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EFFECTS OF VARIABLE FLUID PROPERTIES
ON UNSTEADY HEAT TRANSFER OVER A STRETCHING
SURFACE IN THE PRESENCE OF THERMAL RADIATION

The effect of radiation on the unsteady flow over a stretching surface with variable viscosity
and variable thermal conductivity is analyzed. Similar governing equations are obtained by
using suitable transformations and are then solved by applying the Chebyshev spectral method.
Numerical results for the dimensionless velocity profiles and the dimensionless temperature
are graphically presented for various values of the radiation parameter, viscosity, thermal
conductivity, space and time indices, Prandtl number, and unsteadiness parameter. It is shown
that both the skin friction and the rate of heat transfer decrease, as the Prandtl number and
the unsteadiness parameter decrease. But both decrease, as the radiation parameter increases.
The dimensionless temperature increases with the radiation parameter and the viscosity, but
it decreases as the space and time indices increase.
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1. Introduction

The continuous surface heat transfer problem has
many practical applications in industrial manufactur-
ing processes such as wire and fiber coating, food stuff
processing, reactor fluidization, transpiration cooling,
etc. Production of a thin liquid film either on the
surface of a vertical wall by means of the action of
gravity or on a rotating horizontal disk due to the
action of centrifugal forces has been studied consid-
erably in the literature (Sparrow and Gregg [1] and
Dandapot and Ray [2, 3]). Ali [4] investigated the
flow and heat transfer characteristics on a stretch-
ing surface using the power-law velocity and temper-
ature distributions. A class of flow problems with the
obvious relevance to the polymer extrusion is pre-
sented by the flows induced by the stretching mo-
tion of a flat elastic sheet. Crane [5] was the first

© M.F. DIMIAN, A.M. MEGAHED, 2013

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 4

who studied the motion set up in the ambient fluid
due to a linearly stretching surface. Several authors
(e.g., Gupta [6] and Tsou et al. [7]) subsequently
explored various aspects of the accompanying heat
transfer occurring in the infinite fluid medium sur-
rounding the stretching sheet. They analyzed the
stretching problem with a constant surface tempera-
ture, while Soundalgekar and Ramana [8] investigated
the constant surface velocity case with a power-law
temperature variation. Grubka and Bobba [9] an-
alyzed the stretching problem for a surface moving
with linear velocity and with variable surface tem-
perature. Since the pioneer work by Sakiadis [10]
who developed a numerical solution for the bound-
ary layer flow field of a stretched surface, many au-
thors have attacked this problem to study the hy-
drodynamic and thermal boundary layers due to a
moving surface (e.g., Magyari and Keller [11]). The
flow field of a stretching wall with a power-law ve-
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locity variation was discussed by Banks [12]. Ali
[13] extended Bank’s work to the case of a porous
stretching surface for different values of the injec-
tion parameter. Abo-Eldahab and Gendy [14] inves-
tigated the solution for the steady flow in a bound-
ary layer over the vertical stretching surface with in-
ternal heat generation. Heat transfer over an un-
steady stretching surface with internal heat genera-
tion or absorption was studied by Elbashbeshy and
Bazid [15]. They solved numerically the governing
time-dependent boundary layer equations with con-
stant viscosity. The momentum and heat transfer
in a laminar liquid film on a horizontal stretching
sheet was analyzed by Andersson et al. [16]. The
governing time-dependent boundary layer equations
are reduced to a set of ordinary differential equations
by means of exact similarity transformations (which
are used in [15]). The resulting problem (with con-
stant viscosity) is solved numerically for some rep-
resentative values of the unsteadiness parameter and
the Prandtl number. Elbashbeshy and Dimian [17]
studied the effect of radiation on the problem of flow
and heat transfer over a wedge with variable viscos-
ity. The effect of thermal radiation on the free con-
vection flow and heat transfer over a variable plate
in the presence of suction and injection was discussed
by Hassain et al. [18]. Elshehawey et al. [19] in-
vestigated the problem of flow and heat transfer over
an unsteady stretching sheet in a viscoelastic fluid
with uniform suction at the wall and heat transfer in
the presence of a normal magnetic field. Elbashbeshy
and Aldawody [20] investigated the effects of ther-
mal radiation and a magnetic field on the unsteady
boundary layer mixed convection flow and the heat
transfer from a vertical porous stretching surface.
Bataller [21] presented the effects of a non-uniform
heat source on the viscoelastic fluid flow and heat
transfer over a stretching sheet. The purpose of the
present paper is to explore the effect of radiation on
the unsteady flow over a stretching surface with vari-
able properties. Accurate numerical solutions will
be provided for various values of radiation param-
eter, viscosity, the unsteadiness parameter, and the
Prandtl number.

2. Formulation of the Problem

Consider the unsteady two-dimensional laminar
boundary layer flow over a stretching sheet immersed
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in an incompressible fluid. The z axis is chosen along
the plane of the sheet, and the y axis is taken to be
normal to the plane. We assume that the surface
starts stretching from rest with a velocity U(x,t).
The viscosity and the thermal conductivity of the
fluid is assumed to vary with the temperature as fol-
lows (Mahmoud and Megahed [22]):

= poce ™, (1)
K= Koo(1 + €0), (2)

where pio, Koo are the cofficients of viscosity and ther-
mal conductivity at the ambient, « is the viscosity pa-
rameter and e is the thermal conductivity parameter.
The governing time-dependent boundary layer equa-
tions for mass, momentum, and energy conservation
are given by

ou  Ov

%_F@iy_o’ (3)
ou_ ou, w10 (o "
ot ox dy  poy “ay ’

or or 0T 1 0 (oT 1 (0q,

—tu v =—— (ko |- — . (5)
ot Or dy pc, Oy \ Oy pcp \ Oy

where u and v are the velocity components along the
x and y directions, respectively, ¢ is the time, p is the
fluid density, p is the viscosity,  is the thermal con-
ductivity, T" is the temperature of the fluid, ¢, is the
radiative heat flux, and ¢, is the specific heat at con-

stant pressure. The appropriate boundary conditions
for the present problem are

u=U, v=0, T=T, at y=0, (6)

u—0, T—-Tyx as y— oo, (7)
where U is the surface velocity of the stretching sheet,
T,, is the surface temperature, T, is the free stream
temperature, and the flow is caused by stretching the
elastic surface at y = 0 such that the continuous sheet

moves in the x direction with the velocity

bx

U=—,
1—at

®)

where a and b are positive constants with dimension
(time~!). Our problem is valid only for at < 1, but
at > 1 has no physical meaning.
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The radiative heat flux g, is employed according to
the Roseland approximation [23| such that

4o* OT*
= oy (9)
where ¢* is the Stefan—Boltzmann constant, and k*
is the mean absorption coefficient. Following Rap-
tis [24], we assume that the temperature differences
within the flow are small and such that may be ex-
pressed as a linear function of the temperature. Ex-
panding T* in a Taylor series about T and neglect-
ing higher-order terms, we have

T* = 4T3 T - 3T%. (10)

The equation of continuity is satisfied if we choose a
stream function ¢ (z,y) such that u = g—f, and v =

= f%. The mathematical analysis of the problem is

simplified by introducing the following dimensionless
coordinates:

"= (%f/p))/ (1 - at) 12y, (1)
b= (“jb)/ (1 - at) 22 f (), (12)
=T+ T <2(i”2m> (1= at)=™0(n), (13)
Ty = Too + T <2<jir/m> (1—at)™™. (14)

Here, f is the dimensionless stream function, 6 is the
dimensionless temperature of the fluid, d is constant,
and r and m are space and time indices, respectively.

Using Egs. (11)—(14), the mathematical problem
defined in Eqs. (4), (5) is then transformed into a set
of ordinary differential equations with the associated
boundary conditions:

S
67040(]:/// - Ozelf”)+ff”*§77 f”*f/z*Sf':O, (15)

1
—[(1+ R+ €0)0" + €]+

Pr

+f9’—rf’9—5<;779’+m9> =0, (16)
f0)=0, f(0)=1, 6(0)=1, (17)
ff—0, 6—-0 as n— oo, (18)
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where the prime denotes the differentiation with re-

spect to n, 8 = 7? 17;“ is the dimensionless tem-

o —Too

perature, S = a/b is the unsteadiness parameter,

prep - 16(;*T§’C .

Pr = £ is the Prandtl number, and R = 55— is
oo

the radiation parameter.

The physical quantities of interest are the skin-
friction coefficient Cy and the local Nusselt number
Nu, which are defined as

Oy = —2Re; 2 7(0),

1
Nu, = (1~ at)~Y?Re/20/(0), (19)
where Re, = pUT“" is the local Reynolds number.

3. Method of Solution

The domain of the governing boundary layer equa-
tions (15), (16) is the unbounded region [0, c0). How-
ever, for all practical reasons, this could be replaced
by the interval 0 < 1 < 1, Where 7o, is some large
number to be specified for the computational conve-
nience. Using the algebraic mapping

XZQi_la
Too

the unbounded region [0, 00) is finally mapped onto
the finite domain [—1, 1], and the problem expressed
by Egs. (15) and (16) is transformed into

eI (x) = b ()" ()] +

+ (%) 100700 = (52) £200 -

~s| (%) e o+ () ro <o o

I+ R+ e000)0" () + e ()

+ (%) 700000 = 7 (2) £ 00000 -

s {("g’) (x +1)8'(x) +m (%")2 9(x)} —0. (21

The transformed boundary conditions are

fEn =0 f-)= (%), o-n=1 (2

f(1y=0, 6(1)=0, (23)
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where the differentiation in Egs. (20) and (21) will
be with respect to the new variable x. Our technique
is accomplished by starting with the Chebyshev ap-
proximation for the highest order derivatives, "/ and
6", and generating approximations to the lower order
derivatives f”, f’, f, ¢', and 0 as follows: Setting
f" = o(x), and 8” = ((x) and then integrating we
obtain

100 = / $()dx + C (24)

f'x) = d(x)dxdx + Cf (x +1) + C, (25)
/1

o) = / / / S0 dxdxdx+

+of (XJ;UQ +ci(x+1)+cd, (26)

o' (x) = / COx)dx + CY, (27)

b(x) = / / CO0dydy + Cox +1) +CL. (28)

From the boundary conditions (22) and (23), we have

1 x
1 o0
cf = —5//¢>(x)dxdx7 cy = (%) ci =0,
1-1

1 x
1 1
cf=—5-3 [ [ctodxax cf=1.
2 2
“1-1
Therefore, we can give approximations to Eqgs. (20)
and (21) as follows:
=D thej+dl. fio) ="t é; +dl",
j=0 §=0
n
Y0 = 12¢;+dl?, (29)
j=0
=D GG +dl, 600 =) ¢ +dlt (30)
j=0 7=0
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for all i = 0(1)n, where

1(x; +1)?

l{j:b?j_i 9 b%gv df (Xz"‘l)(n;o)a
1
f1_ ;2 2 f1__ TNeo
l"_bij_i( Xi + )by, d; =50
1
12 = by — bij, di? =0,
P - I 12, df =1 (41
ij_ij_i(xl"_)ny i _g(Xz‘F )s
1
10 =bij — bfu, dflz—ﬁ,

and b?j = (xi — x;)bi; and b;; are the elements of

the matrix B as given in [25]. By using Egs. (29)
and (30), one can transform Egs. (20) and (21) to
the following system of nonlinear equations with the
highest derivatives:

_a(ZJ =0 1]<J+d9 (

(Zz ¢ +d‘“)
<Z>> &) @ o+l

-s[(F) 0+ (jE% l%— - d{2)+
H) (ot af)] =
[(”R“(Zl Cﬁda))Cﬂre(;lmgj dglfh
()l ) Gt t)-
(% )(Zl ¢J+df1)(zl G+ df) -
-5{(5) e+ (Zl )+

() (St + )] <o

This system is then solved with the use of Newton’s
iteration.

(31)

(32)

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 4



Effects of Variable Fluid Properties

4. Results and Discussion

The effect of the unsteadiness parameter S on the ve-
locity distribution is shown in Fig. 1. It is worth to
note that the velocity profile decreases with increase
in the value of unsteadiness parameter. The effect
of the unsteadiness parameter S on the temperature
can be seen from Fig. 2. The temperature decreases,
as S increases. This shows the important fact that
the rate of cooling is much faster for the higher val-
ues of unsteadiness parameter; whereas it may take
longer time of cooling for smaller values of unsteadi-
ness parameter. Figure 3 illustrates the effect of the
viscosity parameter a on the velocity profile. It can
be shown that the velocity decreases along the sur-
face with increase in the viscosity parameter. But the
temperature 6(n) increases with the viscosity param-
eter, as shown in Fig. 4. The effect of the thermal

0.8

061 $=0.8,1.0,1.2
0.4

021

o Ly
0 2 4 6 8

Fig. 1. Behavior of the velocity distribution for various values
of S
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Fig. 2. Behavior of the temperature distribution for various
values of S
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Fig. 3. Behavior of the velocity distribution for various values
of a
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Fig. 4. Behavior of the temperature distribution for various
values of «
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Fig. 5. Behavior of the temperature distribution for various
values of €
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Fig. 6. Behavior of the temperature distribution for various
values of R
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Fig. 7. Behavior of the temperature distribution for various
values of Pr
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Fig. 8. Behavior of the temperature distribution for various
values of r
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Fig. 9. Behavior of the temperature distribution for various
values of m

Variation of —f//(0) and —6’(0)
for various values of S, a, €, R,Pr,r, and m

S | « € R |Pr| r | m/|—=f"0)]| —6(0)
08102]02]|05]|07] 10| 1.0 | 1.42402 | 0.907794
1.0 (02|02 |05 |07] 10| 1.0 | 1.49170 | 0.956017
1.2 1021|0205 |07|10]| 10| 1.55672 | 1.00182
0.8]00]02]|05]|07] 10| 1.0 | 1.26104 | 0.919437
08]02]02]|05]|07| 10| 1.0 | 1.42402 | 0.907794
08]105|02]|05]|07] 10| 1.0 | 1.69893 | 0.889748
08]102]00]|05]|07] 10| 1.0 | 1.42582 | 0.990991
08102]02]|05]|07| 10| 1.0 | 1.42402 | 0.907794
08]02]05|05]|07| 10| 1.0 | 1.42175 | 0.811629
081]102]02]|00]07]|10| 10 | 1.42915 | 1.09841
08]02]02]|05]|07] 10| 1.0 | 1.42402 | 0.907794
08102]02]|20)|07|10| 10| 14162 | 0.636417
08]102]02]|05|10] 10| 10| 1.4325 0.97994
08(02]02]|05]|30]| 10| 1.0 | 1.44197 | 1.68237
08]102|02|05]|70]|10]| 1.0 | 1.46038 | 2.66888
08]02]02]|05]|07] 10| 1.0 | 1.42402 | 0.907794
08]102|02]|05]|07]|30]| 10| 143163 | 1.26733
08(02]02]|05]|07]| 50| 10 | 143755 | 1.57237
08]102]02]|05]|07] 10| 1.0 | 1.42402 | 0.907794
081]102]02]|05]|07]| 10| 30| 143555 | 1.34684
08102]02]|05]|07]| 10|50 | 1.4423 1.66032

conductivity parameter € on the temperature pro-
file 6 is presented in Fig. 5. From this figure, it
can be seen that the temperature distribution in-
creases with the thermal conductivity parameter.
Figure 6 represents the effect of the radiation pa-
rameter R on the dimensionless temperature. It is
clear that the temperature increases with the radi-
ation parameter. So, it can be seen that the ther-
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mal boundary layer increases with the radiation
parameter R. This result agrees with Elbashbeshy
and Dimian [17] in their special case (wedge an-
gle is zero). The effect of the Prandtl number on
the temperature distribution is demonstrated in
Fig. 7. It can be observed that the temperature pro-
files decrease for the increasing values of Prandtl
number. This is in agreement with the physical
fact that the thermal boundary layer thickness de-
creases with increase of Pr. The influence of the
space index r on temperature variations is shown
in Fig. 8, which demonstrates that the temperature
raises to a higher value, as S decreases. This cor-
responds to the more strong intensity of a heat
flux specified at the surface. Likewise, the temper-
ature turns to a lower value, as m increases, which
is observed from Fig. 9. Table presents the values
of skin-friction coefficient and local Nusselt num-
ber for various values of the parameters governing
the flow and the heat transfer. Based on this ta-
ble, we note that the skin friction coefficient and
the local Nusselt number increase with the un-
steadiness parameter, space index, time index, and
Prandtl number. Likewise, the local Nusselt number
decreases with increase of the viscosity parameter,
thermal conductivity parameter, and radiation pa-
rameter. Finally, the skin-friction coefficient is found
to be increased with the viscosity parameter, but the
reverse is true for the variable thermal conductivity
parameter.

5. Conclusions

Numerical solutions have been obtained to study the
effect of variable fluid properties on the flow and the
heat transfer in the laminar flow of an incompress-
ible fluid past an unsteady stretching surface in the
presence of thermal radiation. The obtained similar-
ity ordinary differential equations are solved numeri-
cally by using the Chebyshev spectral method. It is
found that

1. The skin friction coeflicient increases with the
unsteadiness parameter, viscosity parameter, space
and time indices, and Prandtl number, but it de-
creases, as the thermal conductivity parameter and
the radiation parameter decrease.

2. The Nusselt number coefficient increases with
the unsteadiness parameter, Prandtl number, and
space and time indices, but it decreases, as the viscos-
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ity parameter, thermal conductivity parameter and
radiation parameter decrease.

3. The dimensionless velocity and the dimension-
less temperature decrease, as unsteadiness parameter
increases.

4. The dimensionless velocity and the dimension-
less temperature increase, as the radiation parameter
increases, but the effect on the velocity is very weak.

1. E.M. Sparrow and J.I. Gregg, ASME J. Heat Transfer 81,
13 (1959).
2. B.S. Dandapat and P.C. Ray, Int. J. Non-Linear Mech. 25,
569 (1990).
3. B.S. Dandapat and P.C. Ray, J. Phys. D. Appl. Phys. 27,
2041 (1994).
4. M. E. Ali, Warme- und Stoff. 29, 227 (1994).
5. L.J. Crane, Z. Angew Math. Phys. 21, 645 (1970).
6. P.S. Gupta and A.S. Gupta, Can. J. Chem. Eng. 55, 744
(1977).
7. F.K. Tsou, E.M. Sparrow, and R.J. Goldstein, Int. J. Heat
Mass Transfer 10, 219 (1967).
8. V.M. Soundalgekar and T.V. Ramana Murty, Warme- und
Stoff. 14, 91 (1980).
9. L.J. Grubka and K.M. Bobba, AME J. Heat Transfer 107,
248 (1985).
10. B.C. Sakiadis, A.I.Ch.E. Journ. 7, 26 (1961).
11. E. Magyari and B. Keller, J. Phys. D. Appl. Phys. 32, 2876
(1999).
12. W.H.H. Banks, J. Mec. Theor. Appl. 2, 375 (1983).
13. M.E. Ali, Int. J. Heat Fluid Flow 16, 280 (1995).
14. E.M. Abo-Eldahab and M.S. Elgendy, Phys. Scripta 62,
321 (2000).
15. E.M.A. Elbashbeshy and M.A.A. Bazid, Appl. Math.
Comp. 138, 239 (2003).
16. H.I. Andersson, J.B. Aarseth, and B.S. Dandapat, Int. J.
Heat Mass Transfer 43, 69 (2000).
17. E.M.A. Elbashbeshy and M.F. Dimian, J. Appl. Math. and
Comput. 132, 445 (2002).
18. M.A. Hassain, M.A. Alin, and D.A.S. Rees, Int. J. Heat
Mass Transfer 42, 181 (1999).
19. E.F. Elshehawey, M.A. Kamel, and F.N. Ibrahim, Engin.
Trans. (Polish Acad. Sci.) 33, 299 (1985).
20. E.M.A. Elbashbeshy and D.A. Aldawody, Int. J. of Non-
linear Science 9, 448 (2010).
21. R.C. Bataller, Int. J. Heat Mass Transfer 50, 3152 (2007).
22. M.A.A. Mahmoud and A.M. Megahed, Can. J. Phys. 87,
1065 (2009).
23. A. Raptis, Int. J. Heat Mass Transfer 41, 2865 (1998).
24. A. Raptis, Int. Comm. Heat Mass Transfer 26, 889 (1999).
25. S.E. El-Gendi, Computer J. 12, 282 (1969).
Received 13.05.12

351



M.F. Dimian, A.M. Megahed

M. D. Jlimian, A.M. Mezaxed

BIIJIMB 3MIHHIX BJIACTHUBOCTEN

PIIVHU HA HECTAIIOHAPHY

TEIIJIOIIEPEIAYY HAT PO3TAXKHOIO
IIOBEPXHEIO B ITPUCYTHOCTI

TEIIJIOBOI'O BUITPOMIHKOBAHHA

PeszowMme

JlocsiizKeHO BIUIMB BUIIPOMIHIOBaHHSI HA HECTAIlIOHAPHUN I10-
TiK HaJ, PO3TSKHOIO IOBEPXHEIO 3 MIHINBOIO B’SI3KICTIO 1 3MiH-
HOIO TeIJIONpOoBigHicTIO. Bianosiani Bu3HaYa bHI PIBHAHHSA
OTPUMAaHO 3 BUKODHMCTAHHSIM BIiJIIIOBIJHUX II€PETBOPEHH 1 IO-
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TiM BUPpIIIEeH] crieKTpajbHuM MeTojoM HeburnesBa. Ha rpadi-
KaxX HaBeJIEeHO Pe3yJ/IbTaTh PO3PaxyHKiB npodisis 6e3po3mipHOT
LIBUAKOCTI Ta 6e3po3MipHOI TeMIepaTypH [JjIst PISHUX 3HAUEHD
napameTrpa BUIIPOMIHIOBaHHsI, B’ sSI3KOCTI, TEIJIONPOBIIHOCTI, iH-
JeKCiB IpocTopy-4acy, uynucia IIpannTis i mapamerpa Hecrario-
"apHocTti. [TokazaHo, 1110 CKiH-TepTs 1 MBUAKICTH TeIjIonepeia-
49i 3MEHIIYIOThC i3 3MeHIIeHHsM 4nciaa [Ipanaris i napame-
Tpa HECTAI[JOHAPHOCTI IIPU 3POCTAHHI IIapaMeTpa BHIIPOMIHIO-
BaHHsA. Be3dpo3mipHa TeMneparypa 3pocTae i3 301IbIIIeHHsIM T1a-
paMeTpa BHIPOMIHIOBaHHS i B’SI3KOCTi, ajie 3MEHIIIYEThCS IPHU
301/IbINIEHH] iH/IEKCIB IPOCTOPY-4acy.
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