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To describe the behavior of nonextensive systems, the deformed Ising Hamiltonian is introduced
by substituting the spin variable si by the deformed one sq

i . In the framework of mean-field
theory, the phase transition paramagnet–ferromagnet is investigated for the deformed partition
function. The influence of the non-extensive parameter q on the free-energy density and the
steady-state value of order parameter is studied in the Landau approximation.
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1. Introduction

As long ago as in 1865, R. Clausius developed the
concept and introduced the term “entropy” in the con-
text of classical thermodynamics and taking no mi-
croscopic interaction into account. The properties of
a system that naturally arose in the context of the
Clausius concept include the extensivity (i.e. addi-
tivity) of system’s entropy, which is connected with
the number of system’s elements at the microscopic
level. L. Boltzmann and, later, J.W. Gibbs proposed
the relation SBG = −k

∑W
i=1 pi ln pi that couples the

Clausius entropy with system’s microstates (here, W
is the number of relevant microstates, pi is the proba-
bility of the i-th state realization, and k is the Boltz-
mann constant). However, it turned out that the
Boltzmann–Gibbs theory is not universal, but has a
restricted scope of applications.

On the one hand, this theory is based on the as-
sumption that all elements in the system are inde-
pendent, which is a cornerstone of entropy additivity
(extensivity). In addition, a hypothesis of molecular
chaos was used, according to which the particles in
the system do not correlate at all with one another
before they collide. Of course, for the majority of
macroscopic physical systems, the interaction forces
between particles are short-range, extending only on a
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restricted number of the nearest neighbors. However,
what about those complicated systems, in which long-
range interaction reveals itself? Moreover, we have to
take into account that a weaker chaos is usually re-
alized at the microscopic level, and the sensitivity to
external conditions grows according to the power law
rather than the exponential one.

On the other hand, this theory describes a spe-
cific steady state, which is called the thermodynamic
equilibrium. However, as is known, the complicated
physical, biological, social, and other systems, which
dominantly dwell in nonequilibrium stationary states,
have attracted more and more attention recently. As
a result, there arises a natural question: Can a more
general theory be developed, a specific case of which–
provided the thermodynamic equilibrium and the in-
dependence of system’s elements–is the Boltzmann–
Gibbs one. There is no unambiguous answer to this
question till now. However, in 1988, C. Tsallis made
an attempt to expand the scope of applicability for
statistical mechanics and thermodynamics. As a re-
sult, a new direction of researches emerged, nonexten-
sive statistical mechanics and thermodynamics. The
basis of this approach is formed by the generalized
expression for the entropy,

Sq = −k
W∑
i=1

pqi lnq pi = k
1−

∑W
i=1 p

q
i

q − 1
,
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which is reduced to the ordinary Boltzmann’s en-
tropy in the limit q → 1, where q is the deformation
parameter.

For today, the scope of nonextensive statistical me-
chanics applications is rather wide, which is evidenced
by plenty of examples from various domains of sci-
ence [1]. Every such a case deserves a special analy-
sis, because some of them are proved experimentally
and/or substantiated theoretically, whereas the oth-
ers remain only phenomenological observations, when
the deformation parameter q is determined by a direct
substitution (mainly owing to the uncertainty that
takes place in the microscopic world). At last, some
cases can be described only at the probabilistic level
because of the lack of relevant data. Moreover, one
has to take into account that, in some examples, the
parameter q governs the distribution degree; in oth-
ers, it may be connected with the sensitivity to exter-
nal conditions, the multifractal character, and so on.

In astrophysics and cosmology, the relations to
the q-deformed theory were established for self-
gravitating systems [2], the velocity distribution for
spiral galaxies [3], the solar neutrino problem [4–7],
cosmic microwave background radiation [8–10], and
distribution of the cosmic ray energy [11]. In solid-
state physics, the similar relations were revealed,
while studying the high-temperature superconductiv-
ity [12], Bose–Einstein condensation [13], and elec-
tron strong coupling [14]. In nonlinear dynamics, a
special attention is focused on the application of the
Tsallis theory to three-dimensional turbulence [15].
In addition, in the framework of this theory, the
Arrhenius law is obeyed for the abnormal diffusion
as well [16]. The phenomenon of the self-organized
criticality–in particular, for the model of biological
evolution [17]–seems to be close to the concepts that
arose in the framework of the existing nonextensive
formalism.

One more example should be noted, where the sta-
tistical theory of nonextensive systems is applied. It
is a description of objects with finite dimensions. The
importance of their researches grew with the develop-
ment of nanotechnologies. For instance, for the prob-
lem concerning the separation of a macrosystem into
several parts, the accuracy of additivity persistence,
making allowance for the difference between the sur-
face energies for the whole system and their sepa-
rated parts, was found to approximately equal to the
size ratio between the atom and the system. Thus,

the smaller the system dimension, the larger are the
nonadditivity effects. Really, for a finite number of
particles, N , the deformation parameter equals [18]

q =
(
1− α

d
N−1

)−1

, (1)

where α is the similarity index for the coordinate de-
pendence of the Hamiltonian (e.g., for a harmonic
oscillator, α = 2), and d is the dimensionality of
the system. The short-range potentials (α > 0) are
characterized by the values q ≥ 1, whereas the long-
range ones (−d ≤ α ≤ 0) by q ≤ 1. If α < −d, the
Boltzmann–Gibbs statistics is applicable [19]. In the
thermodynamic limit, N → ∞, we obtain the value
q = 1 for the conventional statistics. As the num-
ber of particles, N , diminishes, the difference |q − 1|
grows and reaches the maximum value α/(d − α) if
α > 0 or |α|/(d+ |α|) if α < 0.

This work is devoted to the consideration of a
microscopic theory of nonextensive systems in the
framework of the Ising model. The article structure
is as follows. In Section 2, the fundamentals of a
q-deformed algebra, in the framework of which the
formalism of nonextensive systems is built, are de-
scribed. In Section 3, a q-deformed Ising Hamilto-
nian for the description of nonextensive systems is
proposed, a relation for possible values of parame-
ter q is obtained, and the average fractional value of
spin is calculated. In Section 4, the partition func-
tion over all microstates of a nonextensive system
and the free energy density are determined. The lat-
ter bring about the classical Landau expansion in the
limit q → 1. Section 5 is devoted to the analysis of
the equilibrium order parameter.

2. Formalism of a Nonextensive
Statistical System

Unlike the conventional statistical ensemble, the
nonextensive system obeys Tsallis’ statistics [1], in
which the states are not distributed according to the
Gibbs probability, but the escort one [20],

Pq(x) =
pq(x)∫
pq(x)dx

, p(x) = Z−1
q expq(x), (2)

where the partition function Zq is defined by the nor-
malization condition for the initial probability p(x).
The latter is given, in turn, by the deformed Tsallis’

498 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 5



Microscopic Description of Nonextensive Systems

exponent

expq(x) := [1 + (1− q)x]
1

1−q

+ ,

[y]+ ≡ max(y, 0), (3)

which is reduced to the ordinary exponential function
ex = exp1(x) in the limit q → 1. Accordingly, Tsallis’
logarithm, which plays the role of a function inverse to
the exponential one, Eq. (3), is defined by the equality

lnq(x) ≡
x1−q − 1

1− q
. (4)

In addition, the sum, difference, product, and quo-
tient operations of two positive quantities look like
[21]

x⊕q y := x+ y + (1− q)xy,

x	q y :=
x− y

1 + (1− q)y
,

x⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q

+
,

x�q y :=
[
x1−q − y1−q + 1

] 1
1−q

+
. (5)

In particular, functions (3) and (4) satisfy the rules

lnq(x⊗q y) = lnq x+ lnq y,

lnq(x�q y) = lnq x− lnq y,

lnq(xy) = lnq x⊕q lnq y,

lnq(x/y) = lnq x	q lnq y,

expq(x)⊗q expq(y) = expq(x+ y),

expq(x)�q expq(y) = expq(x− y),

expq(x) expq(y) = expq(x⊕q y),

expq(x)/ expq(y) = expq(x	q y). (6)

The q-factorial

n!q := 1⊗q 2⊗q · · · ⊗q n (7)

of a natural integer n� 1 is determined by the Stir-
ling formula [22]

lnq (n!q) '

'


(

n

2− q
+

1
2

)
lnq n−

n− 1
2− q

, 0 < q 6= 2;[
n− 1

2

(
1 +

1
n

)]
− lnn, q = 2.

(8)

3. Master Equations

The Ising model forms a basis for the microscopic
theory of phase transitions [23]. In contrast to the
Heisenberg model, where the spin at every site of
a regular lattice can acquire an arbitrary value (see
Fig. 1, b), the advantage of the Ising model con-
sists in its simplicity, i.e. only two values are sup-
posed to be allowable for the spin at every site,
si = ±1 (see Fig. 1, a). Nevertheless till now,
there is no exact analytical description of the phase
transition paramagnet–ferromagnet (PM–FM) in the
framework of the Ising model in the three-dimensional
case. However, this model allows the basic properties
of the PM–FM phase transition to be described qual-
itatively in the framework of the mean-field approxi-
mation. But, as was already mentioned, the Gibbs–
Boltzmann statistics is not suitable for the descrip-
tion of objects with finite dimensions, and the more
general approach by Tsallis [1] has to be engaged in
this case. The following question arises: How does
such a “deformation” affect the phase transition sce-
nario? From the formal point of view, the generaliza-
tion of the Gibbs–Boltzmann statistics occurs owing
to the substitution of the initial probability, pi, by
the deformed one, pqi . Let us extend this procedure
at the microscopic level, i.e. let us use the deformed
Ising Hamiltonian, which is obtained by substituting
the spin si at the i-th site by its deformed variant, sqi .

In accordance with the formulated problem, the
Hamiltonian acquires the form

H = −1
2

N∑
i,j

Ji,js
q
i s
q
j − h

∑
i

sqi . (9)

Here, the summation is carried out over all N lattice
sites with the indices i 6= j, Jij is the potential of the
effective interaction, h is the external field, si = ±1
is the spin value at every site, q is the parameter of

1s=+

1s=

a b

Fig. 1. Schematic diagram of possible spin directions at
the sites of a regular lattice in the Ising (a) and Heisenberg
models (b)
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extensivity, and the factor 1
2 takes into account that

every site is summed up twice. Let us take into ac-
count that, in the framework of the mean-field ap-
proximation,

– the multiplier sqi is substituted by the averaged
value 〈sq〉,

– the main contribution to the Hamiltonian is made
by only the interaction with the nearest neighbors,
the number of which equals z;

– the potential of the effective interaction is reduced
to a positive constant, J > 0, the sign of which de-
termines the material type (FM).
As a result, the effective Hamiltonian looks like

Hef =
∑
i

εi, (10)

where

εi = −hqsqi ; hq = h+ Tc〈sq〉. (11)

In the last expression, the critical temperature Tc =
= zJ is introduced. Then, the quantity εi can be
regarded as the energy of the i-th site.

Since the Ising model has a discrete symmetry,
being invariant under the transformations of spin,
si → −si, and external field, h → −h, our theory
makes sense provided that the condition (−1)q = −1
is satisfied. Then, using the complex representation
for −1, it is possible to obtain an additional condition
for possible q-values,

q =
2m+ 1
2n+ 1

, (12)

Some possible values of parameter q

(see Eq. (12)) in the forms of ordinary
and decimal fractions for various m and n

m n q q

0 5 1/11 0.091
0 2 1/5 0.2
1 2 3/5 0.6
3 4 7/9 0.778
1 1 1 1
10 9 21/19 1.105
3 2 7/5 1.4
4 2 9/5 1.8
5 2 11/5 2.2
6 2 13/5 2.6

where m and n are integers (m,n = 0,±1,±2, . . .)
(see Table).

For the further consideration, it is necessary to de-
termine the average of 〈sq〉 with fractional power ex-
ponent q. An analogous problem was examined in
work [24]. For instance, if the variable s has an ini-
tial distribution P (s), there can exist another dis-
tribution for the stochastic variable x = sq, Pq(x).
In addition, we may assume that those two distri-
butions are related to each other by the relation
sqP (s)ds = xPq(x)dx. If we designate a quantity av-
eraged over the distribution Pq(x) as 〈. . .〉q and use
the ordinary angular brackets 〈. . .〉 for the notation
of the value calculated by averaging over the initial
distribution P (s), the relation 〈sq〉 = 〈x〉q can be
obtained. As was proved in work [24], this problem
makes sense only in the case of self-similar systems,
where the distribution function has a power-law de-
pendence, i.e. P (s) = N−1

p s−µ, where µ is the power
exponent, and Np is the normalization constant,

Np =
1

|1− µ|
aµ−1, a→ 0. (13)

Let us analyze the power exponent µ. From work
[24], it is known that, if 1 < µ < 2, so that the fractal
dimensionality of the phase space D = 2 − µ is less
than 1, the system is always disordered. But, in the
case 0 < µ < 1, the fractal dimensionality D > 1, and
the system can be in the ordered state. Therefore,
the further consideration of all possible dependences
for the equilibrium value of order parameter will be
carried out only in the interval µ ∈ (0, 1). As a result,
the fractional average can be presented in the form

〈sq〉 = β−1 (Np(2− µ))β−1 〈s〉β , (14)

where the notation

β ≡ q + 1− µ
2− µ

. (15)

is introduced.
In the initial microscopic theory developed on the

basis of the Ising model, the order parameter distin-
guishing between the disordered (PM) and ordered
(FM) states is the averaged spin, 〈si〉 = 〈s〉 = η. In
the case of nonextensive systems, it is reasonable to
use this relation again. As a result, we obtain the
effective Hamiltonian of a nonextensive system in the
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form

Hef = −
∑
i

(
h+ CTcη

β
)
si, (16)

where

C ≡ β−1 (Np(2− µ))β−1
. (17)

Since Hamiltonian (16) is negative, zero cannot be
selected as the reference point; otherwise, the system
would have had an infinitely larger negative energy in
the ordered state. To avoid it, the self-action has to
be taken into account, which reflects the Le Chatelier
principle. For the first time, it was done by Academi-
cian M.M. Bogolyubov in the 1950s, while explaining
the phenomenon of superfluidity at the microscopic
level. In his theory, the Hamiltonian component that
reflects the action is given by the square-law term

H0 =
N

2
Tc η

2. (18)

The final form of the effective Hamiltonian of the sys-
tem looks like

Hef =
N

2
Tc η

2 − h
∑
i

si − CTc η β
∑
i

si. (19)

4. Construction of Phenomenological Theory
on the Basis of a Microscopic Scenario

The phenomenological theory of phase transitions de-
veloped by L.D. Landau is known to allow a relation
for the equilibrium order parameter η ≡ 〈s〉 to be
obtained. In the problems of this kind, the average
value is determined using the Gibbs distribution

P{si} = Z−1 exp
(
−Hef

T

)
, (20)

where Z is the partition function, Hef is Hamiltonian
(19), and T is the temperature expressed in terms of
energy units.

First, let us determine the partition function for all
sets of possible spin orientations at all sites,

Z = Z0

∑
{si}

exp

(
α
∑
i

si

)
. (21)

Here,

Z0 ≡ exp
(
−N

2
Tc
T
η2

)
, (22)

α ≡ h

T
+ C

Tc
T
η β . (23)

The exponential function in formula (21) includes the
sum over all sites. Therefore, it is possible to express
it as a product of site exponents and, afterward, rear-
range it with the sum over all spin sets. As a result,
we obtain the expression

Z = Z0

N∏
i=1

∑
si

exp(αsi), (24)

in which only those terms were left that are relevant
for the given i-th site, i.e. {si} → si. Since si = ±1,
the sum in Eq. (24) can be easily calculated,

Z = Z0(2 coshα)N . (25)

Substituting relations (22) and (23) into Eq. (25), we
obtain

Z = exp
(
−N

2
Tc
T
η2

)[
2 ch

(
h

T
+ C

Tc
T
η β
)]N

. (26)

From thermodynamics, it is known that the free en-
ergy is connected with the partition function by the
relation

F = −T lnZ. (27)

Substituting the partition function of the nonexten-
sive system (26) into Eq. (27), we obtain the ulti-
mate expression for the free energy of the nonexten-
sive system,

F =
N

2
Tcη

2 − TN ln 2− TN ln cosh
(
h

T
+ C

Tc
T
ηβ
)
.

(28)

Here, the first term corresponds to the energy of the
action itself. The second term does not depend on the
order parameter, but plays an important role, because
it determines the energy decrease associated with the
disorder growth. The last term plays the main role
in Eq. (28). It cannot be reduced to a standard form,
e.g., the Landau one. However, it should not be so,
because energy (28) was obtained from the micro-
scopic theory and remains valid at any temperature
T ; whereas, first, the Landau phenomenological the-
ory is valid in a vicinity of the critical temperature
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Tc, and, second, it does not take the nonadditivity
property into account.

To build a phenomenological theory, it is necessary
to expand the hyperbolic cosine and the logarithm in
Eq. (28) in series. As a result, we obtain the following
general formula for the free energy:

F =
N

2
Tc η

2 − TN ln 2−

−TN
2

[(
h

T
+ C

Tc
T
η β
)2

− 1
6

(
h

T
+ C

Tc
T
η β
)4
]
. (29)

Now, let us introduce a notation for the free energy
density per one site,

f =
F

N
. (30)

In the approximation h = 0, Eq. (29) can be rewritten
in the form

f = −T ln 2 +
Tc
2
η2 − C2T 2

c

2T
η2β +

C4T 4
c

12T 3
η4β . (31)

The first term in Eq. (31) arose due to a reduction of
the free energy owing to the transition of the system
from the disordered state into the ordered one (as a
change of the free energy, only the difference in the
reference points for the ordered and disordered phases
is meant). This term does not depend on the order
parameter, which is not typical of the phenomeno-
logical theory, because it contains excess information
that cannot be obtained with the use of approximate
methods. Hence, the term −T ln 2 can be neglected
in the phenomenological case. As a result, we obtain

f =
Tc
2
η2 − C2T 2

c

2T
η2β +

C4T 4
c

12T 3
η4β . (32)

Bearing in mind that every relation used in the
framework of the nonextensive mechanics acquires
the corresponding “classical” form in the limit q → 1,
let us analyze how the energy density (32) looks in
this case,

fq→1 =
T − Tc

2
η2 +

1
4
Tc
3
η4. (33)

Here, we took into account that, according to
Eq. (17), the coefficient C ≡ 1 as q → 1. Comparing
Eq. (33) with the Landau series expansion

fL =
A

2
η2 +

B

4
η4,

we may write down that, in our case, B = Tc/3 and
A = α(T − Tc), where α ≡ 1.

Omitting the term proportional to ln 2, let us con-
sider the free energy density obtained from Eq. (29)
in the limit as q → 1,

fq→1 =
T − Tc

2
η2 +

1
4
Tc
3
η4 − ηh+O(h, η). (34)

Since the term designated as O(h, η) contains prod-
ucts of h and η with power exponents larger than 1,
those terms can be neglected in the weak-field ap-
proximation. As a result, Eq. (34) is reduced to the
standard Landau form for the free energy that makes
allowance for the external field,

fL =
A

2
η2 +

B

4
η4 − ηh. (35)

Hence, in the limit as q → 1, relations (33) and (35)
bring about the conventional Landau phenomenolog-
ical theory.

5. Equilibrium Order Parameter Value

From Eq. (32), according to the equilibrium condition
∂f
∂η = 0 and for the case of the zero external field, we
obtain

η
Tc
T

[
T − βC2Tcη

2(β−1) +
βC4T 3

c

3T 2
η2(2β−1)

]
= 0.

(36)

The first stationary solution, η0 = 0, evidently corre-
sponds to a disordered state. By putting the expres-
sion in the brackets equal to zero and by dividing it
by the critical temperature Tc, we obtain the equa-
tion for the stationary order parameter in the ordered
state,

T

Tc
− βC2η

2(β−1)
0 +

βC4

3
T 2
c

T 2
η
2(2β−1)
0 = 0. (37)

By analogy with the Landau theory, let us consider
our system near the critical temperature, i.e. in the
case where |T − Tc| � Tc. In addition, let us intro-
duce the dimensionless temperature

θ =
T

Tc
. (38)

As a result, one can obtain the dependence θ(η0),

θ = βC2η
2(β−1)
0

(
1− C2

3
η2β
0

)
. (39)
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Fig. 2. Dependences of the dimensionless free energy (41) on the order parameter η for a = 0.001 and µ = 0.5. The dimensionless
temperature θ = 0.5 (panels a and c) and 1.5 (panels b and d). The parameter q = 1/5 (1 ), 3/5 (2 ), 7/9 (3 ), 1 (4 ), 21/19 (5 ),
7/5 (6 ), 9/5 (7 ), 11/5 (8 ), and 13/5 (9 )

Taking into account that the critical temperature
Tc was selected as a temperature measure unit, it
would be natural to select the corresponding units
for other variables as well. For the order parameter,
we may use the well-known relation of the Landau
theory, η0L = (−ε)1/2, which reflects the dependence
of the equilibrium order parameter on the relative
temperature ε ≡ T−Tc

Tc
. Comparing η0L with η0 from

Eq. (39) as q → 1, we obtain the measure unit for
the order parameter, ηs ≡

√
3. We choose the unit

fs ≡ η2
sTc for the free energy density and hs ≡ Tc for

the field. Then, the reduced (dimensionless) variants
of Eqs. (32) and (39) read

f =
θ

2
η2 − 3β−1C2

2
η2β +

32(β−1)C4

4
η4β , (40)

θ = βC2η
2(β−1)
0

(
1− C2

3
η2β
0

)
. (41)

The corresponding dependences are depicted in
Figs. 2 and 3, respectively.

As one can see from Fig. 2, the more the parameter
of nonextensivity differs from the critical value q = 1,
the smaller value of the order parameter is needed
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Fig. 3. Dependences of the equilibrium order parameter η0
on the dimensionless temperature θ for a = 0.001 and µ = 0.5.
The parameter q = 1/5 (1 ), 3/5 (2 ), 7/9 (3 ), 1 (4 ), 21/19 (5 ),
7/5 (6 ), 9/5 (7 )

for the ordered state to be realized. Moreover, as
curve 1 (see the inset in Fig. 2, a) and curves 6 to 9
(see Fig. 2, c) testify, the ordered state can be realized
even at temperatures lower than the critical one.
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In Fig. 3, the temperature dependences of the equi-
librium order parameter are depicted for various q-
values. One can see that, at q < 1, the character
of the dependence changes (cf. curves 1 to 3 in
Fig. 3 with curve 4 in the same figure). It should
also be noted that the largest values of order pa-
rameter for curves 2 and 3 are attained at temper-
atures in the interval (0.1 ÷ 0.2)Tc, but this result
can be explained by the fact that dependence (32)
was obtained in the approximation |T − Tc| � Tc.
While analyzing curves 5 to 7 in Fig. 3, a conclu-
sion can be drawn that the equilibrium value of or-
der parameter undergoes a jump. This means that
the phase transition in nonextensive systems can be
realized by the mechanism of a phase transition of
the first kind (this conclusion can be verified only
experimentally). An alternative consists in that the
values q > 1 of this parameter are not realized
in this case.

6. Conclusions

Recently, a lot of theorists, while studying compli-
cated systems, have been attempting, more and more
often, to generalize the Boltzmann–Gibbs statistics
with the help of Tsallis’ approach. This gener-
alization made it possible to describe many phe-
nomena and effects, which were observed earlier,
but have not been interpreted theoretically. In the
present work, Tsallis’ approach is applied to the
Ising Hamiltonian and to the partition function de-
scribing a microscopic system consisting of a set of
spin variables. As a result, it was demonstrated
that, in the framework of the mean-field approxima-
tion, the microscopic consideration can give rise to
a phenomenological approach that characterizes the
transition paramagnet–ferromagnet in nonextensive
systems.

This work was executed in the framework of the
state’s budget theme No. 0112U001380 of the Min-
istry of Education and Science, Youth and Sports of
Ukraine.
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О.В. Ющенко, А.Ю. Бадалян

МIКРОСКОПIЧНИЙ ОПИС
НЕЕКСТЕНСИВНИХ СИСТЕМ
У РАМКАХ МОДЕЛI IЗIНГА

Р е з ю м е

Деформований гамiльтонiан Iзiнга для опису поведiнки
неекстенсивних систем було представлено шляхом замi-
ни спiнової змiнної si на деформовану sq

i . У рамках те-
орiї середнього поля було дослiджено фазовий перехiд
парамагнетик–феромагнетик для деформованої статсуми.
У наближеннi Ландау було проаналiзовано вплив параме-
тра неекстенсивностi q на густину вiльної енергiї та на ста-
цiонарне значення параметра порядку.
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