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REGIME OF DROPLET EVAPORATION

A consistent model describing the evaporation of a spherical droplet has been developed. Ex-
pressions for the total flur and production of entropy have been obtained in the case of ideal
solution with regard for the concentration dependence of the diffusion coefficient. The results
obtained allow the stabilizing effect for the entropy production and fluz to be revealed even in
the case where only the entropy contributions to thermodynamic potentials at the mizing are

taken into account.
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1. Introduction

The development of a consistent thermodynamic the-
ory that could describe the process of diffusion-
controlled evaporation of a spherical droplet proceed-
ing from the basic ideas of the thermodynamics of
nonequilibrium processes — in particular, with regard
for the concentration dependence of the diffusion co-
efficient of an evaporated material in the gaseous envi-
ronment — is a challenging problem from both the ex-
perimental and theoretical viewpoints. Moreover, due
to a rapid progress in nanotechnologies attained for
the last years, it is of interest to study the evaporation
of liquids in carbon nanotubes. Owing to the surface
tension, the free surface of such liquids in nanotubes
has a curved shape, so that this surface can be consid-
ered in the first approximation as a hemisphere, with
the liquid being evaporated from it. The hemisphere
radius is governed not only by the nanotube diameter,
but also by the surface tension coefficient of a liquid
in the nanotube. In turn, for characteristic sizes of
nanotubes, this coefficient substantially depends on
the nanotube diameter. Therefore, while considering
the evaporation processes under those conditions, it is
pertinent to consider a variation of the droplet radius
induced by surface tension forces. When calculating
the thermodynamic parameters of the system, it is
also important to take a nonuniformity of the tem-
perature and the pressure into consideration.
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2. Entropy Production
in the Diffusion-Driven Regime
of Droplet Evaporation

Consider the following model. A spherical droplet
of radius ry is surrounded by the gaseous medium,
a background gas that is insoluble in the droplet
substance (in other words, the background gas flux
across the droplet surface equals zero). We suppose
that, in the course of evaporation, the droplet re-
mains to be a ball with fixed radius, and there
are no external fields and chemical reactions in
the system. In some time, owing to the evapora-
tion process, the gas around the droplet will be
a mixture of the background gas (we denote its
concentration by z2) and the gas created by the
droplet substance (the concentration of this gas is
denoted by z1). The evaporation process is consid-
ered to be stationary. Let the droplet be maintained
at a constant temperature 7,, by a heat source lo-
cated inside, and let there be no external factors
that would create temperature gradients in the sys-
tem. We consider the case where the evaporation
process does not affect the pressure in the system:;
in other words, we suppose that the gradient of
the total substance density in the system equals
zero. The formulated problem evidently has a spher-
ical symmetry. Therefore, we will consider it in a
spherical coordinate system with the origin at the
droplet center. Then, the system of equations that
describe the process of diffusion-controlled evapora-
tion from the droplet can be represented as Fick’s
law, in which the concentration gradient is taken
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into account:
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(1)

Here, J; is the evaporated substance flux; L; and
Lo are the kinetic coefficients [1] of the evaporated
substance and the background gas, respectively; and
w1 and po are the corresponding chemical potentials.

Let the concentration of evaporated substance be
maintained at a stationary level equal to z,, near
the droplet surface and to z,, at a certain distance
ro from the droplet center, which is large enough in
comparison with xz,,. Then, the following boundary
conditions can be written down for the evaporated
substance concentration:

z1(r1) =z, 1(r2) = T4, (2)

For the temperature, the boundary conditions are for-
mally expressed in the form

T(r) =T, T(re)="1Tz, (3)

where T3 is a temperature, which is not a parameter
of the problem, but a quantity to be determined from
the solution of the system of equations.

The system of equations (1) can be presented as
two differential equations. One of them relates the
temperature gradient in the system to the gradient of
the evaporated substance concentration [1],

d(El
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dr L

and the other relates the gradient of the evaporated
substance concentration to the substance flux,

L1 8/11 8,u2 %l; 'ul d.l?l
=27 o T om s e | )
! Yor =T

Using the expression p; = p0 + kg7 In(~;z;), where
v(T, P, z1, 22, ...,x5) is the so-called activity coef-
ficient, for the chemical potential of the solution,
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Egs. (4) and (5) take the final form

1

T In

9T _ oy o g dn (6)
dr —520 — B> + kBT 7 nyo dr’

1 8 dIl

J1 = —2kgL — | ——

! B { * 83@1} dr

1 0]
—2kgL —
B 1|:1—.’L‘1+8.1’1:|X

—s10 — 20 4 fpT 21
S T

auzo + kBTaTan dr

—890 —

By squaring the expression for the flux, we obtain the
following formula for the entropy production:

dr\2 [ 1 1o}
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where s; is the specific entropy (per particle) in the
pure i-th component.

Equations (6), (7), and (8) together with conditions
(2) and (3) allow the spatial profiles of the evaporated
substance concentration and the temperature to be
plotted, and the substance flux J; and the entropy
production o to be determined. For this purpose,
the equation for the gas mixture around the droplet
has evidently to be specified. Note that the temper-
ature gradient in the system is not supported from
outside. Nevertheless, despite that fact and owing to
the droplet evaporation, the gradient of concentra-
tion % and, as a result, the gradient of temperature
emerge across the system. The latter can be deter-
mined with the help of expression (4). The existence
of such a gradient is confirmed by modern experimen-
tal data on the droplet evaporation [2].

3. Entropy Production
in the Diffusion-Controlled Regime of Droplet
Evaporation. The Case of Ideal Gas

Consider the case where the gas mixture consisting
of the background and evaporated gases is ideal. The
contribution of entropy factors to thermodynamic po-
tentials at the mixing dominates over those made by
energy ones, so that the latter can be neglected.
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In view of the formula p; = pio+ +ksT In(1 — ;)
for the chemical potential of the ideal gas (i.e. the
activity coefficient v = 1), Eq. (7) can be presented
in the form [3]

1 1 x
Ji = —2L1kg Ll + xl] d—;. (9)
Note that, while determining the flux in the case of
a mixture of ideal gases, there is no need to calculate
the spatial distribution of the temperature over the
medium that surrounds the droplet. The solution of
Eq. (9) with regard for formal boundary conditions
(2) and (3) looks like

rrz 1 InEre _ mﬂ
ry — 1y 12 Ty 1—z,_,

Ji=-2L1kp (10)
It is important to emphasize that, according to this
expression obtained in the approximation of the mix-
ture of ideal gases, the evaporated substance flux does
not depend on the ratios between such gas parameters
as their molar masses or partial volumes [4].

In Fig. 1, the dependences of the normalized flux
f%‘é L %13 on the difference between the given
concentrations z,, and z,, are plotted for various
Zr,. The results obtained testify to a considerable
nonlinearity in the flux dependence on the quantity
Zy, —Tr,. The analysis of the presented results shows
that an almost linear dependence of the flux is ob-
served at small z,, — x,, values, but the dependence
Ji(zy, — xr,) substantially deviates from the linear
one if the difference x,, — 2, grows further, and the
stabilizing effect takes place, i.e. the flux becomes
weaker dependent on the difference between the con-
centrations at the system boundaries.

For the entropy production in the case concerned,
we obtain the expression

rra \° 1 x 1-2,,1°
= (2kp)*L — [In== —In—"2| . (11
7 = (2ks) 1(r2—r1> r [nmrl nl—xrl} (11)

In Fig. 2, the dependences of the normalized entropy

2
m (""’Z‘l_r';l) 7"4 on the differ-

ence between the given concentrations x,, and z,,
are plotted for various z,,. The results point to a
considerable deviation of the dependence concerned
from the square law. We should emphasize that the
entropy production in the approximation of a mix-
ture of ideal gases is also independent of the ratios

production ¢, =

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 2

5,0
4,5
4,0
3,54 e . -
3,0 -
525 1 - 1

2,04 <

0,0 ' 0,2 ' 0.4 ' 06
X -x
rl r2
J
— 35T X
X %TQ on the difference z,, — ., for various z,, = 0.1 (1),
0.05 (2), and 0.01 (3). z,, = 0.7

Fig. 1. Dependences of the normalized flux J, =

26

24

22

0,0 0,2 0.4 0.6

Fig. 2. Dependences of the normalized entropy production
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between such parameters of the gases as their molar
masses or partial volumes.

Hence, even considering only the entropy contribu-
tions to the thermodynamic potentials at the mixing
already gives rise to considerable deviations of the
calculated results from the classical ones obtained in
the framework of the approximation of a constant dif-
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fusion coefficient. However, if the droplet evaporation
is simulated, the consideration of the surrounding gas
as a mixture of ideal gases does not allow the ther-
modynamic and molecular kinetic features of mixture
components to be taken into account correctly.

Moreover, the magnitudes of both the diffusion flux
(see expression (10)) and the entropy production (see
expression (11)) depend on the droplet radius. The
latter can be determined by the surface tension coef-
ficient, which, in turn, depends on the system size in
the case of nano-scaled systems.

4. Conclusions

Provided that the flux of a background gas is absent,
the flux of the evaporated substance is compensated
by the emergence of a temperature gradient in the
system. In the course of droplet evaporation, the con-
siderable effect of a flux stabilization manifests itself
in the system even if only the entropy contributions
to a variation of the thermodynamic potentials at the
mixing are taken into account. As a result, the de-
pendence of the evaporated substance flux on the con-
centration acquires a substantially nonlinear form. If
only the entropy contributions to a variation of the
thermodynamic potentials at the mixing are consid-
ered, the entropy production at the droplet evapora-
tion becomes much less sensitive to a variation of the
concentration gradient the diffusing substance.
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BUPOBHUILITBO EHTPOIIII B IN®Y3IMHOMY
PEXKVIMI BUITAPOBYBAHHS KPAILJIMHU

Peszmowme

ITobOynoBaHO HecyllepedIMBY MOJIEJIb [IJIsI BUIIAPOBYBAHHS Cde-
puuHOi Kpamauan. OTpuUMaHO BHUpa3 JJjIsl CyMapHOI'O MOTOKY
i BHpPOOHHUIITBA €HTPOMIl y BHNAJKY iJ€ajbHOrO pPO3UHHY, 3
ypaxyBaHHsSIM KOHIIEHTPAIIHOI 3aJ/ie’KHOCTI KoedillienTa gu-
dyszil. OTrpuMaHi pe3ynbTaTH SO3BOJISIOTH BUSIBUTH CTabLIi3y-
0unii edeKT 3a IIOTOKOM HaBiTh IPU BPaxyBaHHI BUKJIIOYUHO
€HTPONINHUX BHECKIB y 3MiHYy TepMOJMHAMIYHMX ITOTEHILiaJIiB
miz Jac 3MilryBaHHH.
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