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A STRONGLY NONEQUILIBRIUM STATE IN MAGNETIC
NANODOTS AT HIGH PUMPING LEVELS

A theoretical model describing a strongly excited magnon system in a magnetic nanodot has
been developed. In this system, despite the discreteness of its spectrum, the parametric pro-
cesses similar to those occurring in massive specimens take place, in particular, the processes
of Suhl instability. Owing to a slight mismatch between the frequencies of modes that are en-
gaged in the indicated processes, the threshold of the latter becomes somewhat higher and a
non-resonant parametric interaction takes place. It is shown that, at certain power levels in
the system, the processes similar to those of the so-called kinetic instability observed in massive
specimens can emerge to excite the lowest-frequency mode of a nanoelement.
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1. Introduction

Interest in the nonlinear dynamics of magnetic nanos-
tructures has considerably grown recently. These
structures can be used for the creation of magnetic
memory [1, 2], and they are rather promising. Very
interesting is the issue concerning the behavior of such
systems at large angles of the magnetic precession,
which means a transition into a strongly nonlinear
mode. The behavior observed at that has a consider-
ably nonlinear character, so that the creation of cor-
responding theoretical models is needed.

First of all, such systems reveal the so-called
foldover effect [3, 4], which is a nonlinear process of
the lowest order. It consists in the variation of the
magnetization owing to the growth of the uniform
magnetization precession angle and results in a dis-
tortion of resonance curves in the system up to the
onset of the bistability [5]. A theoretical explanation
of those effects was made for the first time by Suhl
[6], who took into account the interaction between the
uniform precession and spin waves in the system. The
next step consisted in that not only the interaction of
excited spin waves with the uniform precession but
also with one another was taken into consideration
[7]. This stage finished the construction of the com-
plete theory of nonlinear ferromagnetic resonance.

A characteristic feature of magnetic elements is a
reconstruction of their spectrum induced by a reduc-
tion of their dimensions. First, the spectrum bot-
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tom frequency substantially grows in comparison with
that for thick films owing to the increase of the role of
exchange effects with a reduction of the element thick-
ness down to the submicron scale. Second, in nan-
odots with linear dimension R, all spin-wave excita-
tions with 0 < k < k., = 1/R disappear (see Fig. 1),
and only the uniform mode with k = 0 survives.

The discretization of the spectrum is another fea-
ture of submicron-sized nanodots. Instead of continu-
ous sets of frequencies and wave vectors, which are ob-
served in the case of a continuous film, there emerges
a discrete set of modes with discrete frequencies and
corresponding wave numbers [8]. Therefore, it is rea-
sonable to talk about the excitation of separate modes
rather than spin waves in magnetic nanodots. To de-
termine the frequencies of those modes is rather a
complicated problem in the general case, because it
is necessary to consider simultaneously the action of
demagnetizing factors of the specimen, as well as the
boundary and exchange effects. A model for the cal-
culation of mode frequencies was developed in work
[8]. The results of this work will be used below.

At present, the experiments aimed at studying the
nonlinear dynamics of magnetic nanodots are mainly
carried out with permalloy. A characteristic feature
of this material is a substantial width of the ferromag-
netic resonance line, AH = 50-+60 Oe, in comparison
with that for yttrium iron garnet (YIG). However,
there is no theoretical model which would describe
the nonlinear dynamics of magnetization in such sys-
tems. As a rule, the micromagnetic simulation with
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Fig. 1. Illustration of a spin-wave spectrum modification at
changing from a continuous film (@) to a nanodot (b). The
points correspond to discrete modes
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Fig. 2. Theoretically calculated spectrum of a circular nan-
odot with the radius R = 250 nm. The frequencies of uni-
form, wp, non-uniform, wy, and the lowest, wpottom, modes are
indicated

the use of specialized software packages is usually ap-
plied.

The aim of this work is to develop a theoretical
model on the basis of experimental results of work [9].
The model was intended to describe the nonlinear dy-
namics of magnetization in permalloy nanodots with
regard for the following features: the nanodot spec-
trum becomes discrete, the frequency corresponding
to the spectrum bottom grows as a consequence of
exchange effects, and all long-wave excitations disap-
pear but the uniform one [10].

2. Theoretical Model

2.1. Spin-wave spectrum of a nanodot

Before analyzing the processes that take place in
the system, it is necessary to calculate the spec-
trum of a nanodot used in the experiment in work
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[9]. In the cited work, the experiments were car-
ried out with permalloy nanodots of elliptic cross-
section 500 x 250 nm? in dimensions and the thick-
ness t = 10 nm. The uniform mode frequency in
such nanodots can be calculated using the Kittel
formula [11]

wg =2 (Heo+(Ny—N2)Mo) (He—o+ (N, — N,) M),
(1)

where 7 is the gyromagnetic ratio, H.y the magni-
tude of dc magnetic biasing field, M, the saturation
magnetization, and N., Ny, and N, are the demag-
netizing factors. For an elliptic cylinder, those fac-
tors were found in work [12|. Using the results ob-
tained in that work, we calculate that, in our case,
Ng/4m = 0.06, N,/4m = 0.92, and N./4r = 0.02.
Substituting the values for the specimen magneti-
zation 47My = 9500 G and the external magnetic
field Heog = 900 Oe, we obtain the uniform mode
frequency wg/(2m) = 10.1 GHz. This value is only
4% larger than the experimental one, woexp/(27) =
= 9.73 GHz [9]. To calculate the higher modes of
a magnetic nanodot is a more complicated problem.
From the literature data, it is known that several
types of oscillations can be distinguished in such a
system in accordance with mechanisms that play a
crucial role in that or another case [8]. We will
confine the consideration to only one sort of modes,
namely, quasibulk backward (BA) ones from work
[8]. The calculations were carried out for the same
parameters as those used while calculating the uni-
form mode. The results of calculations are depic-
ted in Fig. 2.

The figure demonstrates that, in general, the ob-
tained frequencies of characteristic modes in the sys-
tem are in good agreement with those detected in
the experiment [9]; in particular, the frequency of the
lowest mode in the experiment was wy o, ../(27) =
= 8.12 GHz, and the frequency of uniform mode was
woP/(2m) = 9.73 GHz. It should be noted that the
mismatches between the calculated and experimen-
tally registered frequencies can be explained by the
fact that the model of work [8] is suitable only to cal-
culate the spectra of nanodots possessing the form of
a circular cylinder. Hence, instead of the spectrum
of elliptic cylinders that was studied experimentally,
we calculated the spectrum for circular nanodots with
the radius R = 250 nm.
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2.2. Excitation of uniform
and non-uniform modes

The first mode that can be excited in the system is
the so-called uniform mode (or, more precisely, the
quasiuniform one, because the matter concerns nan-
odots) if the arrangement geometry of an antenna and
a specimen in the magnetic biasing field allows the
processes of so-called perpendicular pumping |7, 11]
to take place. Usually this geometry of the system
is realized in experiments. When the power of the
external electromagnetic pumping increases, the am-
plitude of the uniform mode grows. Next, there arise
processes in the system that are analogous to the so-
called Suhl instability in massive specimens [7, 11].
Provided that, besides the uniform mode with the
frequency wg, there is also a non-uniform mode w,,
which is degenerate with the former by frequency, the
latter can be excited owing to the processes described
by the formula

In the case of massive specimens, this process is called
the second-order Suhl instability. It should be noted
that, owing to the spectrum discreteness, the frequen-
cies of the uniform and non-uniform modes in nan-
odots do not coincide in the general case, i.e. none of
the frequencies of other modes equals to that of the
uniform mode. Neverhless in this case, the indicated
process does take place anyway, however with highest
threshold: the mode, whose frequency is the nearest
to that of the uniform mode, wy, is excited firstly. In
this case, it is worth talking about the non-resonant
parametric interaction described by the formula

2w = wy, + wp + 29, (3)

where wy —w, = Q is the frequency detuning between
the uniform and non-uniform modes. Therefore, if the
external pumping exceeds a certain level, two modes—
the uniform, wg, and non-uniform, w,,, ones—turn out
to be excited in the system. In our case, the mode
with n = 4 (wg = 9.74 GHz, see Fig. 2) is the nearest
by frequency to the uniform mode. The interaction
between the uniform and non-uniform modes mani-
fests itself in a distortion of resonance curves, and the
explanation to this effect was given in the framework
of the so-called theory of nonlinear ferromagnetic res-
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Fig. 3. Resonance curve in the nonlinear mode. The solid
curve denotes the results of calculation in the framework of
nonlinear resonance theory. The points exhibit the experimen-
tal data [9]. S =2 x 10712 cm3/s and hext /It = 4.3

onance [7]. The governing equations are

0
a—I—Fo—‘ri (wo—wp+2Too|a02+2 %:T()k|ak|2>] X

xag + iYhext + 1 [Z Sokai] aj =0
k

ot -
aik = O, (4)

7] )
i—|—Fk +1 ((,Uk —wp+2TOk|a0|2+2 Z Tkk’ |ak/ |2>] X

Xap + 1 S()ka(z)—l— E S’kk/ak/afk,

k'

where ag and ai(n = 4) are the amplitudes of the
uniform and non-uniform modes, respectively; Tgrs
and Sigs are the nonlinearity parameters; and h is
the amplitude of the external magnetic field. Using
Eqgs. (4), we calculated the resonance curve of the
system, i.e. the dependence of the uniform mode am-
plitude ag on the frequency detuning of the external rf
magnetic field, and compared it with that registered
in the experiment [9]. The results of comparison are
shown in Fig. 3. One can see a good correspondence
between the theoretically calculated and experimen-
tally measured resonance curves. The amplitude of
the rf magnetic field is normalized by the excitation
threshold for the non-uniform mode, hy;.

2.3. Behavior of the system
in a strongly nonlinear regime

Hence, if a definite power level of the external electro-
magnetic pumping into the system is exceeded, the
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Fig. 4. Experimental data (points) and the results of cor-
responding theoretical calculations (curves) for (a) the lowest
mode frequency of a nanodot [9] and (b) the bottom of the
thin-film spin-wave spectrum [13]

uniform mode with the frequency wy and the non-
uniform one with the frequency w4 turn out excited.
The further increase of the pumping power gives rise
to that the system reveals nonlinear features of higher
orders. The amplitude of the non-uniform mode with
the frequency wy becomes so large that this mode
serves as a pump for other modes in the system. In
particular, the processes described by the relation

wo + Wo = Wy, + Wiy (5)

are responsible for the energy redistribution in the
system and the excitation of higher modes with the
frequencies w,, and w,,. Here, we have to emphasize
again that process (5) has an analog in massive spec-
imens; it is called the kinetic instability [13]. The
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key feature of the kinetic instability processes is the
fact that the mode excited owing to processes (5) cor-
responds to the mode with the lowest value of dis-
sipation parameter in the system. According to T.
Gilbert, owing to the frequency-dependent damping,
it is the lowest mode in the spin-wave spectrum. In
our case, it is the mode with the frequency wpottom
(n =1, see Fig. 2).

However, it is impossible to apply the results of
work [13] directly in our case. First, the cited work
was devoted to the research of the magnetic dynamics
in YIG films, the latter being substantially different
from magnetic nanodots possessing a discrete spec-
trum. Second, in work [13], the kinetic instability was
studied in the so-called geometry of parallel pumping
[11], which does not correspond to ours. Therefore,
the extension of the available kinetic instability the-
ory should consider the discrete character of modes of
the system (it is the feature induced by nanodots) and
the substantially different mechanism of non-uniform
mode excitation; namely, as was mentioned above, it
is excited through uniform mode not by external rf
filed directly.

A convincing argument in favor of the kinetic in-
stability processes is given by a comparison between
the results of works [9] and [13] concerning the ex-
cited mode frequency (see Fig. 4). In both cases, the
lowest mode of the system was excited. One can see
that, in work [9], the excited mode frequency cor-
responds to the bottom of the spin-wave spectrum
(Fig. 4,a). The experimental dependence of the fre-
quency of electromagnetic radiation emitted from the
specimen on the applied magnetic field, which was
obtained in work [13], is exhibited in Fig. 4,b. The
points in both panels correspond to the experimen-
tal data, and the solid curves to theoretically calcu-
lated dependences for the frequency of the spin-wave
spectrum bottom taken from those works. Hence, ir-
respective of different materials used in experiments
in both works, we may assert with confidence that
the process of kinetic instability with the excitation
of the lowest system mode takes place in both cases.

At last, another important difference between the
processes in nanodots and films consists in that a def-
inite group of spin waves is excited simultaneously in
films and, as was shown earlier, only separate modes
are excited in nanodots.

For the theoretical description of the excited mag-
netic system in a nanodot, we will use an analog of

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 2



A Strongly Nonequilibrium State

equations from the so-called S-theory [7], by extend-
ing the scope of its application onto the case of nan-
odots. As was already marked above, the main fea-
ture of this system is the absence of plane spin waves
and the presence of the spectrum with a discrete col-
lection of oscillations with corresponding frequencies
and wave vectors.

Consider the evolution of the following three modes
in this system. These are (i) the uniform mode with
the frequency wy; it is excited by the external mag-
netic field, and its amplitude equals ag; (ii) the non-
uniform mode a; with the frequency wy; and (iii) the
mode excited at high-power levels as a result of pro-
cesses (5); it corresponds to the spectrum bottom ay
with the frequency wpottom (see Fig. 2).

Now we can write down the governing system of
equations for the evolution of the mode amplitudes
a; taking Eq. (4) as the basis and making allowance
for the action of an external electromagnetic pumping
and the kinetic processes in the system. The system
of equations looks like

0 , 2
E'ﬁ‘l—‘o—‘rQZZTAaH X

Xag + iYhext + iSOlaﬁaé =0,

0
a+F4—z'sz+2z'§i::n-\ai|2 x
Xay + 1 (501(1(2) + 511031 + 5120'%) aé*l =0,

X

0 ) 2
&+F1+2zgjn\ai|

xXay +1 (Snai + Slga%) CLT =0.

Here, T' and S are the nonlinearity parameters, and
hext is the amplitude of the external electromag-
netic field.

3. Discussion of the Results Obtained

The system of equations (6) was solved numerically
for the following model parameters: the wave damp-
ing parameters I'g4/27r = 60 MHz and I'1/27r =
= 50 MHz (the mode corresponding to the spec-
trum bottom has the lowest damping parameter),
the nonlinearity parameter S = 2 x 10712 cm?3 /s [7],
T = —1.435, and the pump duration 7, = 100 ns [9].
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Fig. 5. Dependence of the uniform mode amplitude on the
pump power P/P.; in the nonlinear regime. The solid curve
demonstrates the calculation results for the system of equations
(6); the points correspond to experimental data of work [9]

We also selected the following initial conditions:

ao(O) = a1(0) = GQ(O) =14/ %fnto, (7)

with n; = 3 x 10'3 em~3. In Fig. 5, the dependence
of the uniform mode amplitude on the pump power
is depicted. From the figure, one can see that, at
the time moment when the mode corresponding to
the spectrum bottom is excited, the amplitude of the
uniform mode decreases in a step-like manner owing
to processes (5).

Consider now the frequency shift of the lowest
mode and its dependence on the pump power. If the
level of an external electromagnetic pumping is high,
a change in the magnetization of the system has to
be taken into account. Then the lowest-mode fre-
quency decreases, as the pump power grows, owing
to the magnetization reduction. At the same time,
the frequency of the excited uniform mode is rigidly
linked to the frequency of the external exciting field
and remains constant.

It is worth noticing that the ratio between the
thresholds of the indicated nonlinearities, predicted
theoretically and observed experimentally, is smaller
approximately by 20%. This fact can be explained
by the inaccuracy of the values used for mode fre-
quencies while calculating the spectrum, as well as
the values of dissipation parameters of various modes
in a nanoelement.
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4. Conclusions

To summarize, we have considered the processes that
are running in the magnon system of a magnetic nan-
odot at high levels of the external electromagnetic
pumping. The system concerned demonstrates the
key features inherent to massive specimens. First of
all, the external high-frequency ac magnetic field ex-
cites the uniform mode. Non-resonant processes of
the form (2) are an analog of the Suhl instability; they
give rise to the excitation of a non-uniform mode, the
frequency of which can differ from that of the uni-
form mode. As a result, the threshold of the indi-
cated process increases. When the pump power and,
therefore, the amplitude of the non-uniform mode
grow, the lowest mode can be excited by means of
the processes of type (5), which are counterparts of
the kinetic instability occurring in massive specimens
[13]. The results of theoretical calculations were com-
pared with the available experimental data obtained
at studying the nonlinear high-frequency dynamics of
magnetic nanodots. A good agreement between the
theory and the experiment was obtained. The results
of this work can be important for the analysis of the
magnetic dynamics in submicron-sized nanodots, as
well as devices on their basis.
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I'A. Meaxos, /I.B. Caobodsamiox

CUJIbHO HEPIBHOBAXKHUI CTAH B MATHITHUX
HAHOTOYKAX ITPV BUCOKUX PIBHAX HAKAYKI

Peszmowme

ITo6ynoBaHO TEOPETHIHY MOZEIb, IO OIUCYE CUIILHO 30y I2KEHY
MarHOHHY CHCTEMY MAarHiTHOI HAHOTOYKHU. B Takux cucremax,
HE3BaXKalo4M Ha JUCKDPETHICTH CIEKTpPa, MaloTh Miclle napa-
METPHUYHI IIPOIleCH, aHAJIOTIYHI CYIiJIBHHM 3pa3KaM, 30KpeMa
rporiecu CyIiBCcbKol HecTifiKocTi. BHacmaiok HediTKoro 30iran-
HSI 9ACTOT MOJI, 110 GEPYTh y4acTh Y BKA3aHUX IMPOIECAx MOPir
OCTaHHIX JIEIO 3POCTAE 1 Ma€e MicIle Hepe30HAHCHA apaMeTpPHU-
gHa B3aemozist. [lokazaHo, 1110 Ipy MEBHUX PIBHSX MTOTY>KHOCTL
B CHCTe€Mi MOXKYTb PO3BUBATHUCS IIPOIIECH, AHAJIOTIYHI IpoIe-
caM TakK 3BaHOI KiHETHYHOI HECTIMKOCTi B CYyI[IJIbHUX 3pa3Kax,
SKI TPU3BOAATH 0 30y/2KEHHsI HAWHUKYOI 110 YacTOTI MOIM
HaHOEJIEMEHTA.
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