.
At the same time, the orbital φ(ri) is the kernel of the
integral transformation from the coordinate represen-
tation to the Fock–Bargmann representation [5] and
the generating function for the harmonic-oscillator
basis [6]. The center-of-mass motion are factored out
(and dropped out from now on) by transition from
the generator parameters {Rj} to the Jacobi vectors:

Rcm =
1√
A

(A1R1 +A2R2 +A3R3),

a =

√
A1(A2 +A3)

A

(
R1 −

A2R2 +A3R3

A2 +A3

)
,

b =
√

A2A3

A2 +A3
(R2 −R3).

As a result, the overlap of two Slater determinants
composed of the modified Bloch–Brink orbitals gen-
erates a complete basis of Pauli-allowed harmonic-
oscillator functions along with their eigenvalues:

I({Sj}, {Rj})⇒ I(a,b; ã, b̃) =

=
∑
n

ΛnΨn(a,b)Ψn(ã, b̃).

The functions Ψn are defined in the Fock–Bargmann
space and orthonormalized with the Bargmann mea-
sure dµB:

dµB = exp{−(aã)} dξadηa
(2π)3

exp{−(bb̃)} dξb dηb
(2π)3

,

n stands for the set of the quantum numbers of basis
functions. The quantum numbers and the structure
of functions Ψn will be discussed in the next section.
Let us discuss now the set of quantum numbers of the
Pauli-allowed states Ψn(a,b). For the three-cluster
system 8Li considered here, n includes the number of
oscillator quanta ν, the indices (λ, µ) of their SU(3)
symmetry, the additional quantum number k if there
are several different (λ, µ) multiplets, the orbital mo-
mentum L, its projection M, and, if necessary, one
more additional quantum number αL. The latter is
needed to label the states with the same L in a given
(λ, µ) multiplet. It is well known that the diagonal-
ization of the norm kernel requires the basis to be
labeled with the quantum indices (λ, µ) of irreducible
representations of the SU(3) group [7]. The eigenval-
ues of the norm kernel depend on the total number
of the oscillator quanta and (λ, µ) and do not depend
on the angular momenta of the basis states. We re-
strict our consideration to the states with unit orbital
momentum L = 1 and positive parity. Hence, the
number of oscillator quanta should be even and equal
2ν, and the second index SU(3)-symmetry should be
odd and equal 2µ+ 1. The quantum numbers L and
M will be dropped from now on.

3. Eigenvalues and Eigenfunctions
of the Norm Kernel of 8Li = α+ t+n System

By definition, the states Ψn(a,b) are the eigenfunc-
tions of the antisymmetrization operator Â:

ÂΨ(2ν−4µ−2,2µ+1)k
=

= Λ(2ν−4µ−2,2µ+1)k
Ψ(2ν−4µ−2,2µ+1)k

.
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In the Fock–Bargmann space, the latter functions are
superpositions of the eigenfunctions of the second-
order Casimir operator:

Ψ(2ν−4µ−2,2µ+1)k
(ai,bi) =

=
2ν−2µ−1∑
m=2µ+1

Dm−2µ−1
(2ν−4µ−2,2µ+1)k

ψm−2µ−1
(2ν−4µ−2,2µ+1)(ai,bi);

where the index 1 ≤ i ≤ 3 enumerates different Ja-
cobi trees. The eigenvalues of the norm kernel do
not depend on the choice of a Jacobi tree, whereas
the structure of the eigenfunctions does. The Pauli-
allowed basis states of 8Li= α+ t+n system take the
simplest form in the (a3,b3)-tree, where the vector b3

describes the relative distance between the α-cluster
and tritium, while the vector a3 indicates the distance
from the valence neutron to the center-of-mass of the
α+ t subsystem:

Ψ(2ν−2,1)k
(a3,b3) =

2ν−1∑
m=3

Dm−1
(2ν−2,1)k

ψm−1
(2ν−2,1)(a3,b3).

The Pauli-allowed basis function belonging to the
leading SU(3) representation (2ν − 2, 1) contains two
terms less in the (a3,b3)-tree than in other Jacobi
trees for the reason that the minimally possible num-
ber of quanta along the vector b3 equals three, while
the minimum Pauli-allowed number of quanta along
the vectors b1 and b2 equals one. Hence, namely the
(a3,b3)-tree is best suited to the construction and the
analysis of these states.

The quantities a1,b1 and a2,b2 are the Jacobi vec-
tors of two alternative Jacobi trees, with the vec-
tor b1 (b2) describing the relative distance between
the valence neutron and tritium (α-cluster). Re-
spectively, the vector a1 (a2) determines the posi-
tion of the remaining cluster relative to the center-of-
mass of 4H (5He) subsystem. The Jacobi vectors of
each Jacobi tree are related to others via a unitary
transformation:

a3 = cosα1,2 a1,2 + sinα1,2 b1,2;

b3 = ∓ sinα1,2 a1,2 ± cosα1,2 b1,2.

It was found in Ref. [8] that the eigenfunctions of
the Casimir operator, with powers of the vectors a
and b being fixed, are expressible in terms of the hy-
pergeometric functions 2F1(α, β; γ;Z) of the variable

Z =
[ab]2

a2b2
.

Namely,

ψ2m−2µ
(2ν−4µ−2,2µ+1)(a,b) = N2m−2µ

(2ν−4µ−2,2µ+1)×

×a2ν−2m−2µ−2b2m−2µ[ab]2µ+1×

× 2F1

(
−ν +m+ µ+ 1,−m+ µ;−ν + 2µ+

3
2
;Z
)

;

ψ2m−2µ−1
(2ν−4µ−2,2µ+1)(a,b) = N2m−2µ−1

(2ν−4µ−2,2µ+1)×

×a2ν−2m−2µ−2b2m−2µ−2(ab)[ab]2µ+1×

× 2F1

(
−ν +m+ µ+ 1,−m+ µ+ 1;−ν + 2µ+

3
2
;Z
)
.

In two-cluster systems, the eigenvalues of the anti-
symmetrizer tend to 1 as ν →∞, and the deviations
from 1 are due to the Pauli exclusion principle. Con-
trastingly, the eigenvalues of three-cluster systems
tend to eigenvalues of a two-cluster subsystem with
increasing the number of oscillator quanta ν:

lim
ν−2µ→∞

Λ
8Li=α+t+n
(2ν−4µ−2,2µ+1)k1

→ λ
4H=t+n
k1

= 1−
(
−1

3

)k1
,

lim
ν−2µ→∞

Λ
8Li=α+t+n
(2ν−4µ−2,2µ+1)k2

→ λ
5He=α+n
k2

= 1−
(
−1

4

)k2
,

lim
ν−2µ→∞

Λ
8Li=α+t+n
(2ν−4µ−2,2µ+1)k3

→ λ
7Li=α+t
k3

=

= 1−
(
−3

4

)k3
− 3

(
5
12

)k3
+ 3

(
−1

6

)k3
, k3 ≥ 3.

Here, as in 5H and the 12C three-cluster systems, the
number of quanta ki in binary subsystems serves as an
additional quantum number of the SU(3) degenerate
three-cluster states of 8Li, with the only difference
that, instead of one number k, we have three different
ki by the number of possible binary subsystems.

As the eigenvalues Λ
8Li=α+t+n
(2ν−4µ−2,2µ+1)ki

of the norm
kernel approach the limit values of binary subsystems,
the corresponding eigenvectors Ψ(2ν−4µ−2,2µ+1)ki

take a simple analytic form:

Ψ(2ν−4µ−2,2µ+1)ki
(a3,b3)→ ψki−2µ−1

(2ν−4µ−2,2µ+1)(ai,bi),

(2)

Such asymptotic behavior takes place with proviso
that ν � ki.
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The remarkable feature of the asymptotic relations
(2) lies in the fact that, in the limit ν � k1,2, the ex-
pansion coefficients Dm−2µ−1

(2ν−4µ−2,2µ+1)k1,2
can be iden-

tified with the Krawtchuk polynomials of a discrete
variable [9]:

Dm−2µ−1
(2ν−4µ−2,2µ+1)k1,2

→ K(p1,2)
k1,2−2µ−1(m− 2µ− 1)×

×
√
ρm−2µ−1

dk1,2−2µ−1
,

p1,2 = sin2 α1,2, q = 1− p.

The Krawtchuk polynomials K(p)
k (m) of a discrete

variable m are specified on the interval 0 ≤ m ≤ 2ν
and orthogonal with the weighting function ρm and
the norm dk:

K(p)
k (m)

√
ρm

dk
= (−1)k

(2ν)!√
(2ν − k)!(2ν −m)!m!k!

×

×
(
p

q

)m+k
2

qν2F1

(
−k,−m;−2ν;

1
p

)
.

Note that ν, m, and k are the natural integers, 0 ≤
≤ k ≤ 2ν. The Krawtchuk polynomials are a discrete
analog of the Hermitian polynomials.

As for the asymptotic behavior of the expansion co-
efficients Dm−2µ−1

(2ν−4µ−2,2µ+1)k3
, it has exceptionally sim-

ple form:

Dm−2µ−1
(2ν−4µ−2,2µ+1)k3

→ δk3,m−2µ−1.

4. Asymptotic Equations
for Expansion Coefficients

We seek the wave function of the considered three-
cluster system in the form of an expansion over the
SU(3) basis of Pauli-allowed states

ϒκ (E)(a,b) =
∑
n

√
ΛnCκ (E)

n Ψn(a,b).

The coefficients in the expansions of both discrete
states having energies in the region Eκ = −κ2/2 < 0
and continuum states having energies in the region
E > 0 are a solution of the system of linear equations∑
n′

〈n|Ĥ|n′〉Cn′ − EΛnCn = 0. (3)

In the limit ν � k, the variables in Eqs. (3) are sepa-
rated with a result that this system of equations can

be represented in the form of two systems of equa-
tions. One of the two systems of equations describes
the relative motion of 4H, 5He, or 7Li subsystem and
a remaining cluster:

−1
4

√
(2ν − ki − li)(2ν − ki + li + 1)Cliν−1,ki

+

+
1
2

(
2ν − ki +

3
2
− 2(E − ε)

)
Cliν,ki

−

−1
4

√
(2ν − ki − li + 2)(2ν − ki + li + 3)Cliν+1,ki

= 0.

The second system of equations characterizes 4H =
= 3H+n, 5He = 4He+n, or the 7Li = 4He+ t binary
subsystem:

−

√
λki−2

λki

1
4

√
(ki − li)(ki + li + 1)Cliν−1,ki−2+

+
1
2

(
ki +

3
2
− 2ε

)
Cliν,ki

−

−

√
λki

λki+2

1
4

√
(ki − li + 2)(ki + li + 3)Cliν+1,ki+2 = 0.

Here, we set the nucleon mass, Planck constant, and
oscillator length to be equal to 1. The quantum num-
ber l is the orbital angular momentum of 4H, 5He, or
the 7Li binary subsystem; it is equal to the orbital
angular momentum of the relative motion of the re-
maining cluster and the above-mentioned subsystem.
The total energy E is equal to the sum of the internal
energy ε of the binary subsystem and the energy of
the relative motion of the remaining cluster and the
binary subsystem.

The form of these equations indicates that the
problem of the decay of the 8Li three-cluster sys-
tem to an α-particle, tritium, and a neutron reduces
to the multichannel problem of the decay of 8Li by
three different channels: 8Li→7Li+n, 8Li→4H+α,
and 8Li→5He+t. Therewith, each of three binary sub-
systems is in a localized state determined by the max-
imum number of quanta corresponding to the rel-
ative motion of the two clusters forming a binary
subsystem. This number is equal, in turn, to the
maximum number kmax

i of families that were taken
into account.

When we consider a limited number of families, we
thereby prevent one of the clusters from going away
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from another cluster beyond some fixed distance. As
a result, the spectrum of any binary subsystem be-
comes quasidiscrete; that is, the binary subsystem
from the decay of 8Li may prove to be in one of the
states of the continuous spectrum with energy εi and
orbital angular momentum li. The greater the extent
to which the subsystem is localized, the larger the
number of levels and the smaller the spacing between
them. If we take a fixed number of kmax

i families into
account, the asymptotic behavior of the expansion
coefficients takes the form:

Cliki, ν
(E − εn) = cliki

(εn)×

×
{
H−li+1/2

(√
2 (E − εn)

√
4ν − 2ki + 3

)
+

+Sli, εn→li, εnH
+
li+1/2

(√
2 (E−εn)

√
4ν−2ki + 3

)}
+

+
3∑
i=1

kmax
i∑
m=1

c
l′i
ε′m

(ki)×

×Sli, εn→l′i, ε′mH
+
l′i+1/2

(√
2 (E − ε′m)

√
4ν − 2ki + 3

)
.

Here, cliki
(εn) are the coefficients in the expansion of

the wave function for the binary subsystem, which
were obtained by diagonalizing the Hamiltonian for
the binary subsystem, and li, εn is the entrance
channel here.

5. Binary Cluster Configurations
of 8Li Nucleus

The state that corresponds to the translation-
invariant shell-model function projected onto the
completely antisymmetrized wave function for a clus-
ter system is the simplest among the allowed basis
states ensuring the description of the relative mo-
tion of the clusters, whose intrinsic wave functions
are fixed. In the case where the number of oscilla-
tor quanta is minimal, the same allowed eigenfunc-
tion in the coordinate representation (i.e., the shell-
model wave function for the compound nucleus in the
ground state) corresponds to each of the cluster con-
figurations. In the representation of the discrete basis
of the RGM, however, the eigenfunctions of different
configurations are expressed in terms of Jacobi vec-
tors belonging to different trees.

In this section, three main binary cluster configu-
rations of 8Li nucleus are considered: 8Li =7Li+n,

8Li =5He+t, and 8Li =4H+α. All these configura-
tions correspond to the decay of 8Li into a binary
subsystem, being in the lowest oscillator shell model
state, and a remaining cluster. These families appears
first and allows one to understand an asymptotic be-
havior of the simplest families of Pauli-allowed states
of the three-cluster system α+ t+ n.

5.1. 8Li =7Li+n

The translation-invariant norm kernel of the two-
cluster system 7Li+n takes the form

I7Li+n =
(b3b̃3)3

3!

{
exp(a3ã3)−

−
(
1 +

8
7
(a3ã3)

)
exp

(
−1

7
(a3ã3)

)}
+

+
8
7

(b3b̃3)2([a3b3][ã3b̃3])
3!

exp
(
−1

7
(a3ã3)

)
.

The third power of the vector b3 points to the fact
that 7Li cluster has one proton and three neutrons in
the p-shell.

Restricting ourselves to the states of positive parity
and L = 1, after the projection onto states with a
definite SU(3)-symmetry, we obtain

I7Li+n =
∑
ν=2

λ(2ν−2,1)〈(2ν − 2, 1)|(2ν − 2, 1)〉+

+
∑
ν=3

λ(2ν−6,3)〈(2ν − 6, 3)|(2ν − 6, 3)〉.

At a fixed number of oscillator quanta, there are two
Pauli-allowed states belonging to the (2ν − 2, 1) and
(2ν − 6, 3) SU(3)-representations:

λ(2ν−2,1) = 1 +
75− 32ν

3

(
1
7

)2ν−3

,

λ(2ν−6,3) = 1 + 9
(

1
7

)2ν−3

.

The eigenvalues λ(2ν−2,1) tend to 1 from above, which
indicates the attraction between a neutron and 7Li
cluster. The eigenvalues λ(2ν−6,3) approach 1 from
below, which corresponds to the repulsion between a
neutron and 7Li cluster.
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For the minimum number of quanta, the norm ker-
nel of 7Li+n reduces to the leading SU(3) irreducible
representation (2, 1):

I7Li+n =
32
21

1
8
(b3b̃3)2([a3b3][ã3b̃3]) + ... .

This norm kernel contains states with the total or-
bital momentum L = 1, 2, 3 of 8Li. The eigenvalue
corresponding to the lowest Pauli-allowed basis func-
tion for 7Li+n configuration equals 32/21.

5.2. 8Li =5He+t

The norm kernel of 5He+t configuration looks like

I5He+t = exp
(
−3

5
(a2ã2)

)(
exp

(
8
15

(a2ã2)
)
− 1
)2

×

×
{
(b2b̃2)

(
exp

(
8
15

(a2ã2)
)
− 1− 8

15
(a2ã2)

)
+

+
8
15

(a2ã2)([a2b2][ã2b̃2])
}
.

This norm kernel contains the first power of the
vector b2, because 5He cluster has one neutron
in the p-shell.

Since we restrict our consideration to the states of
positive parity and unit orbital momentum, we arrive
at the following expression for the SU(3)-projected
norm kernel of the 5He+t cluster system:

I5He+t =
∑
ν=2

λ(2ν−2,1)〈(2ν − 2, 1)|(2ν − 2, 1)〉.

Here, the eigenvalues

λ(2ν−2,1) = 1− 13
7

(
7
15

)2ν−3

−

− 19
(

1
15

)2ν−3

+
17
9

(
3
5

)2ν−3

also approach 1 from above. Such behavior of the
eigenvalues indicates that 5He and tritium experience
the effective attraction due to the exchange effects.

At a minimum number of quanta, we again arrive
at the same leading (2, 1) SU(3)-representation

I5He+3H =
(

16
15

)3 1
8
(a2ã2)2([a2b2][ã2b̃2]) + ...,

but a different lowest eigenvalue, which equals 16/15
in this case.

5.3. 8Li =4H+α

The vector b1 enters the norm kernel of 4H+α config-
uration of 8Li nucleus only in the first power, because
4H cluster also has one neutron in the p-shell:

I4H+α = exp
(
− (a1ã1)

2

)(
exp

(
(a1ã1)

2

)
− 1
)2

×

×
{
(b1b̃1)

(
exp

(
(a1ã1)

2

)
− 1− (a1ã1)

2

)
+

+
1
2
([a1b1][ã1b̃1])

}
.

The Pauli-allowed states of positive parity and unit
momentum are generated by the norm kernel possess-
ing the (2ν − 2, 1) SU(3)-symmetry:

I4H+α =
∑
ν=2

λ(2ν−2,1)〈(2ν − 2, 1)|(2ν − 2, 1)〉

with eigenvalues

λ(2ν−1,1) = 1 +
1− 2ν
4ν−1

approaching 1 from below. This is an indication of the
effective repulsion between α-cluster and 4H-cluster
due to the Pauli principle.

Finally, the norm kernel generating the lowest shell-
model function for 4H+α configuration of 8Li nucleus
appears as

I4H+α =
1
4

1
8
(a1ã1)2([a1b1][ã1b̃1]) + ... .

The eigenvalue of the normalization kernel of 4H+
+α featuring the minimum number of quanta takes
the lowest value 1/4.

6. Pauli-Allowed States
of α+ t+ n System

The norm kernel of α + t + n system at a minimum
number of quanta allowed by the Pauli principle is of
the following form:

Iα+t+n =
49
27

1
8
(b3b̃3)2([a3b3][ã3b̃3]).

The appearance of this norm kernel is quite similar
to that of the 7Li+n two-cluster configuration. The
difference is only in the eigenvalue, which is equal to
49/27 for the three-cluster model.
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Table 1. Eigenvalues Λ(2ν−4µ−2,2µ+1)k3
of the norm kernel for α+ t+ n system

ν
k3 = 3 k3 = 4 k3 = 5 k3 = 6 k3 = 7

µ = 0 µ = 1 µ = 0 µ = 1 µ = 0 µ = 1 µ = 2 µ = 0 µ = 1 µ = 2 µ = 0 µ = 1 µ = 2 µ = 3

2 1.8148
3 1.0388 1.2223 0.6473
4 1.1986 1.1911 0.5968 0.5942 1.0484 1.2466 0.9406
5 1.1927 1.1910 0.5950 0.5955 1.2091 1.2052 1.2037 0.7849 0.8165 1.1482
6 1.1919 1.1910 0.5954 0.5955 1.2038 1.1996 1.1993 0.8024 0.8062 0.8064 1.1324 1.1396 1.1310
7 1.1909 1.1910 0.5955 0.5955 1.1982 1.1993 1.1992 0.8057 0.8063 0.8064 1.1322 1.1283 1.1267 1.1274
8 1.1910 1.1910 0.5955 0.5955 1.1992 1.1992 1.1992 0.8063 0.8064 0.8064 1.1280 1.1270 1.1269 1.1269
9 1.1910 1.1910 0.5955 0.5955 1.1992 1.1992 1.1992 0.8064 0.8064 0.8064 1.1271 1.1269 1.1269 1.1269

10 1.1910 1.1910 0.5955 0.5955 1.1992 1.1992 1.1992 0.8064 0.8064 0.8064 1.1269 1.1269 1.1269 1.1269

Therefore, assuming any two-cluster or three-
cluster configuration of 8Li, we arrive at a concep-
tually identical expression for the norm kernel at the
minimally possible number of quanta. Only eigenval-
ues are different. In [10], we showed that the prob-
ability of the presence of one or another cluster con-
figuration in the wave function for a binary cluster
system is proportional to the eigenvalue of an indi-
vidual configuration.

So, we could compare our three-cluster model of
8Li with the approximation of three coupled clus-
ter configurations of this nucleus: 7Li+n, 4H + α,
and 5He+t. By virtue of the fact that 7Li+n con-
figuration is characterized by the largest eigenvalue,
the contribution of precisely this cluster configura-
tion to the wave function of 8Li system would be
dominant.

Of course, the three-cluster model cannot be re-
duced to a two-cluster model by truncation of the
three-cluster model space. But a parallel can be
drawn between the three-cluster model and the ap-
proximation of coupled binary configurations.

The Pauli-allowed states of the α + t + n system
can be arranged into branches and families, with all
the states of a particular branch having the com-
mon SU(3)-symmetry index µ, but differing in the
first SU(3) index λ. The eigenvalues belonging to a
given branch tend to the same eigenvalue λki of the
α + t, α + n, or t + n binary subsystems with in-
creasing the number of quanta. The branches which
share limit eigenvalues are combined in a family of
eigenstates, which is completely determined by the
number of oscillator quanta ki in the two-cluster sub-

Table 2. Eigenvalues Λ(2ν−2,1)ki
of the norm

kernel for α+ t+ n system, i = 1, 2

ν k1 = 1 k1 = 2 k2 = 1 l2 = 2

3 1.7131
4 1.5826
5 1.4797 1.1144 0.9726
6 1.4116 1.1764 0.9547
7 1.3714 0.8680 1.2185 0.9461
8 1.3501 0.8784 1.2360 0.9388
9 1.3402 0.8850 1.2445 0.9365

10 1.3360 0.8876 1.2479 0.9364

system. Each family of Pauli-allowed states asymp-
totically corresponds to a certain binary decay chan-
nel of 8Li into a two-cluster subsystem occurring
in the ground or excited harmonic-oscillator state
and a remaining cluster. Such asymptotic behavior
gives an indication of possible decay channels of a
three-cluster 8Li nucleus and allows us to specify the
most important decay channels of the nucleus under
consideration.

Eigenvalues belonging to the first five families cor-
responding to the 8Li→7Li +n decay channel are
given in Table 1. Eigenvalues belonging to the first
four families corresponding to the 8Li→4H +α and
8Li→5He +t decay channels are given in Table 2.

One can readily see from Tables 1 and 2 that the
8Li norm kernel eigenvalues belonging to the k3 fam-
ily tend to the eigenvalues of the two-cluster sub-
system 7Li with increasing the number of oscillator
quanta ν, while the 8Li norm kernel eigenvalues be-
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longing to the k1 and k2 families tend to the eigen-
values of 4H subsystem and 5He subsystem, respec-
tively. Obviously, the index ki makes sense of the
number of oscillator quanta accounted for by one of
three binary subsystems. It is worth noting the fact
that λki=2k̃i+1 > 1, while λki=2k̃i

< 1. This testifies
to the attraction between clusters forming a binary
subsystem in the states with odd number of quanta
ki = 2k̃i + 1 and the repulsion in the states with
even number of quanta ki = 2k̃i. Moreover, the eigen-
values Λ(2ν−4µ−2,2µ+1)2k̃i+1

approach the limit eigen-
values λ2k̃i+1 mainly from above. As was concluded
in [2], there are strong grounds to believe that the
families of states characterized by the odd values of
quantum number ki dominate in the wave function
of 8Li system.

It is evident from Table 1 that the majority of
Pauli-allowed states of the α + t + n system are re-
lated to the 8Li→7Li+n decay. This conclusion is
consistent with the fact that the largest eigenvalue
belongs to the 7Li+n binary configuration of 8Li.
The approximation of three coupled binary config-
urations of 8Li would roughly correspond to such
truncation of the α + t + n model space, when only
the first three families of Pauli-allowed states are re-
tained, namely, k3 = 3, and k1 = k2 = 1. These
three families should dominate in the wave function
of 8Li system.

7. Conclusions

Within a microscopic model based on the algebraic
version of the resonating group method, the role of
the Pauli principle in the formation of the continuum
wave function of the α+t+n nuclear system has been
investigated. Our principal concern has been with the
study of the exchange effects contained in a genuine
three-cluster norm kernel, by taking the eigenvalues
of Pauli-allowed states into account.

The norm kernel for the α + t + n three-cluster
system has been constructed in the Fock–Bargmann
space. The careful analysis of the structure of the
eigenfunctions and the behavior of the eigenval-
ues of the α + t + n norm kernel has been per-
formed for the first time. The eigenvalues of the
α + t + n three-cluster system are shown to tend
to those of two-cluster subsystems, as the num-
ber of oscillator quanta ν increases. At the same
time, the corresponding eigenvectors take a sim-

ple analytic form, as the number of oscillator
quanta increases. We suggest a way of resolving
the problem of SU(3) degeneracy of the Pauli-
allowed states.

The complete classification of the eigenfunctions
and the eigenvalues of the 8Li norm kernel by the
eigenvalues of the 7Li = α + t, 5He = α + n and
4H = t + n binary subsystems has been given. We
have demonstrated that, for the α + t + n system,
such classification is unique in that it is consistent
with the requirements of the Pauli exclusion prin-
ciple both in the region of small intercluster dis-
tances and in the asymptotic region, where the scat-
tering matrix elements are produced. Due to the dif-
ference of eigenvalues of the antisymmetrization op-
erator of the α + t + n system, the corresponding
eigenfunctions are uniquely determined. Any unitary
transformation applied to the latter SU(3)-basis func-
tions would disrupt the diagonal form of the norm
kernel of 8Li nucleus and, hence, is inappropriate
in this case.

The Pauli-allowed states of α + t + n system can
be arranged into branches and families, with all
the states of a particular branch having the com-
mon SU(3)-symmetry index µ, but differing in the
first SU(3) index λ. The eigenvalues belonging to
a given branch tend to the same eigenvalue λki

of
α + t, α + n, or t + n binary subsystems, as the
number of quanta increases. The branches with
limit eigenvalues are combined in a family of eigen-
states, which is completely determined by the num-
ber of oscillator quanta k in a two-cluster subsys-
tem. Each family of Pauli-allowed states corresponds
asymptotically to a certain binary decay channel of
8Li into a two-cluster subsystem occurring in the
ground or excited harmonic-oscillator state and a
remaining cluster. Such asymptotic behavior gives
an indication of possible decay channels of a three-
cluster 8Li nucleus and allows us to specify the
most important decay channels of the nuclei under
consideration.
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Ю.А. Лашко, Г.Ф. Фiлiппов

НЕЗВИЧНI ПРОЯВИ ПРИНЦИПУ ПАУЛI
В РЕАКЦIЯХ РОЗСIЯННЯ АТОМНИХ ЯДЕР

Р е з ю м е

У рамках мiкроскопiчної моделi, що ґрунтується на алге-
браїчнiй версiї методу резонуючих груп дослiджено роль
принципу Паулi у формуваннi хвильової функцiї неперерв-
ного спектра ядерної системи α + t + n. В просторi Фока–
Баргманна побудовано ядро нормування трикластерної си-
стеми α + t + n. Запропоновано повну класифiкацiю вла-
сних функцiй i власних значень ядра нормування 8Li за
допомогою власних значень бiнарних пiдсистем 7Li = α+ t,
5He = α+ n i 4H = t+ n.
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