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We present microscopic calculations of the absorption spectra for GaN/AlxGa1−xN quantum
well systems. Whereas the quantum well structures with the parabolic law of dispersion exhibit
the usual bleaching of an exciton resonance without shifting a spectral position, the significant
red-shift of an exciton peak is found with increasing the electron-hole gas density for a wurtzite
quantum well. The energy of the exciton resonance for a wurtzite quantum well is found. The
obtained results can be explained by the influence of the valence band structure on quantum
confinement effects. The optical gain spectrum in the Hartree–Fock approximation and the
Sommerfeld enhancement are calculated. A red shift of the gain spectrum in the Hartree–Fock
approximation with respect to the Hartree gain spectrum is found.
K e yw o r d s: Hartree–Fock approximation, electron-hole pair, wurtzite quantum well,
Coulomb effects, lasers

1. Introduction

The physical properties of wide bandgap group-III
quantum well systems are under investigation due to
their application to light emitters and semiconduc-
tor lasers in the ultraviolet, blue, and green wave-
length regions. Ultraviolet light-emitting diodes and
lasers have recently obtained considerations due to
applications to the compact biological detection sys-
tems, analytical devices, and medical diagnostics. A
number of light-emitting diodes and laser diodes have
been demonstrated [1, 2]. However, these structures
are in the developmental stage, and there are many
questions with respect to the performance and device
configurations.

Realizing the deep-ultraviolet semiconductor-based
light-emitting diodes provides light sources for vari-
ous applications, for instance to the biological detec-
tion and the data storage. Although such devices ba-
sically need a AlxGa1−xN-based quantum well with
high Al contents, their fundamental optical proper-
ties remain under discussion. It has been proved ex-
perimentally that the surface emission from [0001]-
oriented AlxGa1−xN is quite weak because of the pre-
dominant optical polarization along the [0001] c di-
rection [3–5]. The explanation of these effects may
be found from the difference of structures of the va-
lence bands in AlN and in GaN. In wurtzite GaN or
AlN, the degeneracy of the p-like states at the Γ point
is lifted by both crystal-field splitting and spin-orbit
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splitting leading to forming three valence bands at
the Brillouin zone center.

Since AlN has a negative crystal field splitting en-
ergy, while GaN has a positive one, these splittings
lead to the ordering of the valence band in AlN: Γ7,
Γ9, and Γ7. Whereas we have Γ9, Γ7, and Γ7 in GaN
[6]. Therefore, the topmost of the valence band in
AlN has the crystal field split off holes with pz-states,
while the topmost in GaN has the heavy holes with
px-like and py-like states, where the axis z is directed
along the hexagonal axis.

Therefore, the emission from AlxGa1−xN with high
(low) Al-content is polarized along (perpendicular to)
the c axis.

Recently, many studies have been focused on the
potential application of nanostructures, such as pho-
tonic crystal structures, nanoholes, nanodots, and
nanorods. In the studies of the technology involv-
ing the photonic band gap, it seems that, in the case
of dielectric rod nanoarrays or nanocolumns, a large
gap is opened for the TM mode, but not for the
TE one [7]. Thus, with this type of structures for
laser applications, the light source in the TM mode
is obtained.

In the c-plane of InGaN/GaN quantum well sys-
tems, the compressive strain is induced in the active
layer, and the light is TE-polarized [8]. Furthemore,
there is a strong internal electric field caused by the
spontaneous and piezoelectric polarization charges at
the interfaces of the c-plane of the InGaN/GaN quan-
tum well. This phenomenon leads to the quantum
confined Stark effect, decreases the internal quantum
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efficiency, and leads to the emission spectrum which
is red-shifted.

In some studies [9–11] of interface polarization
charges, alloy materials were used to make a bet-
ter performance. Many works have focused on the
nonpolar and semipolar planes [12–15]. These results
have testified that the light emission will be polar-
ized, and the quantum confined Stark effect will be
reduced. However, due to a higher cost of the a- and
m-plane substrates, it would be better to use the c-
plane substrate. In work [16, 17], the c-plane of the
InGaN/AlGaN quantum well structure was consid-
ered instead of that of InGaN/GaN in order to ob-
tain a tensile strain in the quantum well layer. The
previous studies and calculations have shown that
the |Z〉-like state is generated in nitride materials,
if the quantum well layer is under a tensile biaxial
strain.

Besides the nitride-based devices, the group-II ox-
ides have been considered for highly efficient laser
diodes [18, 19] and high-performance field-effect tran-
sistors [21, 22]. The induced piezoelectric field plays
a significant role for both band structure and opti-
cal gain [23]. However, the orientation of a crys-
tal structure significantly modifies the band structure
through the strain effect [24]. It has been proved
experimentally that the growth along crystal direc-
tions different from the [0001] direction leads to an
increase in the quantum efficiency by decreasing the
strain-induced electric field in the quantum well re-
gion, possibly leading to the ways of obtaining highly
efficient white laser diodes [25]. There are the theoret-
ical works studying the effects of crystal orientation
on the piezoelectric field in a strained wurtzite quan-
tum well [24, 26]. However, the piezoelectric effect
consists not only of a strain-induced polarization; it
also takes the response of both electric field and polar-
ization on the strain into consideration. These effects
were studied in paper [26].

A deeper understanding of the influence of band
structures on optical properties should help one to an-
swer many questions. In addition, the interesting ef-
fects of strong electron-hole Coulomb interaction are
presented in these materials. Many-body interactions
lead to effects, which consist the screening, dephas-
ing, bandgap renormalization, and phase-space filling
[27–30].

A general phenomenon of Coulomb enhancement
may be explained as follows. Due to the Coulomb
attraction, an electron and a hole have a larger ten-
dency to be located near each other, than that in the

case of noninteracting particles. This increase of the
interaction duration leads to an increase of the optical
transition probability.

The paper is organized as follows. In Section 2,
we present the microscopic many-body theory, which
is based on the Bloch equations for semiconductors,
i.e., the Heisenberg equations for the optical polar-
ization and the populations of carriers. In Section 3,
we consider a quantum well, which is oriented per-
pendicularly to the growth direction [0001]. We re-
search the overlap integral of electron and hole wave
functions and calculate the exciton binding energy
in the quantum well. We calculate the Hartree and
Hartree–Fock gain spectra. We calculate the exci-
ton absorption spectra in the wurtzite quantum well
and compare them with the absorption spectra in a
quantum well with parabolic bands. We calculate
the Hartree and Hartree–Fock renormalization energy
spectra and the red shift of the gain spectra caused
by an electron-electron and hole-hole Coulomb inter-
action. A significant Sommerfeld enhancement of the
spectrum is determined. This enhancement of the
electric dipole moment caused by the electron-hole
Coulomb attraction.

2. Theory

Let us consider the points of zero slope, i.e., the
points at which the speed components ∂ E

∂ kα
are iden-

tically equal zero according to the symmetry condi-
tions taking into account the time inversion invari-
ance. These points are determined by the formula
N = 1

h′

∑
g∈G

1
2 [χ2

v(g) + χv(g2)] 12 [χ2
ψ(g) + χψ(g2)].

In this case, all momentum components become zero,
i.e., ∂ E

∂ kα
= 0 for an all directions k [31].

We consider a quantum well, which is oriented per-
pendicularly to the growth direction [0001]. The axis
z is directed along the hexagonal c axis. Then a lon-
gitudinal wave vector kz is changed by the operator
kz → −i ∂∂ z . From the Schrödinger equation, we ob-
tain the energy spectrum En(kt) for holes and for
electrons, where kt = (kx, ky) is a transversal wave
vector. The necessary condition of a band extremum
in a vicinity of the band gap is the zero derivative
of the energy with respect to kt. It is known from
semiconductor physics that the absorption spectrum
in a vicinity of the band gap with regard for a cou-
pled electron-hole pair leads to an exciton spectrum.
The excitons mathematically obey the Schrödinger
equation for a hydrogen atom, which is known as the
Wannier equation [32].
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The complete orthonormal system of functions for
holes depends on three quantum numbers: α that de-
fines the number of a subband, p – quasimomentum,
and m – the number of terms in the expansion of a
wave function in the complete orthonormal system of
functions on the interval [−w/2, w/2], which defines
the width w of the quantum well (see works [33, 34]).
For electrons, the number, which defines the number
of a term in the expansion, is equal of the number,
which defines the number of a subband. In the pa-
per, one lowest conduction subband and one highest
valence subband are considered. In the electron-hole
representation, we introduce the operators of creation
and annihilation for electrons and holes âp, â+

p , b̂−p,
and b̂+−p, where p = (px, py) is the transversal quasi-
momentum of carriers in the plane of a quantum well.
There is no necessity in the quantum number, which
defines the number of a subband. Consequently, for
a heavy hole, we have

Ψ =
∑
p
b̂pψp(r), (1)

where

ψp(r) =
eip ρ

√
A
|p〉, (2)

and A is the area of a quantum well in the (x, y)
plane;

|p〉 =

∥∥∥∥∥∥∥
φ

(1)
α (z,p)
φ

(2)
α (z,p)
φ

(3)
α (z,p)

∥∥∥∥∥∥∥ , (3)

φ(j)
α =

n∑
i=1

V (j)
p [i, α]χi(z), (4)

χn(z) =

√
2
w

sin
(
π n

(
z

w
+

1
2

))
, (5)

where n is a natural number, α=’heavy hole’. For an
electron,

Ψ =
∑
p
âpψp(r), (6)

where

ψp(r) =
eip ρ

√
A
χ1(z). (7)

To make the analysis as simple as possible, we
assume a nondegenerate situation described by the
Hamiltonian Ĥ = Ĥ0 + V̂ + Ĥint, which is composed

of the kinetic energy of an electron ενee,p and the kinetic
energy of a hole ενhh,p in the electron-hole representa-
tion:

Ĥ0 =
∑
p
ενee,pâ

+
p âp + ενhh,pb̂

+
−pb̂−p, (8)

where p is the transversal quasimomentum of carriers
in the plane of the quantum well, âp, â+

p , b̂−p, and
b̂+−p are the annihilation and creation operators of an
electron and a hole. The Coulomb interaction Hamil-
tonian for particles in the electron-hole representation
takes the form:

V̂ =
1
2

∑
p,k,q

V νeνeνeνeq â+
p+qâ

+
k−qâkâp+

+V νhνhνhνhq b̂+p+qb̂
+
k−qb̂kb̂p−

−2V νeνhνhνeq â+
p+qb̂

+
k−qb̂kâp, (9)

where

V
νανβνβνα
q =

e2

ε

1
A

+w/2∫
−w/2

dz

+w/2∫
−w/2

dz′χνα(z)χνβ (z
′)

2π
q
×

× e−q|z−z
′|χνβ (z

′)χνα(z), (10)

is the Coulomb potential of the quantum well, ε is
the dielectric permittivity of a host material of the
quantum well, and A is the area of the quantum well
in the xy plane.

The Hamiltonian of the interaction of a dipole with
an electromagnetic field is described as follows:

Ĥint = − 1
A

∑
νe,νh,p

((µνeνhp )?p̂νeνhp E?eiω t+

+(µνeνhp )(p̂νeνhp )+Ee−iω t), (11)

where p̂νeνhp = 〈 b̂−pâp〉 is a microscopic dipole due
to an electron-hole pair with the electron (hole) mo-
mentum p (–p) and the subband number νe (νh),
µνeνhk =

∫
d3rUj′σ′ kep̂Ujσ k, is the matrix element

of the electric dipole moment, which depends on the
wave vector k and the numbers of subbands, between
which the direct interband transitions occur, e is a
unit vector of the vector potential of an electromag-
netic wave, p̂ is the momentum operator. Subbands
are described by the wave functions Uj′σ′ k, Ujσ k,
where j′ is the number of a subband from the conduc-
tion band, σ′ is the electron spin, j is the number of
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a subband from the valence band, and σ is the hole
spin. We consider one lowest conduction subband
j′ = 1 and one highest valence subband j = 1. E and
ω are the electric field amplitude and frequency of an
optical wave.

We accept the approximation which simplifies the
calculations in solving the problem concerning the
electron-hole gas. Namely, we consider the problem
in the case of a high density of the electron-hole gas
(case rs < 1). Estimating the ratio of the Coulomb
potential energy to the Fermi energy, we obtain

rs =
EC

EF
=

2me2

ε ~2
√
nπ

= 0.73 (12)

for the concentration of the electron-hole gas n =
= 1013 cm−2, the dielectric permittivity ε = 9.38, the
transversal effective mass of an electron at Γ point
m = 0.18 (inverse second derivative of the energy
with respect to the transversal wave vector). This
indicates that the Fermi energy dominates relative
to the Coulomb potential energy as rs → 0 and in-
creases more rapidly than the Coulomb energy with
the increasing density. As rs → 0 the terms corre-
sponding to cyclic diagrams will dominate.

The Heisenberg equation for the electron, n̂νep =
= 〈 â+

p âp〉, and hole, n̂νhp = 〈 b̂+−pb̂−p〉, populations is
written in the form:

∂ n̂νep
∂ t

=
i

~
[Ĥ, n̂νep ]. (13)

Substituting (8), (9), and (11) in (13), we obtain

~
∂ n̂νep
∂ t

= −2Im[µνeνhp E(t)(p̂νeνhp )?] + i
∑
k′,q

V (q)×

×(〈 â+
p â

+
k−qâp−qâk〉 − 〈 â+

p+qâ
+
k−qâpâk〉+

+〈 â+
p b̂

+
k−qb̂kâp−q〉 − 〈 â+

p+qb̂
+
k−qb̂kâp〉). (14)

Factorizing the convolutions of operators with the
help of the Wick theorem, the Heisenberg equation
for an electron population reads

~
∂ n̂νep
∂ t

= −2Im[[µνeνhp E(t) +
∑
q
V (q)p̂νeνhp+q ](p̂νeνhp )?].

(15)

The pairwise convolutions originate from the ψ oper-
ators, which are taken at different points (this is the
Hartree–Fock approximation).

In the second order, the Coulomb potential energy
reads

~
∂ n̂νep,scat
∂ t

= −
∑
k,q

2π V 2(q)×

×D(εe(p) + εe(k + q)− εe(k)− εe(p + q))×

×[n̂νep n̂
νe
k+q(1− n̂νek )(1− n̂νep+q)−

−(1− n̂νep )(1− n̂νek+q)n̂νek n̂
νe
p+q]−

−
∑
k,q

2π V 2(q)D(εe(p)+εh(k)−εe(p+q)−εh(k+q))×

×[n̂νep n̂
νh
k (1− n̂νep+q)(1− n̂νhk+q)−

−(1− n̂νep )(1− n̂νhk )n̂νep+qn̂
νh
k+q], (16)

whereD(Δ) = δ(Δ)−iπ−1P (Δ), and P denotes prin-
cipal value.

We assume that

∂ n̂νep
∂ t

=
∂ n̂νhp
∂ t

= 0. (17)

One can find the expectation value from the con-
volution of two operators: 〈â+

k âp(τ)〉 regarding the
density matrix, i.e. the certain statistic operator
ρ = e−β H0

Sp(e−β H0 )
. From the Heisenberg equation, we

obtain

〈âpâ+
k 〉 = eβ ε

νe
p 〈â+

k âp〉. (18)

Since âpâ+
k = δpk− â+

k âp for fermions, Eq. (18) yields
the expression for the electron population in terms of
the Fermi distribution function:

〈â+
k âp〉 =

δpk

1 + eβε
νe
p
, (19)

where ενep = ενep − EF, and EF is the Fermi energy.
To calculate the sum in the ground-state energy

of the electron gas in all orders of perturbation the-
ory, the propagator is taken as a function [35], whose
Fourier transform is equal to

Qq(u) =
∫

d3p

∞∫
−∞

eituqe−|t|[
1
2 q

2+qp]dt. (20)
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Works [35, 36, 38] gave the direct correspondence be-
tween the diagrams of the given order and the inte-
grals, whose Fourier transformations are

An =
q

2π n

∞∫
−∞

du[Qq(u)]n. (21)

The complete contribution of all cyclic diagrams in
the n-order of perturbation theory is shown [35,36,38]
to be

ε′ ≡ ε(2) + ε(3) + ε(4) + ... =

= − 3
8π5

∫
d3q

q3
1
2π

∞∑
n=2

〈 [[F̂ , V̂ ], ...V̂︸ ︷︷ ︸
n−1

]〉×

×
∞∫
−∞

du
(−1)n

n
[Qq(u)]n(

α rs
π2q2

)n−2 =

= − 3
8π5

∫
d3q

q3
1
2π

∞∫
−∞

du×

×
∞∑
n=2

(−1)n

n
[f̂ ]n−1[Qq(u)]n

(
α rs
π2q2

)n−2

, (22)

where F̂ is selected from the sum of four operators
in Eq. (14), which consist of four products of the
operators of creation and annihilation of particles, for
instance: F̂ = â+

p â
+
k−qâp−qâk. Then we obtain

f̂ = n̂pn̂k+q(1− n̂p+q)(1− n̂k). (23)

In this section, we derive the equation of motion
for the mean value of the product b̂−pâp for a micro-
scopic dipole, which specifies of a medium polariza-
tion, which becomes macroscopic due to the applied
external field.

The average value of a certain physical magnitude
F , which corresponds to the operator F̂ can be ex-
pressed through the spur of a matrix, which is a cer-
tain statistic operator obeying the Heisenberg equa-
tion:

〈 F̂ 〉 = Sp(ŵ0F̂ )+

+
2π
i
D(−εp1+q−εp2−q+εp1 +εp2)Sp([F̂ , V̂0]ŵ0), (24)

where ŵ0 = e−Ĥ0/kT

Sp(e−Ĥ0/kT )
, i.e., the density matrix ŵ0

is assumed to be described by the Gibbs canonical

distribution; in the interaction representation, the
time dependences of a wave function and any cer-
tain operator can be expressed through the Hamil-
tonian of a system of noninteracting particles: V̂0 =
= eiĤ0t/~V̂ e−iĤ0t/~.

The Heisenberg equation for the electron-hole gas
takes the form

dp̂νeνhp

dt
= −iωνeνhp p̂νeνhp − iΩνeνhp (−1 + n̂νep + n̂νhp )+

+
i

~
(
∑
q,k

V νeνeνeνeq 〈 â+
k+qâp+qb̂−pâk〉+

+V νhνhνhνhq 〈 b̂+k+qb̂−p+qb̂kâp〉−

−
∑
q,k

V νeνhνhνeq (〈 â+
k+qâpb̂−p+qâk〉+

+〈 b̂+k+qb̂−pb̂kâp+q〉 − 〈 b̂−p+qâp−q〉 δq,k)), (25)

where ωνeνhp = 1
~ (εg0 + ενee,p + ενhh,p), Ωνeνhp =

= 1
~µ

νeνh
p Ee−iω t. Using the operator algebra and the

density matrix formalism, we have

dp̂νeνhp

dt
= −iωνeνhp p̂νeνhp − iΩνeνhp (−1 + n̂νep + n̂νhp )−

− i
~
∑
q
V νeνhνhνeq p̂νeνhp+q(−1 + n̂νep + n̂νhp )−

− i
~
∑
q
W νeνhνhνe
q p̂νeνhp+q(Ξνep,q + Ξνhp,q)+

+
1
~

∑
α = e, h
β = e, h
α 6= β

∑
να,νβ

∑
k,q

W
νανβνβνα
q W

νανβνβνα
|p+q−k| ×

×D(ενβp + εναk − ε
νβ
k−q − ε

να
p+q)×

×(n̂νβp (1− n̂νβk−q)n̂ναk + (1− n̂νβp )n̂νβk−q(1− n̂ναk ))p̂νeνhp+q .

(26)

Equation (26) describes the oscillation of the polar-
ization at the transition frequency and the processes
of stimulated emission or absorption. As the pop-
ulation functions, we choose the Fermi distribution
functions. The transition frequency ωνeνhp is derived
as follows:

ωνeνhp =
1
~
(εg0 + ενee,p + ενhh,p+
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+
∑
α=e,h

∑
να

∑
q

(V ναναναναq (−n̂ναp+q)+

+W νανανανα
q (−Ξ̂ναp+q,q))−

−i
∑

α = e, h
β = e, h
α 6= β

∑
να,νβ

∑
k,q

(W νανβνβνα
q )2×

×D(−εναp+q − ε
νβ
k−q + ε

νβ
k + εναp )×

×(n̂νβk−q(1− n̂νβk )n̂ναp+q + (1− n̂νβk−q)n̂νβk (1− n̂ναp+q)).
(27)

The functions Ξ̂νep+q,q and Ξ̂νep,q are defined as

Ξ̂νep+q,q = i
∑
k

[W νeνeνeνe
q −W νeνeνeνe

|k−q−p| ]×

×D(−ενep+q − ε
νe
k−q + ενek + ενep )×

×(n̂νek−q(1− n̂νek )n̂νep+q + (1− n̂νek−q)n̂νek (1− n̂νep+q)) ,
(28)

Ξ̂νep,q = i
∑
k

[W νeνeνeνe
q −W νeνeνeνe

|k+q-p| ]×

×D(−ενep+q − ε
νe
k−q + ενek + ενep )×

×((1− n̂νek )n̂νek−q(1− n̂νep ) + n̂νek (1− n̂νek−q)n̂νep ). (29)

We have replaced the bare Coulomb potential energy
with the screened one:

Vq(1− VM + (VM)2 − (VM)3 + ...), (30)

where

M =
∑
k

n(εk+q)− n(εk)
εk+q − εk

. (31)

The coefficient of the sum in the second term of series
(30) is

N
m

2~2

(
4π e2

Ω

)2 Ω
(2π)3

1
k3
F

2 =

= N
me4

2~2

(
4π
Ω

)2 Ω
(2π)3

Ω
3π2N

2 =
me4

2~2

4
3π3

, (32)

In the third term of the series, the coefficient is

m2

2~4

(
4π e2

Ω

)3( Ω
(2π)3

)2 1
k3
F

1
kF

2 =
me4

2~2

4
3π3

α rs
2π2

.

α rs =
me2

~2

1
kF
. (33)

Then the series can be rewritten as a infinitely de-
creasing geometric progression

1
q2
− 4

3π3

∫
d3k

1
q4
n(εk+q)− n(εk)
(k + q)2 − k2

+

+
4

3π3

α rs
2π2

∫ ∫
d3k1d

3k2
1
q6
n(εk1+q)− n(εk1)

(k1 + q)2 − k2
1

×

×n(εk2+q)− n(εk2)
(k2 + q)2 − k2

2

− ... . (34)

By summing all terms of the series, we obtain

W
νανβνβνα
q =

V
νανβνβνα
q

εq(N)
. (35)

For the dielectric function, we use the static Lindhard
formula:

εq(N) = 1−
∑
ρ=e,h

∑
νρ

∑
p
V νρνρνρνρq

n̂
νρ
p+q − n̂

νρ
p

ε
νρ
p+q − ε

νρ
p
. (36)

Since the cyclic diagrams are the basic type of dia-
grams in the scattering processes at a high density of
the electron-hole gas, the diagram method is equiv-
alent of the self-consistency method, as well as the
random phase approximation.

The answer how to derive the integro-differential
equation (26) for a microscopic dipole is given by the
scheme

ωνeνhp : V ναναναναq → W νανανανα
q , nναp+q → Ξναp+q,q,

(37)

plus the expression, whose graphic representation re-
minds a binary blister,

∑
p

dp̂νeνhp

dt
: V νeνhνhνeq → W νeνhνhνe

q , nναp → Ξναp,q,

(38)

plus the expression corresponding to the plot in the
form of an oyster.

The sum over momenta in the polarization equa-
tion, which includes the carrier-carrier correlations of
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higher orders than Hartree–Fock ones, can be found if
the self-energy in the equation is added by the term,
which is present in the equation in the Hartree–Fock
approximation, by replacing the Coulomb potential
energy with the screened one and the Fermi distri-
bution functions with the Ξναp+q,q functions, plus the
expression, whose schematic representation is in the
form of a binary blister. The integro-differential equa-
tion should be added by the term which is present
in the equation in the Hartree–Fock approximation,
by replacing the Coulomb potential energy with the
screened one and the Fermi distribution functions
with the Ξναp,q functions, plus the expression, whose
schematic representation is in the form of an oyster.
We consider the coupled closed diagrams. The sum of
all uncoupled diagrams, which include k, closed loops
which have m1,m2, ...,mk vertices, correspondingly,
is the sum of all closed diagrams of the m-th order.

The polarization equation written in the different
designations was obtained in [29] and is divided into
diagonal and nondiagonal terms with respect to pνeνhp

dp̂νeνhp

dt
= −iωνeνhp p̂νeνhp − iΩνeνhp (−1 + n̂νep + n̂νhp )+

+(Γνep + Γνhp )p̂νeνhp +
∑
q

(Γνepq + Γνhpq)p̂νeνhp+q . (39)

The transition frequency ωνeνhp and the Rabi fre-
quency are derived as follows:

ωνeνhp =
1
~
(εg0 + ενee,p + ενhh,p−

−
∑
α=e,h

∑
q
V ναναναναq nναp+q), (40)

Ωνeνhp =
1
~
(µνeνhp Ee−iω t +

∑
q
V νeνhνhνeq )p̂νeνhp+q . (41)

Carrier-carrier correlations which lead to the screen-
ing and the dephasing are described by the expres-
sions which include the diagonal (pνeνhp terms) and
nondiagonal (pνeνhp+q terms) contributions. For the di-
agonal contribution,

Γναp = −2π
~
∑
β=e,h

∑
νβ

∑
k,q

(|W νανβνβνα
q |2−

−1
2
δνανβW

νανβνβνα
q W

νανβνβνα
|k−q−p| )×

×D(−εναp+q − ε
νβ
k−q + ε

νβ
k + εναp )×

×(n̂νβk−q(1− n̂νβk )n̂ναp+q + (1− n̂νβk−q)n̂νβk (1− n̂ναp+q)).
(42)

There are also the nondiagonal contributions which
couple the polarizations for different wave vectors and
are defined by the expression

Γναqp = −2π
~

∑
β = e, h
β′ = e, h
β 6= α

∑
νβ ,νβ′

∑
k

(|W νανβνβνα
q |2−

−W νανβνβνα
q W

νανβ′νβ′να
|p+q−k| +

+
1
2
δνανβ′W

νανβνβνα
q W

νανβ′νβ′να
|k+q−p| )×

×D(−εναk − ε
νβ′
p + ε

νβ′

k−q + εναp+q)×

×(n̂
νβ′
p (1− n̂νβ′k−q)n̂ναk +(1− n̂νβ′p )n̂

νβ′

k−q(1− n̂ναk )), (43)

We solve the system of differential equations and de-
rive the system of algebraic equations, i.e., the inte-
gral equation

χνeνhp =
i

~
(n̂νep + n̂νhp − 1)

i(ωνeνhp − ω) + Γνep + Γνhp
(µνeνhp −

−
∑
q
V νeνhνhνe{

| − p|
| − p− q|

}χνeνhp+q), (44)

in which ωνeνhp is the self-energy, i.e., the renormal-
ized width of the band gap. The derived renormaliza-
tion energy is the exchange energy. The sum Γνeνhp
defines a half-width of the exciton resonance. The
polarization is expressed through the function χνeνhp
as follows:

pνeνhp = χνeνhp Ee−iω t. (45)

The half-width of the gain spectra is calculated
with the help of formulas

Γναk =
1

2π ~
∑
β=e,h

∑
νβ

2π∫
0

dϕ
1
2π

2π∫
0

dα×

×
∫

qdq
1

∂(ενβk+q − ε
να
k+q)/∂|k + q|

×

×Q

(∫
dz

∫
dz′χνα(z)χνβ (z

′)×
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× e−q|z−z
′|χνβ (z

′)χνα(z)
2π
q

)2

×

×(n̂ναk+q(1−n̂νβk+q)n̂νβk +(1−n̂ναk+q)n̂νβk+q(1−n̂νβk )), (46)

Γναk =
1

2π ~
∑
β=e,h

∑
νβ

2π∫
0

dϕ
1
2π

2π∫
0

dα×

×
∫

qdq
1

∂(εναk+q)

∂|k+q|

Q

((∫
dz

∫
dz′χνα(z)χνβ (z

′)×

× e−q|z−z
′|χνβ (z

′)χνα(z)
2π
q

)2

−

−1
2
δνανβ

(∫
dz

∫
dz′χνα(z)χνβ (z

′)×

× e−q|z−z
′|χνβ (z

′)χνα(z)
2π
q
×

×
∫
dz

∫
dz′χνα(z)χνβ (z

′)e−k
√

2−2 cos(α)|z−z′|×

×χνβ (z′)χνα(z)
2π

k
√

2− 2 cos(α)

))
×

×(n̂ναk+q(1− n̂νβk+q)n̂νβk +

+(1− n̂ναk+q)n̂νβk+q(1− n̂νβk ))δνανβ , (47)

where Q = |k+q|, ϕ is the angle between the vectors
k and q. In calculations of the broadening caused
by carrier-carrier correlations, one can see that, in
the schematic representation, their expressions in the
form of diagrams include two diagrams in the form of
an oyster and four expressions diagrams in the form
of a binary blister.

The polarization equation for the wurtzite quan-
tum well in the Hartree–Fock approximation with re-
gard for the wave functions for an electron and a hole
written in the form [33, 34], where the coefficients of
the expansion of the wave function of a hole in the
basis of wave functions (known as spherical harmon-
ics) with the orbital angular momentum l = 1 and
the eigenvalue ml depend on the wave vector, its z
component, can looked for as follows:

dp̂
νeνh
p
dt = −iωνeνhp p̂νeνhp − iΩνeνhp (−1 + n̂νep + n̂νhp ).

(48)

The transition frequency ωνeνhp and the Rabi fre-
quency with regard for the wave function [33, 34] are
described as

ωνeνhp =
1
~
(εg0 + ενee,p + ενhh,p −

∑
q
V νeνeνeνeq nνep+q−

−
∑
q
V νhνhνhνh{
| − p + q| | − p|
| − p + q| | − p|

}nνh−p+q), (49)

Ωνeνhp =
1
~
(µνeνhp Ee−iω t +

∑
q
V νeνhνhνe{

| − p|
| − p− q|

})p̂νeνhp+q ,

(50)
where

V νeνhνhνe{
| − p|
| − p− q|

} =
1
2
e2

ε

1
2π

2π∫
0

dϕ
∑
α

gα

∫
dq×

×
∫

dzξ

∫
dzξ′χn1(zξ)χm1(zξ′)χm2(zξ′)χn2(zξ)×

× e−q|zξ−zξ′ |Cjp[n1, 1]V jp [m1, 1]CiQ1
[n2, 1]V iQ1

[m2, 1],

n1 = m1 = n2 = m2 = 1,

Q1 = q + p, (51)

∑
α,q

gαV
νhνhνhνh{
| − p + q| | − p|
| − p + q| | − p|

}nνh−p+q =
1
2
e2

ε

1
2π

2π∫
0

dϕ
∑
α

gα×

×
∫
dq

∫
dzξ

∫
dzξ′χn1(zξ)χm1(zξ′)χm2(zξ′)χn2(zξ)×

× e−q|zξ−zξ′ |V jQ2
[n1, 1]V ip [m1, 1]×

×V iQ2
[n2, 1]V jp [m2, 1]nα,Q2 ,

Q2 = q− p, (52)

where χn1(zξ) is the envelope of the wave functions
of the quantum well, V ip [m1, 1] and Cjp[n1, 1] are co-
efficients of the expansion of the wave functions of a
hole and electron at the envelope part, ϕ is the angle
between the vectors p and q, and gα is a degeneracy
order of a level.

Numerically solving this integro-differential equa-
tion, we can obtain the absorption coefficient of a
plane wave in the medium from the Maxwell equa-
tions:

α(ω) =
ω

ε0 ncE
ImP, (53)

where ε0 and c are the permittivity and the speed
of light, respectively, in vacuum, n is a background
refractive index of the quantum well material,

P =
2
A

∑
νe,νh,p

(µνeνhp )?pνeνhp eiω t. (54)
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Fig. 1. Calculated Hartree–Fock spectra for the quantum well
with a width of 2.6 nm

Fig. 2. Overlap integral of the electron and hole wave func-
tions

Fig. 3. Dispersion of the renormalization band gap for the
quantum well with a width of 2 nm at the concentration of
carriers 5× 1011 cm−2

3. Results and Their Discussions

Numerically solving the microscopic polarization
equations for the quantum well with a parabolic band,
one can see that, with increasing the electron-hole gas
density, the optical gain develops in the spectral re-
gion of the original exciton resonance. With increas-
ing the free-carrier density, the ionization continuum
shifts rapidly to longer wavelengths, while the 1s-
exciton absorption line stays almost constant, due to
the high degree of compensation between the weaken-
ing of the electron-hole binding energy and the band-
gap reduction. Physically, this indicates the charge
neutrality of an exciton [39]. The exciton absorption
spectrum for the quantum well with a parabolic law
of dispersion is presented in Fig. 1. All calculations
are carried at a temperature of 300 K.

The overlap integral of the electron and hole wave
functions is presented in Fig. 2.

Unlike will be develop the process of shifting of the
absorption edge at a constant exciton energy with
increasing the concentrations for the wurtzite quan-
tum well. Solving the polarization equation in the
Hartree–Fock approximation, one can find a red shift
of the exciton resonance with increasing the concen-
tration in the wurtzite quantum well. The calculated
Hartree–Fock spectrum for the wurtzite quantum well
with a width of 2 nm is presented in Fig. 4.

Such a shift can be explained by the difference be-
tween the overlap integrals of the electron and hole
wave functions in the wurtzite quantum well and the
quantum well with a parabolic band. The overlap
integral of the electron and hole wave functions at
nonzero wave vectors in the wurtzite quantum well
has a smaller value than the overlap integral in the
quantum well with a parabolic band. Due to this
cause, the Coulomb renormalization of the electric
dipole moment in (50) in the wurtzite quantum well
is found to be smaller than that in the quantum well
with a parabolic band and cannot compensate the
Coulomb renormalization of the self-energy in (49),
where it has the minus sign. This yields a shift of
the exciton resonance to the side of less energies.
Since the shift of the exciton resonance is a very
rare effect, the examples of exceptions are always in-
teresting.

The dispersion of the renormalization band gap for
the quantum well with a width of 2 nm at the con-
centration of carrier 5 × 1011 cm−2 is presented in
Fig. 3. The energy of the exciton resonance is calcu-
lated, and it is found that, for the concentration of
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Fig. 4. Calculated Hartree–Fock spectra for the quantum well
with a width of 2 nm

Fig. 5. Hartree gain spectrum (1) and Hartree–Fock gain
spectrum (2) at the concentration of carriers n = p = 9 ×
1012 cm−2 for the quantum well with a width of 2 nm at the
temperature 300 K

carriers 5× 1011 cm−2, the exciton energy is equal to
3749.5 meV.

In general, the existence of the resonance and
the Sommerfeld enhancement of a continuous opti-
cal spectrum is a reflection of the renormalization of
the electric dipole interaction energy and is a cause of
increasing the optical absorption in comparing with
the optical spectrum of free carriers. This increase
of the absorption is the example of a more general
phenomenon of Coulomb enhancement and can be
explained as follows. Due to the Coulomb attraction,
an electron and a hole have a larger tendency to be
located closer to each other, as compared with the
case of noninteracting particles. This increase of the
interaction duration leads to an increase of the opti-
cal transition probability and to the renormalization
of the electric dipole interaction energy.

Fig. 6. Calculated energy spectra for heavy (hh1) and light
(lh1) holes for the free valence band, Hartree energy spectra
for heavy (hh2) and light (lh2) holes, and Hartree–Fock energy
spectra for the heavy (hh3) and light (lh3) holes for the quan-
tum well with a width of 2 nm at the concentration of carriers
n = p = 9× 1012 cm−2 at the temperature 300 K

Fig. 7. Calculated energy spectra for electrons (e1) for the free
conduction band, Hartree energy spectra for electrons (e2), and
Hartree–Fock energy spectra for electrons for the quantum well
with a width of 2 nm at the concentration of carriers n = p =

= 9× 1012 cm−2 at the temperature 300 K

The Hartree and Hartree–Fock gain spectra are
presented in Fig. 5.

The energy spectra for heavy and light holes and
for electrons in a quantum well, as well as the
Hartree and Hartree–Fock renormalizations of the en-
ergy spectrum for heavy and light holes and electrons
which reflect the many-body effect known as a renor-
malization of the band gap, are presented in Figs. 6
and 7.

4. Summary

The calculations of light gain spectra and exciton
spectra were previously carried out only for the ni-
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tride quantum well with parabolic bands and not for
quantum wells with compound bands. Here, we study
the effect of nonparabolicity on exciton states in the
wurtzite quantum well. We have calculated and ex-
plained that the exciton binding energy strongly de-
pends on the mixing of valence bands, because it
depends on the overlap integral of the electron and
hole wave functions. We have calculated and ex-
plained a shift of the exciton resonance, which de-
pends on the electron-hole gas concentration, and the
gain spectrum shape in the wurtzite quantum well.
We have found the exchange renormalization of the
energy spectrum for holes and electrons. In the re-
search of the influence of the overlap integral of wave
functions on the Hartree–Fock renormalization of the
electric dipole moment in the wurtzite quantum well,
we conclude that a deviation from a parabolic band
structure in the wurtzite quantum well leads to sig-
nificant changes in the determination of the exciton
binding energy. The calculations testify to a small
change of the overlap integral of the electron and hole
wave functions, which is caused by the intrinsic quan-
tum confined Stark effect at the considered concentra-
tions. The deviation from a parabolic band structure
of the quantum well leads also to significant changes
in the overlap integral of the electron and hole wave
functions. This is the cause for a red shift of the
exciton resonance with increasing the concentrations.
The above-presented results can be explained by the
influence of the valence band structure on quantum
confined effects.

The author is grateful to Prof. V.A. Kochelap for
numerous discussions.
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Л.O. Локоть

ХАРТРI–ФОКIВСЬКА ЗАДАЧА
ЕЛЕКТРОННО-ДIРКОВОЇ ПАРИ
В КВАНТОВIЙ ЯМI GaN

Р е з ю м е

Розглянуто мiкроскопiчне обчислення спектра поглинан-
ня для системи GaN/AlxGa1−xN квантової ями. Тодi як

структури квантової ями з параболiчним законом дис-
персiї проявляють звичайне висвiтлювання екситону без
змiни спектральної областi, то значне червоне змiщення
екситонного резонансу знайдено для в’юрцитної кванто-
воямної структури. Обчислено енергiю екситонного резо-
нансу для в’юрцитної квантової ями. Одержанi результа-
ти можуть пояснюватися впливом валентної зонної стру-
ктури на ефекти квантового конфайнменту. Обчислено
оптичний спектр пiдсилення в хартрi–фокiвськiй апрокси-
мацiї. Обчислено зоммерфельдiвське пiдсилення. Обчис-
лено червоне змiщення спектра пiдсилення в хартрi–
фокiвськiй апроксимацiї вiдносно хартрiвського спектра
пiдсилення.

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 1 67


