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COLLECTIVE DIFFUSION
OF COLLOIDAL PARTICLES IN A LIQUID CRYSTAL

The theory of collective diffusion effects in a system of colloidal particles in a liquid crystal
is proposed. The specifics of diffusion which can be observed experimentally are described. The
dependence of the diffusion coefficient on the temperature and particle density is found. It is
shown that collective diffusion in a system of colloidal particles in a liquid crystal arises from
the elastic distortion of the director field generating the interparticle interaction. The behavior
of such diffusion is found to be nontrivial.
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Recently much interest has been generated to the
studies of colloidal particles in liquid crystals. Ani-
sotropic properties of the host fluid of a liquid crystal
give rise to a new class of colloidal anisotropic in-
teractions that never occur in isotropic hosts. Liquid
crystal colloidal systems also attract attention as
models for various phenomena in condense matter
physics. Anisotropic interactions generate different
structures of colloidal particles such as linear chains
in inverter nematic emulsions [1–4], 2D crystals [5],
and 2D hexagonal structures at nematic-air interfaces
[6]. The authors of [7] have observed 3D crystal struc-
tures in a system of hard particles with dipole con-
figuration deformation of the director field. Recently
[8] it was found that anomalous diffusion of an in-
dividual colloidal particle occurs at time scales that
correspond to the relaxation times of the director
deformations around the particle. Once the nematic
melts, the diffusion becomes normal and isotropic. It
was shows that deformations and fluctuations of the
elastic director influence the diffusion modes and that
sub-diffusion and super-diffusion can be observed. In
this article we study the collective behavior of the
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diffusion resulting from of particle interaction that
can lead to the formation of new spatially nonuniform
distributions [9–11]. Nontrivial behavior of the collec-
tive diffusion of colloidal particles in a liquid crystal
is predicted. We show that the temperature depen-
dence of the diffusion coefficient for various concen-
tration is non-monotonic. It can be explained taking
into account the specific properties of particle interac-
tion. In the case of colloidal suspensions the diffusion
coefficients usually are studied experimentally using
the dynamic light scattering [12–15]. If one extrapo-
lates the diffusion coefficient to a vanishing concentra-
tion of particles, it reduces to the single-particle dif-
fusion coefficient since interactions between particles
become negligible. On the contrary, for non-vanishing
concentration particle interactions can influence the
diffusion.

Complex studies of phase transitions, collective dif-
fusion, autocorrelation function in this case allow to
describe a new physical picture of the collective be-
havior in a colloidal medium that occurs in any liq-
uid crystal. The critical non-monotonic temperature
dependence of the viscoelastic response functions is
associated with the long-range interaction between
colloidal particles inducing the deformation of the
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elastic director field. Both temperature and concen-
tration dependences of the viscoelastic response of a
suspension of spherical colloidal particles are stud-
ied in the mean-field approximation in the vicinity
of the isotropic-nematic transition. The explicit ex-
pressions for temperature and concentration depen-
dences of the static structure factor are derived. Mac-
roscopic expression for the anomalous part of the col-
lective diffusion coefficient is obtained. It is shown
that the temperature dependence of the drag force
in the system of colloidal particles can be responsi-
ble for the nontrivial behavior of the collective diffu-
sion in a liquid crystal. Colloidal liquid crystals are
systems with structural and time scales that provide
a possibility for the system to be non-equilibrium,
or some exotic states during rather long time. Here,
we focus our attention on the diffusion motion which
can form such states. The rheologic properties of liq-
uid crystals and the structure of phase-separating
(size, shape of patterns and their spatial distribu-
tion) strongly affect the physical properties of col-
loids. Recently these aspects have been extensively
studied that resulted in considerable progress in un-
derstanding of the relations between structures and
rheologic properties. It is expected that the break-
down of the rotation symmetry may induce opti-
cal and mechanical properties. The flow of a liquid
crystal around a particle depends on its shape and
the viscosity coefficients and also on the direction of
the molecule orientation [8]. The estimates of par-
ticle mobilities in liquid crystal obtained from the
Stokes friction coefficient disagree with relevant ex-
perimental data. A probable reason for such a dis-
crepancy may be the increase of the effective particle
mass due to the existence of the deformation coat
that moves together with the particle. Colloidal par-
ticle interaction can also make the reason for the fric-
tion enhancement [1–9]. The physical mechanism of
this interaction is that the particle distorts the di-
rector distribution at the distances much longer than
the particle size and thus provides an effective in-
teraction with another similar particle by means of
the elastic field deformation. The role of this interac-
tion between colloidal particles is dual. First of all,
it influences the viscoelastic response function. These
macroscopic expressions are obtained by averaging
the phase function over the ensemble, the elastic in-
teraction function included. These long-range inter-
action functions are responsible for the strong diver-

gence of the viscoelastic response function for col-
loids. Moreover, the ensemble average representing
the viscoelastic response function should be evalu-
ated with regard to the shear rate distorted pair-
correlation function. The shear rate dependence of
this probability density function is the result of the
interplay between equilibrium restoring forces and
shear forces. The anomalous contribution is associ-
ated with the divergent part the viscoelastic response
function due to the long-range correlation induced by
the particle interaction with the field of the director
deformation. It should be noted that studies of the
rheologic properties of colloidal liquid crystal suspen-
sions are rather numerous [16–20]. Therefore, we can
compare our results with those for the Newtonian vis-
cosity. The macroscopic evaluation of the viscoelastic
functions consists of the following steps: a) descrip-
tion of the mesosphere structure with the formation of
a deformation coat solvate shell around the ordinary
particle; b) the second step consists in the study of
the influence of the director field elastic deformation
on the particle interaction; c) the last step consists
in the description of the probability phase transitions
which are accompanied by the formation of a new
structure observed experimentally.

The approach proposed in this paper makes it pos-
sible to describe the collective diffusion in liquid crys-
tals for a wide range of temperatures and concentra-
tions. We employ the concept of the effective mass
and friction drag for a colloidal particle moving in
a liquid crystal. As is shown in Ref. [9], the direc-
tor field deformation moves together with the mov-
ing particle in spite of the extremely weak anchor-
ing on the surface. The first, one deals with a spher-
ical particle whose anchoring on the surface is strong
[21, 24]. It creates a topological defect in the vicinity
of the particle that is necessary to satisfy the topo-
logical global boundary conditions. A particle with
strong planar anchoring creates a pair of topological
defects, known as boojums. On the other hand, a par-
ticle with strong homeotropic boundary conditions
creates an equatorial disclination ring or a hyperbolic
hedgehog as a companion for the radial hedgehog on
the surface of the particle. Lubensky et al. [21] have
applied the variation technique and the electrostatic
analogy and thus obtained an approximate director
distribution near the particle with normal boundary
conditions, as well as the long-range pair interparticle
interaction potential.
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The second approach was proposed in Ref. [9], the
authors have examined the case of weak anchoring for
particles of arbitrary shapes. They have found ana-
lytically the pair interaction potential taking into ac-
count different Frank constants and have expressed
the potential in terms of the tensor with regard to
the particle shape. In Ref. [11] it was shown that the
long-range interaction potential between particles in a
liquid crystal is determined by the symmetry break-
ing of the director field in the vicinity of the par-
ticle. This symmetry breaking is generated by two
reasons: the shape of the particle and the anchor-
ing. In the case of weak anchoring it is determined
primarily by the particle shape. In the case of strong
anchoring, on the other hand, both factors are essen-
tial because the director distribution near the particle
is in this case determined by the topological defects
in its vicinity. In order to give a general description
of all these phenomena, the concept of the deforma-
tion coat around the particle was proposed. The de-
formation coat embraces all the accompanying topo-
logical defects and has symmetry similar to that of
the resultant director field near the particle. The di-
rector distribution outside the coat undergoes only
smooth variations and does not contain any topolog-
ical defects. This colloidal particle may also be re-
garded as a microparticle surrounded by a solvate
shell provided the interaction between such a par-
ticle and the molecules is much stronger than the
intermolecular interaction responsible for the liquid
crystal formation. The solvable formation may be re-
garded as a macroparticle, thus its interaction with
another similar formation can be described in terms
of the director field deformation. Taking into account
the director distribution around an individual par-
ticle, one can find the change of orientation of the
director induced by two particles and determine the
change of deformation energy with separation of the
energy component associated with the interaction be-
tween the particles. The case when the interaction of
an individual particle with the director field deforma-
tion produced by other particles is determined by the
anchoring on the surface of this particle is described
in Ref. [9]. For the case when the number of particles
is small and anchoring on the surface is weak (col-
loidal particles in a liquid crystal), the distribution of
the director field is found in Ref. [17]. Let us describe
this approach in brief. The strong anchoring directly
implies that near the colloidal surfaces significant spa-

tial variations of the director occur and even defects
can appear. This means that the assumption about a
roughly uniform director n = (𝑛𝑥, 𝑛𝑦, 1) is no longer
valid for the whole liquid crystalline volume. In order
to explain the speculations in what follows we con-
sider the case of a homogeneous liquid crystal with
uniform director n0 and one particle immersed into
it. Anchoring of the liquid crystal with the surface
produces particle deformations of the director field
around the particle, so the director n(R) varies from
point to point. In the one-constant approximation the
total free energy of the system is given by

𝐹 =
𝐾

2

∫︁
𝑑𝑉

[︀
(divn)2 + (rotn)2

]︀
+

∮︁
𝑑𝑆𝑊 (𝜈 · n)2,

(1)

where 𝑊 is the anchoring coefficient, 𝜈 is the unit nor-
mal vector, integration

∮︀
𝑑𝑆 is carried out over the

surface of the particle, 𝐾 is the Frank elastic con-
stant. Far from the particle director field variations
are small, n(R) ≈ (𝑛𝑥, 𝑛𝑦, 1), |𝑛𝜇| ≪ 1 (𝜇 = 𝑥, 𝑦),
and the bulk free energy is given by

𝐹𝑏,linear =
𝐾

2

∫︁
𝑑𝑉

{︀
(∇𝑛𝑥)

2 + (∇𝑛𝑦)
2
}︀
, (2)

which yields the Euler–Lagrange equation of the
Laplace type, i.e.,

Δ𝑛𝜇 = 0. (3)

At large distances 𝑅 in the general case it can be
expanded in multiples, i.e.,

𝑛𝜇(R) =
𝑞𝜇
𝑅

+
p𝜇u
𝑅2

+ 3
u : �̂�𝜇 : u

𝑅3
(4)

with𝑢𝛼 = 𝑅𝛼/𝑅;p𝜇u = 𝑝𝛼𝜇𝑢𝛼,u : �̂�𝜇 : u = 𝑄𝛼𝛽
𝜇 𝑢𝛼𝑢𝛽 ,

and 𝜇 = (𝑥, 𝑦). This is the most general expression
for the director field. We note that the multiple
expression does not depend on the anchoring. It
is valid for far distances for any anchoring, both
weak and strong, either without topological defects
or with them. Of course in order to find multiple
coefficients we have to solve the problem in the near
nonlinear area either with computer simulation or in
terms of Ansatz functions. Suppose we have found
all multiple coefficients for the particular particle
(for instance with computer simulation). After this
presentation we can use both approaches to describe
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the interaction energy that does not depend on
the anchoring value on the particle surface. For
particles with strong anchoring it is the far-region
because director deformations in the near-region are
strong. For particles with weak anchoring, however,
distortions are small everywhere and the multiple
expansion is applicable in the near-region too. The
symmetry of the coat is equivalent to the broken
symmetry of the director in the vicinity.

A way to avoid strong deformations of the direc-
tor field and incorporate them in the analytical de-
scription is to introduce a “coat region” [11]. This re-
gion acts as an effective colloid which incorporates all
strong deformations of the director field around the
real particle and has the symmetry similar to the di-
rector distribution. In Ref. [22] the general paradigm
of the elastic interaction between colloidal particles in
a nematic liquid crystal was proposed. It implies that
each every particle with strong anchoring and radius
𝑅 has is surrounded by three zones. The first zone
for 𝑟 < 1.3𝑅 is the zone of topological defects, and in
order to find the distribution of the director field we
have to employ a nonlinear equation; the second zone
in the approximate range 1.3𝑅 < 𝑟 < 4𝑅 is the zone
where crossover from topological defects to the main
multiple moment takes place. The last third zone is
the zone of the main multiple moment, where higher-
order terms may be disregarded. The explanation of
this presentation is rather simple. In order to under-
stand it and to find the dimensions of these zones we
propose the procedure given below.

In order to find the director distribution around
the spherical particle we have to minimize the Frank
energy and take into account the boundary condi-
tion. This task was solved in Ref. [23]. In spherical
coordinates we can take

n(r) = (sin𝛽 sin 𝛾, sin𝛽 cos 𝛾, cos𝛽),

where 𝛽 is the polar angle and 𝛾 is the azimuthal
angle. In this representation there occurs azimuthal
symmetry with respect to 𝑧. The difference equation
in the one-constant approximation reduces to

∇𝛽(𝑟)− sin 2𝛽(𝑟)

2𝑟2 sin2 𝜃
= 0 (5)

and the boundary condition on the surface of the par-
ticle is given by

𝜕𝛽

𝜕𝑟
+

𝛽

𝑟

⃒⃒⃒⃒
𝑟=𝑅

= − 𝑊

2𝐾
sin 𝜃. (6)

Its general solution is 𝛽 =
∑︀

𝑘
𝐶𝑘

𝑟𝑘+1𝑃
1
𝑘 (cos 𝜃) where

𝑃 1
𝑘 (cos 𝜃) is associated with the Legendre polyno-

mial. The boundary condition selects the solution
that in the case of weak anchoring (𝑅𝑊/𝐾) ≤ 1 is
given by [24]:

𝛽(𝑟) = (𝑅𝑊/4𝐾)𝑅3 sin 2𝜃/𝑟3, (7)

where 𝑊 is the anchoring energy and 𝑅 is the radius
of the spherical particle. In the case of small deforma-
tion of the director field (𝑅𝑊/𝐾) < 4. This relation
determines the condition of week anchoring. In the
case of strong anchoring (𝑅0𝑊/𝐾) ≥ 1 and there
appears a disclination ring of radius 𝑎 around the
spherical particle. This solution was also obtained in
Ref. [23]. It is given by

𝛽(𝑟) = 𝜃 − 1

2
arctan

sin 2𝜃

cos 2𝜃 + (𝑎𝑟 )
3
. (8)

Inside the disclination ring the solution for the di-
rector field distribution reduces to 𝛽 =

(︀
𝑎
𝑟

)︀3
sin 2𝜃

where 𝑎 is the ring radius that may be obtained
from the minimum of free energy. The estimation of
the ring radius follows from the expression 𝑎 = 5

4𝑅.
For the disclination ring around the spherical par-
ticle to disappear, the anchoring associated with
this solution must be similar to that in the case of
week anchoring. Therefore we restrict the consider-
ation to the qualitative estimate with the crossover
value 𝑊 * ∼ 4𝐾𝑎3

𝑅4 = 125
16

𝐾
𝑅 . In this case the discli-

nation ring around the spherical particle does not
appear. This approach has been also applied to ob-
tain the free energy which introduces a single parti-
cle in the liquid crystal [21, 24]. In the case of week
anchoring 𝐹 ≈ 𝑊 2𝑅3

5𝐾 while in the case of strong an-
choring 𝐹 ≈ 13𝐾𝑅. The uniform director distribu-
tion far from the particle has zero topological charge
and so there should be another topological defect near
the particle to compensate the hedgehog in the cen-
ter. Obviously, the director configurations have differ-
ent symmetries. The nonequatorial disclination ring
and the pair of radial and hyperbolic hedgehogs break
the mirror symmetry in the horizontal plane while
the equatorial disclination ring (Saturn-ring) retains
it. The authors of [24] have shown by Monte-Carlo
simulations that the configuration with a hyperbolic
hedgehog has lower energy, than Saturn-ring. It has
been confirmed in [21] with the use of the dipole
Ansatz that though the equatorial ring has some
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metastability, its energy is higher than the energy of
the dipole configuration.

We can introduce the deformation coat which
includes all strong deformations of the director
field. This deformation area is a new “immersed par-
ticle” and we can use only self-consistence approach
in the case of week anchoring and small deformation
of the director field inside this new inclusion. We can
estimate the size of this deformation coat if we take
into account the total energy introduced in the liquid
crystal by a particle. For a spherical particle of radius
𝑅 in the case of strong anchoring, the free deforma-
tion energy can be presented in the form [21]

𝐹 strong ≈ 9

2
𝜋𝐾𝑅.

We assume that around the spherical particle there
exists a Saturn-ring disclination. The size of the de-
formation area is denoted as 𝑅*. At the next step we
calculate the free energy which can introduce the de-
formation area inside. This energy can be obtained
if we suppose that within this deformation area we
have the case of week anchoring and can use the dis-
tribution director field as in the case of weak anchor-
ing. This energy was obtained in Ref. [24], we have

𝐹weak =
𝜋

15

𝑊 2
𝑐 𝑅

*2

𝐾
,

where 𝑊𝑐 is the critical value of the anchoring energy
for the case of different particle sizes when outside
the particle singularity in the distribution of the di-
rector field does not appear. This critical value was
also obtained in Ref. [24] and is given by 𝑊𝑐 =

4𝐾𝑎3

𝑅4

where 𝑎 is the radius of the Saturn-ring disclination
around the spherical particle. Inside the deformation
area there occurs a disclination ring. The free energy
of this Saturn-ring disclination may be written in the
form [21]

𝐹 disc ≈ 2𝜋𝐾𝑎

(︂
3𝜋

4
+ 1

)︂
+ 8𝜋𝐾(𝑅* − 𝑎),

where the size of the Saturn-ring can be written in
the same form as before. To estimate the size of the
deformation coat, we compare the free energy that
really creates an inclusion in the case of strong an-
choring to the sum of the free energy that creates the
deformation coat outside and the free energy of the
Saturn-ring disclination inside this coat. Within the

context of the relation

𝐹weak + 𝐹 disc = 𝐹 strong,

the size of the deformation area reduces to 𝑅* ≈ 2𝑅.
This estimation was made in the case of a Saturn-
ring disclination inside the deformation coat, but this
approach can be also used in the case of different de-
fects which can appear inside this coat. In the case
of a dipole configuration in the distribution of the di-
rector field inside this area estimation is correct to,
but the deformation coat has asymmetric shape. The
deformation coats in all cases have approximately
equal sizes.

If the size of the elastic deformation is known, we
can study the drag force and inertial particle charac-
teristics. The friction drag force acting on a particle
that moves in a nematic liquid crystal is known from
the computer simulations [17, 19]. We focus our at-
tention on the effective mass of a particle moving in
a liquid crystal. As was shown earlier, the motion of
a particle traveling in a liquid crystal is accompa-
nied by the motion of the director deformation field
produced by the surface anchoring. Thus, a particle
moving inside a nematic liquid crystal has the kinetic
energy 𝑇 = 𝑚𝑢2/2 that contains the mass of the de-
formation coat [11, 18]. We assume that the deforma-
tion coat adiabatically follows the moving particle; a
similar assumption was used in constructing the po-
laron theory. In this regard it should be noted that
this assumption implies the restriction on the par-
ticle velocity, 𝑢 ≤ �̃�𝑡0, where 𝑡0 is the time of the
director transition to the steady state. relevant esti-
mates of a spherical size �̃� of the deformation coat. In
the framework of the concept of deformation coat,
the director distribution around a particle is given by
n = n(𝑡 −

∫︀
𝑢(𝑡′)𝑑𝑡′). The numerical estimate of the

effective mass can be obtained if the director distri-
bution around the moving particle is known. In the
case of weak anchoring [17] the isotropic part of the
effective mass can be written as

𝑚eff = 𝑚+
4𝐼

3

(︂
𝑊

4𝐾

)︂2
𝑅3

in accordance to the results presented in Ref. [18],
where 𝐼 is the density of the nematic liquid crystal
moment of the inertia.

We have already shown that a foreign particle pro-
duces liquid crystal distortion in a region much larger
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than the particle size and thus leads to an effective
interaction with another similar particle via the di-
rector field deformation. In this sense, the interac-
tion of spherical particles is also associated with the
director elastic field deformation. The particles dis-
persed in the liquid crystal cause long-range defor-
mation of the director field. The self-consistent ap-
proach provides a possibility to find the energy of
the inter-particle interaction. Then we can study the
thermodynamic behavior of complexes of such par-
ticles and describe the conditions for the formation
of new structures [9, 10]. The properties of the inter-
particle interaction in the system of foreign particles
in a liquid crystal determine the conditions of tem-
perature and concentration phase transitions that ac-
company the formation of spatially inhomogeneous
particle distributions [17, 25]. The first-order phase
transition can occur when the external field is present
and introduces topological defects in the nematic or-
dering. Since the interaction between colloidal par-
ticles is a long-range, it can lead to strong critical
divergence of the shear viscosity. Therefore, it is in-
teresting to study the complete temperature depen-
dence of the shear viscosity near the critical point
when the phase transition is accompanied by the for-
mation of inhomogeneous distributions in the system
of colloidal particles.

It turns out to be that the viscoelastic response
function contains two additive contributions associ-
ated with anomalous and background effects. The
anomalous contribution is the part of the viscoelastic
response function that diverges at the critical point
due to the presence of long-range correlation. Thus
the background contribution should be subtracted
from the experimental viscoelastic response function
in order to obtain the observable anomalous contri-
bution, which may then be compared to the the-
oretical predictions. This means that the compari-
son of our results with the experimental data would
be possible for the Newtonian viscosity, except for
the case of essential difference in the inter-particle
potential.

A fairly detailed description of the distribution of
viscoelastic properties in the system of interacting
particles is is given in Refs. [12–15]. Specifically, the
estimate for 𝐷eff(k) , where 𝑘 is the wavevector, is
given by

𝐷eff =
𝐷

𝑘𝑇

{︂
𝑑𝐺

𝑑̃︀𝜌 + 𝑞2𝑆

}︂
, (9)

where 𝐷 is the ordinary diffusion coefficient for a
spherical particle moving in condensed matter. The
first term in the right-hand part of this equation de-
scribes the shear flow distortion of the interacting
Brownian particle and can be written as

𝐺 = ̃︀𝜌𝑘𝑇 − 2𝜋

3
̃︀𝜌2𝑐(1− 𝑐)

∫︁
𝑑𝑟′𝑟′3

𝑑𝑉 (𝑟′)

𝑑𝑟′
𝑔𝑒𝑞(𝑟′), (10)

where ̃︀𝜌 is the concentration of the medium, 𝑐 is the
friction parameter for the particle that is foreign in
the liquid crystal, 𝑉 (𝑟′) is the pair interaction energy
between particles through the elastic deformation di-
rector field, and 𝑔𝑒𝑞(𝑟′) is the pair correlation func-
tion. The last term in Eq. (8) describes the diffusion
contribution to the recovery of the equilibrium struc-
ture with

𝑆 =
2𝜋

15
̃︀𝜌𝑐∫︁ 𝑑𝑟′𝑟′5

𝑑𝑉 (𝑟′)

𝑑𝑟′
×

×
{︂
𝑔𝑒𝑞(𝑟′) +

1

8
̃︀𝜌(1− 𝑐)

𝑑𝑔𝑒𝑞(𝑟′)

𝑑𝑟′

}︂
. (11)

Close to the critical point and also close to the off-
critical part of the spinodal decomposition, which
accompanies the first-order phase transition„ where
𝐷
𝑘𝑇

𝑑𝐺
𝑑̃︀𝜌 is small, the effective diffusion coefficient is

small for small wave vectors, a phenomenon that is
commonly referred to as critical slowing down.

As will be show, the diffusion coefficient can be
explicitly related to the structure factor in two sim-
ple cases: weak inter-particle interaction through the
director field deformation of the shear flow, and un-
der stationary shear flow in the case of inter-particle
interaction generating the phase transition with for-
mation of spatially inhomogeneous particle distribu-
tions. The above equation is related to the mean-field
description of the structure factor. It can be written
in the form;

𝐺 = ̃︀𝜌𝑘𝑇 +
2𝜋

3
̃︀𝜌2𝑐(1− 𝑐)

∫︁
𝑑𝑟′𝑟′2𝑉 (𝑟′)𝑔𝑒𝑞(𝑟′)−

−2𝜋

3
̃︀𝜌2𝑐(1− 𝑐)

∫︁
𝑑𝑟′𝑟′3𝑉 (𝑟′)

𝑑𝑔(𝑟′)

𝑑𝑟′
. (12)

The stiffness of the bond is decreases, thus the
temperature-dependence of the effective diffusion co-
efficient weakens. It is given by

𝐷eff = 𝐷

{︂
1− 𝑇𝑐 − 𝑎

𝑇

}︂
, (13)
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where

𝑎 =
2𝜋

3
̃︀𝜌2𝑐(1− 𝑐)

∫︁
𝑑𝑟′𝑟′3𝑉 (𝑟′)

𝑑𝑔(𝑟′)

𝑑𝑟′
,

and

𝑇𝑐 = −2𝜋

3
̃︀𝜌2𝑐(1− 𝑐)

∫︁
𝑑𝑟′𝑟′2𝑉 (𝑟′)𝑔𝑒𝑞(𝑟′) (14)

is the critical temperature of the first-order phase
transition accompanied by the formation of a spa-
tial inhomogeneous structure in the particle distribu-
tion. The relevance of the correlation length is that
it measures the range over which colloidal particles
in the unsorted system are correlated. Since 𝑑𝐺

𝑑̃︀𝜌 → 0

the correlation length 𝜉 =
√︁

𝑆/𝑑𝐺
𝑑̃︀𝜌 diverges under the

approach to the critical point and also under the ap-
proach to the off-critical part of the spinodal decom-
position. This means that at the critical point each
colloidal particle in the system is correlated with all
other colloidal particles. Hence the finite force is in-
sufficient to break up these many-particle correlations
and to generate the system flow since the viscosity
diverges under the approach to the spinodal. The ef-
fective diffusion coefficient depends on the correlation
length as 𝐷eff = 𝐷𝜉−2, this observation illustrates the
decrease of the relaxation time near the temperature
the first-order phase transition.

In the case of structure ordering we have to take
into account all the physical processes related to
the structure formation, so we propose the following
physical picture of the behavior of the effective diffu-
sion coefficient: in course of formation of the liquid
crystal each particle is dressed in an elastic deforma-
tion coat of the inhomogeneous director field distribu-
tion. This provides the increase of the effective mass
of each particle and the decrease of the effective dif-
fusion coefficient. In the course of liquid crystal for-
mation particles interact due to the induced director
field deformation. This repulsive interaction provides
the increase of the collective effective diffusion coeffi-
cient. When the interaction generates the first-order
phase transition accompanied by the inhomogeneous
particle distribution the effective diffusion coefficient
decreases. This effect is caused by the long-range cor-
relations of particles, which are foreign in the liquid
crystal. Within the context of this physical picture
and with regard to the experimental data the behav-
ior of the collective diffusion coefficient can be de-

scribed by the approximation formula given by

𝐷eff = 𝐷0

[︀
1− 𝑏(𝑇 − 𝑇in)

2
]︀{︂

1− 𝑇𝑐 − 𝑎

𝑇

}︂
, (15)

where 𝑇in is the temperature of the phase transition
in the medium in the liquid crystal state and 𝑏 is the
coefficient that determines the dependence on the ef-
fective mass or friction drag of the moving foreign
particles. This relation describes the dependence of
the effective collective diffusion coefficient on temper-
ature and particle density in a wide range of values
of these quantities. To conclude we note that the be-
havior of the effective diffusion coefficient should take
into account the particle dressing by the elastic de-
formation coat. This physical phenomenon provides
the increase of the effective mass of each particle, en-
hances the drag force and decreases the effective dif-
fusion coefficient. In the course of liquid crystal for-
mation the interaction between particles is induced by
the director field deformation. The interactions in the
system can cause the first-order phase transition that
also leads to the decrease of the effective diffusion co-
efficient. The formation of ordered structures is pos-
sible due to long-range correlations in many-particle
systems. This physical picture makes it possible to
interpret the collective diffusion processes observed
experimentally.
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КОЛЕКТИВНА ДИФУЗIЯ КОЛОЇДНИХ
ЧАСТИНОК В РIДИННОМУ КРИСТАЛI

Р е з ю м е

Запропоновано теорiю колективних дифузiйних процесiв у
системi колоїдних частинок у рiдинному кристалi. Описа-
но особливостi дифузiї, якi можна спостерiгати експеримен-
тально. Знайдено залежнiсть коефiцiєнта дифузiї вiд тем-
ператури та густини частинок. Показано, що колективна
дифузiя в системi колоїдних частинок у рiдинному криста-
лi пов’язана з пружними деформацiями директора, якi зу-
мовлюють далекосяжну взаємодiю частинок.
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