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MAGNETOELASTIC WAVES
IN FERROMAGNETS IN THE VICINITY
OF LATTICE STRUCTURAL PHASE TRANSITIONS

The dispersion laws for coupled magnetoelastic waves in ferromagnets with uniaxial or cu-
bic symmetry have been calculated. The features of obtained dispersion laws in the vicinity
of spin-reorientation phase transitions are analyzed. The interaction between elastic and spin
waves is shown to depend on the direction of the ferromagnet magnetic moment. The influence
of the magnetoelastic interaction on the dispersion law of quasispin waves in the degenerate
ground state of a uniaxial “easy plane” ferromagnet is studied. The results of calculations show
that the magnetoelastic interaction eliminates the degeneration and leads to the appearance of
a magnetoacoustic gap in the ferromagnet spectrum. The behavior of the spectra of coupled
magnetoelastic waves in the vicinity of lattice phase transitions, namely, in the vicinity of
martensitic phase transformations in materials with the shape memory effect, is analyzed. The
obtained results are used to interpret experimental data obtained for the Ni–Mn–Ga alloy. The
phenomenon of a drastic decrease of the elastic moduli for this alloy, when approaching the
martensitic phase transition point is explained theoretically. It is shown that the inhomoge-
neous magnetostriction is the main factor affecting the elastic characteristics of the material
concerned. A model dissipative function describing the relaxation processes associated with a
damping of coupled magnetoelastic waves in ferromagnets with cubic or uniaxial symmetry is
developed. It takes the symmetry of a ferromagnet into account and describes both the exchange
and relativistic interactions in the crystal.
K e yw o r d s: magnetoelastic interaction, dispersion law, ferromagnet, elastic modulus.

1. Introduction
The magnetoelastic interaction leads to the “cou-
pling” of spin waves, which propagate in magnetically
ordered crystals, with acoustic (elastic) waves. Such
magnetoelastic oscillations have been studied for
many years [1, 2], and their phenomenological model
has been developed rather well [3–5]. But nowadays,
the study of the interaction between the magnetic
and elastic subsystems becomes topical again. This
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is connected with numerous experiments [6–9] that
are performed with magnetically ordered systems, in
which the interaction concerned can be rather large.

The magnetoelastic interaction manifests itself sub-
stantially, when the frequencies of spin and acoustic
waves approach each other. In the case of magnetoa-
coustic resonance, the “repulsion” of the quasispin and
quasiacoustic branches of the wave spectrum takes
place [3, 4]. It is also well known that the magnetoe-
lastic interaction increases, as a magnetically ordered
system approaches the spin-reorientation phase tran-
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sitions [4, 10]. This occurs because the energy gap in
the spin wave spectrum decreases in this case. When
the energy gap becomes comparable by magnitude
with the “repulsion” between the quasispin and quasi-
acoustic branches of the spectrum, the magnetoelas-
tic interaction brings about a significant reduction
of the quasiacoustic wave velocity. Such a behav-
ior of magnetically ordered systems in the vicinity
of spin-reorientation phase transitions stimulated ac-
tive studies of coupled magnetoelastic waves at phase
transformations of other types.

Lately, structural phase transitions have been an
object of intensive researches, because of their deci-
sive role in such phenomena as superelasticity and
shape memory effect. Of special interest are the so-
called “martensitic transformations”, structural phase
transitions of the first kind from a high-symmetry
structure to a distorted low-symmetry one, which
take place at low temperatures [6–9]. A giant mag-
netostriction phenomenon was discovered in materi-
als, for which this phase transition is possible. The
phenomenon originates from a drastic decrease of the
elastic energy in the vicinity of martensitic transfor-
mations [11]. Such systems are called “ferromagnetic
alloys with the shape memory effect”. The marten-
sitic transformation in alloys with the shape mem-
ory effect is accompanied by a spontaneous defor-
mation of the crystalline lattice and a considerable
softening (reduction) of the shear elastic modulus
[7, 8, 12, 13]. In particular, the Ni–Mn–Ga alloys, in
which a martensitic transformation from the cubic
phase to the tetragonal one takes place, are inten-
sively studied. The most interesting feature of those
materials is a giant (more than 5%) magnetically in-
duced deformation. This deformation is caused by the
transformation in the twin structure of a single crystal
of the alloy under the action of an external magnetic
field [14–16].

The phenomena of magnetostriction growth and
shear elastic modulus softening, which were experi-
mentally revealed in a single crystal of the Ni–Mn–
Ga alloy in the vicinity of the martensitic transfor-
mation temperature, bring us to an idea about the
strong influence of the magnetoelastic interaction on
the spectra of collective vibrations in such materi-
als. However, the specific features of the magnetoelas-
tic interaction in the vicinity of phase transitions of
this type, namely, the phase transitions in the lattice,
were not considered in the classical works [3–5, 10].

In work [17], we have already calculated the influ-
ence of the interaction concerned on one of the elastic
moduli in the cubic ferromagnet with the shape mem-
ory effect. But the experimental data [6, 8] demon-
strate that the corresponding theoretical calculations
are extremely urgent for other elastic moduli as well,
because they also undergo appreciable variations at
martensitic phase transitions. Hence, the main aim
of this work is to estimate the influence of the mag-
netoelastic interaction for all possible acoustic modes
and for main magnetic phases in ferromagnets with
cubic and uniaxial symmetry.

It is also worth mentioning that a complete descrip-
tion of collective magnetoelastic oscillations cannot
be done making no allowance for their damping. The
theory describing the dissipation of elastic waves is
well developed. It is based on general principles ex-
pounded in the works by Landau [18, 19] and Gilbert
[20]. However, our further researches showed that the
indicated classical models describing the damping
of magnetization fluctuations have very significant
shortcomings [21–23]. Therefore, in the present work,
we also focused attention on the development of a
model describing the dissipation of coupled magne-
toelastic waves. We will also present the mechanism
of construction of a general dissipative function for
such oscillations.

2. Coupled Magnetoelastic Waves
in the Ferromagnet with Cubic Symmetry

2.1. Spectra of coupled
magnetoelastic waves in a ferromagnet
with cubic symmetry

Let us consider a ferromagnet with the cubic symme-
try of its lattice in an external magnetic field. When
describing the interaction between spin and elastic
waves, the total energy density for the crystal with
cubic symmetry can be represented in the form

𝐹 = 𝐹𝑚 + 𝐹𝑒 + 𝐹𝑚𝑒. (2.1)

The first term on the right-hand side of expression
(2.1) corresponds to the magnetic component of the
energy density. In the case of cubic symmetry, it looks
like [3]

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
+𝐾1

(︀
𝜇2
𝑥𝜇

2
𝑦 + 𝜇2

𝑥𝜇
2
𝑧 + 𝜇2

𝑦𝜇
2
𝑧

)︀
+

+𝐾2𝜇
2
𝑥𝜇

2
𝑦𝜇

2
𝑧 −MH, (2.2)
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where 𝛼 is the constant of the inhomogeneous ex-
change interaction; 𝐾1 and 𝐾2 are the magnetic
anisotropy constants of a cubic-symmetry ferromag-
net; M and H are the vectors of magnetization and
external magnetic fields, respectively; 𝜇 = M

𝑀0
is

the normalized magnetization vector, since the con-
stants in expression (2.2) are the energy-dimensional
quantities; and 𝑀0 is the saturation magnetization
value. The energy of demagnetizing fields in Eq. (2.2)
is neglected, because we do not consider a specific
form of the ferromagnetic specimen.

The term 𝐹𝑒 describing the density of the elastic
deformation energy looks like [24]

𝐹𝑒 =
3

2
(𝐶11 + 2𝐶12)𝑢

2
1 +

1

6
𝐶 ′(𝑢2

2 + 𝑢2
3)+

+2𝐶44(𝑢
2
4 + 𝑢2

5 + 𝑢2
6). (2.3)

The quantities 𝐶11, 𝐶12, 𝐶44, and 𝐶 ′ = (𝐶11 −
−𝐶12)/2 are elastic moduli of the second order for
the crystal with cubic symmetry [18]. The variables
𝑢1 = 1

3 (E𝑥𝑥 + E𝑦𝑦 + E𝑧𝑧), 𝑢2 =
√
3 (E𝑥𝑥 − E𝑦𝑦),

𝑢3 = (2E𝑧𝑧 − E𝑥𝑥 − E𝑦𝑦), 𝑢4 = 1
2 (E𝑦𝑧 + E𝑧𝑦), 𝑢5 =

= 1
2 (E𝑥𝑧 + E𝑧𝑥), and 𝑢6 = 1

2 (E𝑥𝑦 + E𝑦𝑥) are linear
combinations of the strain tensor components. They
are transformed according to the one- (𝑢1), two-
(𝑢2 and 𝑢3), and three-dimensional (𝑢4, 𝑢5, and 𝑢6)
irreducible representations of the crystal symmetry
group.

Finally, the third term on the right-hand side of ex-
pression (2.1) stands for the density of the interaction
energy between the magnetic and elastic subsystems
[24],

𝐹𝑚𝑒 = −𝛿0𝑢1(𝜇
2
𝑥 + 𝜇2

𝑦 + 𝜇2
𝑧)− 𝛿1{

√
3𝑢2(𝜇

2
𝑥 − 𝜇2

𝑦)+

+𝑢3(2𝜇
2
𝑧 − 𝜇2

𝑥 − 𝜇2
𝑦)}−

− 𝛿2(𝑢4𝜇𝑦𝜇𝑧 + 𝑢5𝜇𝑥𝜇𝑧 + 𝑢6𝜇𝑥𝜇𝑦), (2.4)

where the constants 𝛿0, 𝛿1, and 𝛿2 are parameters of
the magnetoelastic interaction.

By minimizing the magnetic component of the en-
ergy, it is easy to show that there are three basic
states for the magnetization vector in a cubic ferro-
magnet in the absence of an external magnetic field
(H = 0):

∙ along the fourth-order axis, M ‖ ⟨001⟩
(“phase 1”),

∙ along the diagonal of one of the cube faces,
M ‖ ⟨101⟩ (“phase 2”),

∙ along the cube diagonal, M ‖ ⟨111⟩ (“phase 3”).

All other possible directions of the magnetic mo-
ment are equivalent to one of the indicated above. In
the real experiments devoted to the study of the elas-
tic and magnetic properties of materials [6–9], the di-
rection of the external magnetic field coincides with
one of the indicated directions of the magnetic mo-
ment, and the magnitude of H is sufficiently large
(about 1000 Oe). Therefore, we may assume that the
equilibrium value of M is directed along one of those
directions.

Below, we consider small adiabatic oscillations of
the magnetic moment density 𝜇 in a ferromagnet
[3]. Accordingly, this parameter can be written in the
form

𝜇(r, 𝑡) = 𝜇0 +m(r, 𝑡), (2.5)

where m(r, 𝑡) are small fluctuation-induced devia-
tions from the equilibrium value 𝜇0, and the magneti-
zation vector in the the equilibrium state has the com-
ponents 𝜇0 = (0, 0, 1) in “phase 1”, 𝜇0 =

(︁
1√
2
, 0, 1√

2

)︁
in “phase 2”, and 𝜇0 = ( 1√

3
, 1√

3
, 1√

3
) in “phase 3”.

From the condition 𝜕𝐹/𝜕E𝑖𝑘 = 0, the equilibrium
values E0

𝑖𝑘 of the strain tensor components can be ob-
tained for each ground state of a cubic ferromagnet
(they will be quoted below). Hence, each strain ten-
sor component can also be written as the sum of a
homogeneous part and a small deviation from it,

E𝑖𝑘 = E0
𝑖𝑘 + 𝜀𝑖𝑘. (2.6)

The inhomogeneous part of the elastic strain tensor
can be expressed in terms of the particle displacement
vector U, by using the formula [4]

𝜀𝑖𝑘 =
1

2

(︂
𝜕𝑈𝑖

𝜕𝑥𝑘
+

𝜕𝑈𝑘

𝜕𝑥𝑖

)︂
. (2.7)

In order to find the dispersion laws for coupled
magnetoelastic waves in all ground states of a cubic
ferromagnet, let us use the dynamical equations [3, 4]
for the magnetization vector 𝜇 (the Landau–Lifshitz
equation),

𝜕m

𝜕𝑡
= −𝛾𝜇×Heff , (2.8)

and the particle displacement vector U,

𝜌Ü = − 𝛿𝐹

𝛿U
, (2.9)
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where Heff = − 𝛿𝐹
𝛿m is an effective magnetic field, 𝛾

the gyromagnetic ratio, and 𝜌 the density.
From Eq. (2.9), it is easy to obtain the dispersion

laws for free acoustic waves, if only the elastic en-
ergy is taken into account [18]. As follows from the
obtained formulas, the following elastic waves can
propagate in a crystal with cubic symmetry: the first
(𝑠2𝑙1 = 𝐶11/𝜌), second (𝑠2𝑙2 = (𝐶11 +𝐶12 + 2𝐶44)/2𝜌),
and third (𝑠2𝑙3 = (𝐶11 + 2𝐶12 + 4𝐶44)/3𝜌) longitudi-
nal sound waves, and the first (𝑠2𝑡1 = 𝐶44/𝜌), second
(𝑠2𝑡2 = 𝐶 ′/𝜌), and third (𝑠2𝑡3 = (𝐶11 − 𝐶12 + 𝐶44)/3𝜌)
transverse sound waves [18]. In the case of magnetoe-
lastic interaction, these elastic waves cannot be con-
sidered separately. Each of them, under certain con-
ditions, interacts with the fluctuations of the crystal
magnetic moment.

For further calculations, let us expand the total
energy density (2.1) in a power series in small de-
viations 𝑚𝑖 and 𝜀𝑖𝑘. Substituting them into the dy-
namical equations (2.8) and (2.9), we linearize the
latter. If we change in the obtained equations to the
Fourier components of the small deviations m =
= m0 exp {𝑖(kr− 𝜔𝑡)} and U = U0 exp {𝑖(kr− 𝜔𝑡)},
where 𝜔 is the frequency and k the wave vector of col-
lective waves, with respect to the time 𝑡 and the co-
ordinates r, Eqs. (2.8) and (2.9) bring us to a system
of six equations for the components of the vectors
m0 and U0. The resulting systems of equations for
each ground state of a cubic ferromagnet are given
in Appendix A. By equating the determinant of the
system of dynamical equations to zero, we obtain the
dispersion laws for coupled magnetoelastic waves in
the ground states of a cubic ferromagnet.

Let us consider three directions of the wave vector
of elastic waves. This procedure will allow us to de-
scribe all possible elastic waves that can propagate in
a ferromagnet with cubic symmetry.

Phase 1: H ‖ m ‖ ⟨001⟩
The equilibrium values of the strain tensor compo-
nents in this ground state look like

E0
𝑥𝑥 = E0

𝑦𝑦 =
𝛿0

3(𝐶11 + 2𝐶12)
− 2𝛿1

𝐶11 − 𝐶12
,

E0
𝑧𝑧 =

𝛿0
3(𝐶11 + 2𝐶12)

+
4𝛿1

𝐶11 − 𝐶12
,

E0
𝑥𝑧 = E0

𝑧𝑥 = E0
𝑦𝑧 = E0

𝑧𝑦 = E0
𝑥𝑦 = E0

𝑦𝑥 = 0.

The dispersion laws are as follows. If k ‖ ⟨100⟩,

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑙1𝑘

2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 −

− 𝛾2𝑀2
0𝜔

2
𝑚1)− 𝛿22

{︂
𝜔𝑚1𝛾

2𝑘2

4𝜌

}︂]︂
= 0. (2.10)

If k ‖ ⟨110⟩,

(𝜔2 − 𝑠2𝑡2𝑘
2)(𝜔2 − 𝑠2𝑙2𝑘

2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 −

− 𝛾2𝑀2
0𝜔

2
𝑚1)− 𝛿22

{︂
𝜔𝑚1𝛾

2𝑘2

4𝜌

}︂]︂
= 0. (2.11)

If k ‖ ⟨111⟩,

(𝜔2−𝑠2𝑡3𝑘
2)

[︂
(𝜔2−𝑠2𝑡3𝑘

2)(𝜔2−𝑠2𝑙3𝑘
2)(𝜔2−𝛾2𝑀2

0𝜔
2
𝑚1)−

− 𝛿22

{︂
𝜔𝑚1𝛾

2𝑘2

3𝜌
(𝜔2 − (𝑠2𝑙3 + 2𝑠2𝑡3)𝑘

2/3)

}︂]︂
= 0. (2.12)

In expressions (2.10)–(2.12), the following notation
was introduced:

𝜔𝑚1 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

2𝐾1

𝑀2
0

+
72𝛿21

𝑀2
0 (𝐶11 − 𝐶12)

. (2.13)

Phase 2: H ‖ m ‖ ⟨101⟩
The equilibrium values of the strain tensor compo-
nents in this ground state look like

E0
𝑥𝑥 = E0

𝑧𝑧 =
𝛿0

3(𝐶11 + 2𝐶12)
+

𝛿1
𝐶11 − 𝐶12

,

E0
𝑦𝑦 =

𝛿0
3(𝐶11 + 2𝐶12)

− 2𝛿1
𝐶11 − 𝐶12

,

E0
𝑥𝑧 = E0

𝑧𝑥 =
𝛿2

8𝐶44
, E0

𝑦𝑧 = E0
𝑧𝑦 = E0

𝑥𝑦 = E0
𝑦𝑥 = 0.

The dispersion laws are as follows. If k ‖ ⟨100⟩,

(𝜔2 − 𝑠2𝑡1𝑘
2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑙1𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚2𝜔𝑚3)− 𝛿21

{︂
36𝜔𝑚2𝛾

2𝑘2

𝜌
×

× (𝜔2 − 𝑠2𝑡1𝑘
2)

}︂
− 𝛿22

{︂
𝜔𝑚3𝛾

2𝑘2

8𝜌
(𝜔2 − 𝑠2𝑙1𝑘

2)

}︂]︂
= 0.

(2.14)
If k ‖ ⟨110⟩,

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑡2𝑘

2)(𝜔2 − 𝑠2𝑙2𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚2𝜔𝑚3)−
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− 𝛿21

{︂
18𝜔𝑚2𝛾

2𝑘2

𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − (𝑠2𝑙2 + 𝑠2𝑡2)

2
𝑘2)

}︂
−

−𝛿22

{︂
3𝜔𝑚3𝛾

2𝑘2

16𝜌
(𝜔2−𝑠2𝑡2𝑘

2)(𝜔2− (𝑠2𝑙2 + 2𝑠2𝑡1)

3
𝑘2)

}︂
=0.

(2.15)
If k ‖ ⟨111⟩,

(𝜔2 − 𝑠2𝑡3𝑘
2)

[︂
(𝜔2 − 𝑠2𝑡3𝑘

2)(𝜔2 − 𝑠2𝑙3𝑘
2)×

× (𝜔2−𝛾2𝑀2
0𝜔𝑚2𝜔𝑚3)−𝛿21

{︂
24𝜔𝑚2𝛾

2𝑘2

𝜌
(𝜔2−𝑠2𝑙3𝑘2)

}︂
−

− 𝛿22

{︂
𝜔𝑚3𝛾

2𝑘2

4𝜌
(𝜔2 − (𝑠2𝑙3 + 8𝑠2𝑡3)𝑘

2/9)

}︂]︂
= 0. (2.16)

In expressions (2.14)–(2.16), the following notations
were introduced:

𝜔𝑚2 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐾1

𝑀2
0

+
𝐾2

2𝑀2
0

+

+
36𝛿21

𝑀2
0 (𝐶11 − 𝐶12)

+
𝛿22

8𝑀2
0𝐶44

, (2.17)

𝜔𝑚3 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
− 2𝐾1

𝑀2
0 0

+
𝛿22

4𝑀2
0𝐶44

.

Phase 3: H ‖ m ‖ ⟨111⟩
The equilibrium values of the strain tensor compo-
nents in this ground state look like

E0
𝑥𝑥 = E0

𝑦𝑦 = E0
𝑧𝑧 =

𝛿0
3(𝐶11 + 2𝐶12)

,

E0
𝑥𝑧 = E0

𝑧𝑥 = E0
𝑦𝑧 = E0

𝑧𝑦 = E0
𝑥𝑦 = E0

𝑦𝑥 =
𝛿2

12𝐶44
.

The dispersion laws are as follows. If k ‖ ⟨100⟩,

(𝜔2 − 𝑠2𝑡1𝑘
2)

[︂
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑙1𝑘
2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚4)− 𝛿21

{︂
32𝜔𝑚4𝛾

2𝑘2

𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)

}︂
−

− 𝛿22

{︂
𝜔𝑚4𝛾

2𝑘2

9𝜌
(𝜔2 − 𝑠2𝑙1𝑘

2)

}︂]︂
= 0. (2.18)

If k ‖ ⟨110⟩,

(𝜔2 − 𝑠2𝑡1𝑘
2)(𝜔2 − 𝑠2𝑡2𝑘

2)×

× (𝜔2 − 𝑠2𝑙2𝑘
2)(𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚4)− 𝛿21

{︂
32𝜔𝑚4𝛾

2𝑘2

𝜌
×

× (𝜔2 − 𝑠2𝑡1𝑘
2)

(︂
𝜔2 − (3𝑠2𝑙2 + 𝑠2𝑡2)

4
𝑘2
)︂}︂

−

− 𝛿22

{︂
𝜔𝑚4𝛾

2𝑘2

12𝜌
(𝜔2 − 𝑠2𝑡2𝑘

2)

(︂
𝜔2 − (𝑠2𝑙2 + 2𝑠2𝑡1)

3
𝑘2
)︂}︂

−

− 𝛿1𝛿2

{︂
4𝜔𝑚4𝛾

2𝑘2

3𝜌
(𝜔2 − 𝑠2𝑡1𝑘

2)(𝜔2 − 𝑠2𝑡2𝑘
2)

}︂
= 0.

(2.19)
If k ‖ ⟨111⟩,

(𝜔2 − 𝑠2𝑡3𝑘
2)(𝜔2 − 𝑠2𝑙3𝑘

2)

[︂
(𝜔2 − 𝑠2𝑡3𝑘

2)×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚4)− 𝛿21

{︂
32𝜔𝑚4𝛾

2𝑘2

𝜌

}︂
−

− 𝛿22

{︂
𝜔𝑚4𝛾

2𝑘2

18𝜌

}︂
− 𝛿1𝛿2

{︂
8𝜔𝑚4𝛾

2𝑘2

3𝜌

}︂]︂
= 0. (2.20)

In expressions (2.18)–(2.20), the following notation
was introduced:

𝜔𝑚4 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
− 4𝐾1

3𝑀2
0

− 4𝐾2

9𝑀2
0

+
𝛿22

4𝑀2
0𝐶44

. (2.21)

Thus, expressions (2.10)–(2.20) are the dispersion
laws written in the general form for coupled mag-
netoelastic waves in a ferromagnet with cubic sym-
metry. These dispersion equations have the standard
structure [3, 4]. If the magnetoelastic interaction is
neglected (𝛿𝑖 → 0), they become split into classical
dispersion laws for spin waves [3] and elastic waves in
cubic crystals [18].

The dispersion laws (2.10)–(2.20) calculated for
coupled magnetoelastic waves in a ferromagnet with
cubic symmetry allow the influence of the magnetic
subsystem on the elastic properties of a crystal, more
specifically, on the corresponding elastic moduli, to
be estimated. For example, from the dispersion laws
obtained for a cubic ferromagnet, it is easy to see
that the magnetoelastic interaction with the first and
third transverse sounds takes place for all equilibrium
directions of the magnetic moment in the cubic fer-
romagnet, unlike other sound modes. For the illus-
trative purpose, the possibility of the magnetoelastic
interaction depending on the magnetic moment di-
rection in a ferromagnet is indicated in Table 2.1 for
each acoustic mode. It is important to note that the
application of the magnetoelastic energy in the form
(2.4) makes it possible to distinctly identify the part
of this energy (i.e. the constant 𝛿𝑖) that is responsi-
ble for the interaction with a definite acoustic mode,
in contrast to the classical expression that was used,
e.g., in work [4]. This circumstance is also convenient
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to be displayed in Table 2.1. Thus, if the magnetoelas-
tic interaction is possible in a certain acoustic mode,
Table 2.1 demonstrates the magnetoelastic constant
characterizing this interaction.

The analysis of the dispersion laws (2.10)–(2.20)
reveals that they do not contain the constant 𝛿0. As
a result, the influence of the equilibrium part of
the magnetoelastic energy is not taken into ac-
count. Really, if dynamical phenomena (e.g., the
magnetoelastic resonance) are considered, the influ-
ence of this term cannot be taken into account. A
theoretical model making allowance for the influence
of the equilibrium part of the magnetoelastic energy
was proposed in work [25].

The constant 𝛿1 characterizes the influence of the
magnetic subsystem on the second transverse sound
and, accordingly, on the elastic modulus 𝐶 ′. From
the obtained dispersion laws, one can easily see that,
as was shown earlier [17], the interaction with this
acoustic mode cannot be described in phase 1. The
constant 𝛿2, in its turn, characterizes the influence of
the magnetic subsystem on the first transverse sound
and the modulus 𝐶44.

2.2. Magnetoelastic interaction
with the first transverse sound in an alloy
with the shape memory effect

As shown in Table 2.1, the first transverse sound
can be described for two directions of the wave
vector of elastic vibrations: along the fourth-order
axis and along the diagonal of the cube face. So
let us consider below the directions k ‖ ⟨100⟩ and
k ‖ ⟨110⟩. The influence of the magnetic subsystem
on the first transverse sound and, accordingly, on
the elastic modulus 𝐶44 can be described, by analyz-
ing the magnetoacoustic resonance at the frequency
𝜔ph = (𝐶44/𝜌)

1/2𝑘. In this case, the dispersion laws
given above transform into the following dispersion
equation, which has a single general form for all di-
rections of the crystal magnetic moment:

(𝜔2 − 𝜔2
ph)(𝜔

2 − 𝜔2
sw)− 𝛿22𝜉 = 0, (2.22)

where 𝜔sw is the frequency of uncoupled spin waves,
and 𝜉 the coefficient of the magnetoelastic interac-
tion. The values of those parameters depend on the
direction of the magnetic moment in a ferromagnet
and the direction of the wave vector of collective
waves. They are quoted in Table 2.2.

The solution of Eq. (2.22) looks like

𝜔2
± =

1

2

{︁
𝜔2
ph + 𝜔2

sw ± [4𝜉𝛿22 + (𝜔2
ph − 𝜔2

sw)
2]1/2

}︁
.

(2.23)

The corresponding dispersion curve consists of two
branches: a quasimagnon and quasiphonon ones (see
Fig. 2.1). From Eq. (2.23), one can easily see that,
when the system approaches the magnetoacoustic res-
onance, 𝜔sw → 𝜔ph, these are the quantities 𝜉 and 𝛿2
that govern the “repulsion” between the quasimagnon
and quasiphonon branches.

Let us evaluate the obtained dispersion law (2.23)
in various cases and use a material with the shape
memory effect as an example (Fig. 2.1). The values of
the constants that enter Eq. (2.23) are taken those for
the Ni–Mn–Ga alloy, because nowadays this alloy is
one of the most interesting representatives of the ma-
terials with the shape memory effect. This alloy un-
dergoes a martensitic phase transformation, namely,
a transition from the cubic phase into the tetragonal
one, in the vicinity of room temperature [26].

While making calculations for the Ni–Mn–Ga al-
loy, the known experimental values of its anisotropy
constants in the cubic phase (austenite) [27], which

Table 2.1. Interaction of acoustic
modes with spin waves in a ferromagnet
with cubic symmetry

Acoustic mode
and wave vector

direction

Phase 1:
H‖M‖⟨001⟩

Phase 2:
H‖M‖⟨101⟩

Phase 3:
H‖M‖⟨111⟩

𝑠𝑙1
k ‖ ⟨100⟩ No interaction 𝛿1 𝛿1

𝑠𝑡1
k ‖ ⟨100⟩ 𝛿2 𝛿2 𝛿2

𝑠𝑡1
k ‖ ⟨110⟩ 𝛿2 𝛿2 𝛿2

𝑠𝑙2
k|| ⟨110⟩ No interaction 𝛿1, 𝛿2 𝛿1, 𝛿2

𝑠𝑡2
k ‖ ⟨110⟩ No interaction 𝛿1 𝛿1

𝑠𝑙3
k ‖ ⟨111⟩ 𝛿2 𝛿2 No interaction

𝑠𝑡3
k ‖ ⟨111⟩ 𝛿2 𝛿1, 𝛿2 𝛿1, 𝛿2
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a b
Fig. 2.1. Dispersion laws for magnetoelastic waves in the ground state H ‖ M ‖ ⟨001⟩ for two values of the modulus
(𝑎) and in the ground states H ‖ M ‖ ⟨001⟩ and H ‖ M ‖ ⟨111⟩ for 𝐶44 = 40 GPa (𝑏)

Table 2.2. Coefficient of magnetoelastic interaction
with the first transverse sound for various ground states of a cubic ferromagnet

Wave vector
direction

Phase 1:
H ‖ M ‖ ⟨001⟩
𝜔sw = 𝛾𝑀0𝜔𝑚1

Phase 2:
H ‖ M ‖ ⟨101⟩

𝜔sw = 𝛾𝑀0(𝜔𝑚2𝜔𝑚3)1/2

Phase 3:
H ‖ M ‖ ⟨111⟩
𝜔sw = 𝛾𝑀0𝜔𝑚4

k ‖ ⟨100⟩ 𝜁 = 𝜔𝑚1𝛾
2𝑘2

4𝜌
𝜁 = 𝜔𝑚3𝛾

2𝑘2

8𝜌
𝜁 = 𝜔𝑚4𝛾

2𝑘2

9𝜌

k ‖ ⟨110⟩ 𝜁 = 𝜔𝑚1𝛾
2𝑘2

4𝜌
𝜁 = 𝜔𝑚3𝛾

2𝑘2

16𝜌
𝜁 = 𝜔𝑚4𝛾

2𝑘2

36𝜌

correspond to phase 1, 𝐾1 = 2.7 × 104 erg/cm
3 and

𝐾2 = −6.1 × 104 erg/cm
3, as well as the satura-

tion magnetization 𝑀0 = 600 Gs and the density
𝜌 ≈ 8 g/cm

3, were used. The value of the inhomo-
geneous exchange interaction constant can be esti-
mated from the expression 𝛼 ∼= (𝑘B𝑇C𝐴

2𝑀0)/𝜇B

[3], where 𝑇C = 360 K is the Curie temperature
[27], 𝐴 = 0.41 × 10−8 cm is the distance between
the magnetic atoms [27], 𝜇B is the Bohr magneton,
and 𝑘B the Boltzmann constant. The external mag-
netic field must be sufficiently large to satisfy the
conditions for the ground states to exist (𝜔𝑚𝑖 > 0,
where 𝑖 = 1, 2, 3, 4) and to correspond to the condi-
tions of experimental researches that are usually per-
formed with such materials. Therefore, we selected
𝐻 = 1000 Oe. The elastic moduli were also taken in
the austenite case: 𝐶44 = 40 GPa and 𝐶 ′ = 14 GPa
[28]. The magnetoelastic interaction constant 𝛿2 has
not been evaluated till now. Proceeding from the fact
that it must be not less than 𝛿1 and 𝛿1 ∼ 107 erg/cm

3

[24], we took 𝛿2 ∼ 109 erg/cm
3 for the results to be

more illustrative.
The coefficient 𝜉 of magnetoelastic interaction be-

tween the spin waves and the first transverse sound
depends on the magnetic moment direction in the
ferromagnet (see Table 2.2 and Fig. 2.1, 𝑏). This in-
teraction reveals itself most strongly in the ground
state at H ‖ M ‖ ⟨001⟩. It turns out that the coef-
ficient of magnetoelastic interaction in the ground
states at H ‖ M ‖ ⟨101⟩ and H ‖ M ‖ ⟨111⟩ also de-
pends on the direction of the wave vector of collective
oscillations (Table 2.2).

The collective oscillations of spin waves and the
first transverse sound are described by the dispersion
equation (2.23), which has the same behavior for each
direction of the ferromagnet magnetic moment. From
Eq. (2.23), it follows that if the elastic modulus 𝐶44

drastically decreases, the magnetoelastic interaction
considerably increases. In Fig. 2.1, 𝑎, using the Ni–
Mn–Ga alloy as an example, it is shown that the re-
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duction of the elastic modulus 𝐶44 by a factor of only
two gives rise to a significant “repulsion” between the
quasimagnon and quasiphonon branches of the dis-
persion curve. Such a behavior of the quasiphonon
mode results in that resonance measurement meth-
ods can give even more underestimated values of the
elastic modulus 𝐶44.

2.3. Magnetoelastic interaction
with the second transverse sound
in an alloy with the shape memory effect

As was marked above, an inherent property of fer-
romagnetic alloys with the shape memory effect be-
longing to the Ni–Mn–Ga family is the martensitic
transformation accompanied by a spontaneous defor-
mation of the crystal lattice and a pronounced soft-
ening (reduction) of the shear elastic modulus 𝐶 ′

[7, 8, 12, 13]. That is why the acoustic mode char-
acterized by this elastic modulus, 𝑠2𝑡2 = 𝐶 ′/𝜌, is also
called the “soft” mode.

The second transverse sound can be described, if
the wave vector of elastic vibrations is directed along
the diagonal of the cube face. Therefore, let us con-
sider the case k‖ ⟨110⟩ below. The influence of the
magnetic subsystem on the second transverse sound
and, accordingly, on the elastic modulus 𝐶 ′ can be de-
scribed, by analyzing the magnetoacoustic resonance
at the frequency 𝜔ph = (𝐶 ′/𝜌)1/2𝑘. In this case, dis-
persion laws (2.20) and (2.23) transform into a disper-
sion equation, which has the following general form
for two directions of the crystal magnetic moment:

(𝜔2 − 𝜔2
ph)(𝜔

2 − 𝜔2
sw)− 𝛿21𝜉 = 0, (2.24)

where 𝜔sw is the frequency of uncoupled spin waves,
and 𝜉 is the coefficient of magnetoelastic interac-
tion. The values of those parameters depend on the
magnetic moment direction in a ferromagnet and are
quoted in Table 2.3.

The solution of Eq. (2.24) is analogous to expres-
sion (2.23) and looks like [17]

𝜔2
± =

1

2

{︁
𝜔2
ph+ 𝜔2

sw± [4𝜉𝛿21 + (𝜔2
ph− 𝜔2

sw)
2]1/2

}︁
. (2.25)

Proceeding from the available experimental data for
the magnetic anisotropy constants of the Ni–Mn–
Ga alloy [27], which were quoted above, the equilib-
rium direction of the magnetization vector in a Ni–
Mn–Ga single crystal in the vicinity of the marten-

sitic transformation temperature is parallel to di-
rection [100]. But, in this case, there is no interac-
tion between the soft mode and magnetic oscilla-
tions. Modern experimental facilities can generate ex-
ternal magnetic fields that are strong enough for the
magnetization vector to be reoriented in their direc-
tion. Therefore, let us consider the case where the
magnetic field is parallel to the crystallographic di-
rection [101]. According to the magnetic energy mini-
mization condition (2.2), the magnetic field stabilizes
the magnetic moment in the direction M ‖[101], if
the inequality 𝐻 > 𝐻1 ≡ 2𝐾1/𝑀0 is satisfied. For
the experimental values given above, the value of the
characteristic field 𝐻1 is about 90 Oe.

Solution (2.25) describes the dispersion of quasi-
acoustic (𝜔−) and quasispin (𝜔−) waves in a crys-
tal [17]. The quasiacoustic mode is gapless, whereas
the quasispin wave spectrum has a gap 𝜔0 = 𝛾(𝐻 −
−𝐻1)

1/2(𝐻+𝐻2)
1/2, where 𝐻2 ≡ (𝐾1+𝐾2/2)/𝑀0 ≈

≈ 100 Oe. The both spectra are depicted in Fig. 2.2.
Due to a large discrepancy of the values for the shear
elastic modulus in various Ni–Mn–Ga alloys (the 𝐶 ′

min

values within an interval of 1–60 GPa were measured
at the temperature of the martensitic transformation
for quasistoichiometric alloys [7, 8, 12, 13]), the spec-
tra shown in Fig. 2.2, 𝑎 were calculated for three dif-
ferent values of the shear elastic modulus. The field
value 𝐻 = 3300 Oe corresponds to the frequency
𝜔0/2𝜋 = 9.1 GHz.

Let us consider the case of strong external mag-
netic field (Fig. 2.2, 𝑎). Then the magnetoelastic in-
teraction in a crystal with the 60-GPa shear modu-
lus manifests itself in a narrow interval of the wave
vector values, which includes the resonance value
𝑘0 ≈ 2.4× 105 cm−1. The magnetoelastic interaction
does not change significantly the dispersion curves of
the acoustic and spin waves far from the resonance. In
a crystal with the 35-GPa shear modulus, the inter-
action between the acoustic and spin waves results in

Table 2.3. Coefficient of magnetoelastic
interaction with the second transverse sound
for various ground states of a cubic ferromagnet

Wave vector
direction

Phase 2:
H ‖ M ‖ ⟨101⟩

𝜔sw = 𝛾𝑀0(𝜔𝑚2𝜔𝑚3)1/2

Phase 3:
H ‖ M ‖ ⟨111⟩
𝜔sw = 𝛾𝑀0𝜔𝑚4

k ‖ ⟨110⟩ 𝜉 = 9𝜔𝑚2𝛾
2𝑘2

𝜌
𝜉 = 24𝜔𝑚4𝛾

2𝑘2

𝜌
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a b

c d
Fig. 2.2. Dispersion laws for coupled magnetoelastic waves calculated for various values of the elastic shear
modulus and an external magnetic field (H ‖[101]) (𝑎, 𝑏, 𝑐), and in the cases H ‖[001] (thin curves) and H ‖[101]
(thick curves) (𝑑). The slope of the thin solid line corresponds to the sound velocity that decreases due to the
magnetoelastic interaction [17]

a strong “repulsion” 1 between the quasiacoustic and
quasispin spectral branches. Therefore, it can mani-
fest itself in a wider interval of wave vector values,
Δ𝑘 ∼ 105 cm−1. In this Δ𝑘-interval, an appreciable
nonlinearity of the quasiacoustic branch of the dis-
persion curve is observed. In a crystal with the 25-
GPa shear modulus, the magnetoelastic interaction
does not change the dispersion law of collective oscil-
lations significantly, because the quasiacoustic branch
passes far from the quasispin one [17]. The shear mod-
uli for the family of Ni–Mn–Ga alloys diminish from
a few tens of gigapascals to about one gigapascal,

1 The “repulsion” is formally defined as Δ𝜔 ≡ 𝜔+(𝑘0)−
−𝜔−(𝑘0), where 𝑘0 satisfies the equation 𝜔sw(𝑘0) =

= 𝜔ph(𝑘0).

when the alloy temperature approaches the marten-
sitic transformation temperature. Thus, the influence
of the magnetoelastic interaction on the wave spectra
is the most pronounced within a certain temperature
interval located above the martensitic transformation
temperature. In this interval, the value of the shear
elastic modulus is rather close to 35 GPa.

Standard experimental methods allow magnetoe-
lastic resonance oscillations to be observed in vari-
ous frequency intervals and, hence, at various exter-
nal magnetic fields. The reduction of the resonance
field to the value 𝐻 = 500 Oe results in a displace-
ment of the resonance interval Δ𝑘 to lower wave
vector values (see Fig. 2.2, 𝑏). In this case, a large
“repulsion” between the quasiacoustic and quasispin
branches of the spectrum is appreciable even at very
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low values of the shear modulus (𝐶 ′ = 5 GPa). Thus,
the lower section of the temperature interval, where
the magnetoelastic interaction of oscillations is sub-
stantial, can reach the martensitic transformation
temperature.

Another manifestation of the magnetoelastic inter-
action is shown in Fig. 2.2, 𝑐, which illustrates a
strong nonlinearity in the initial section of the quasi-
acoustic dispersion curve. This feature is well observ-
able for crystals with 𝐶 ′ < 5 GPa, if the frequency
gap 𝜔0 is comparable with the repulsion magnitude
Δ𝜔. As was already mentioned above, the change of
the dispersion law for the quasiacoustic mode was re-
vealed long ago in the closest vicinity of spin-orien-
tation phase transitions [29, 30]. As far as we know,
a possibility to observe this effect when approaching
martensitic phase transformations has not been dis-
cussed yet.

Figure 2.2, 𝑑 is a good illustration of the differ-
ence between the dispersion laws for quasiacoustic
waves associated with the reorientation of an ex-
ternal magnetic field applied to a single-crystalline
specimen of the Ni–Mn–Ga alloy. The bold disper-
sion curves correspond to the field direction H ‖[101]
(see also Fig. 2.2, 𝑐), and the thin curves to the
case H ‖[001]. As was shown above, the change of
the magnetic field direction from [101] to [001] (or
[100]) “switches off” the influence of the magnetoe-
lastic interaction on the soft elastic modulus. Conse-
quently, the thin dotted and dot-dashed lines demon-
strate linear dispersion laws calculated in the cases
where “free” sound waves propagate in the crystals
with the shear elastic moduli 𝐶 ′ = 5 and 1.5 GPa, res-
pectively. The latter case is the most interesting one,
because it reveals a possibility of a drastic change
of the dispersion dependence induced by the reori-
entation of an external magnetic field. If the field is
directed along the direction [001], the dispersion law
looks like 𝜔ph = (𝐶 ′/𝜌)1/2𝑘. However, if the field is
parallel to the direction [101], the dispersion law for
the quasiacoustic mode can be expressed as �̃�ph =
= 𝑐1𝑘 + 𝑐2𝑘

2 + ... . The coefficient 𝑐1 is the tan-
gent of the slope angle of the solid line shown in
Fig. 2.2, 𝑑. The “effective” shear modulus, which can
be determined from ultrasonic or Dynamic Mechan-
ical Analysis (DMA) experiments, can be expressed
in terms of this coefficient as follows: 𝐶eff = 𝜌𝑐21. A
careful consideration of the initial section of the dis-
persion curve testifies that the dispersion of a quasi-

acoustic wave with a wavelength of about 1 cm is
practically linear and is characterized by the effec-
tive modulus 𝐶eff ≈ 70 MPa. Such a value calculated
for the effective modulus is evidently too small to
be measured experimentally. Moreover, under real ex-
perimental conditions, the mixing of waves of various
types cannot be avoided completely. Nevertheless, the
obtained calculation results can explain abnormally
low experimental values of the elastic moduli reported
for the Ni–Mn–Ga alloys in works [7, 8, 12].

If the magnetic field vector is parallel to the direc-
tion [101], a strong influence of the magnetoelastic
interaction on the soft elastic mode can be observed
even at the magnetic field 𝐻 = 500 Oe. To illustrate
this statement, let us consider the interesting case of
an abnormally soft shear modulus that varies from
5 to 0.5 GPa when the temperature approaches the
martensitic transition region.

If the shear modulus exceeds 4 GPa, the disper-
sion curves of the free acoustic and spin waves twice
intersect each other (see Fig. 2.3, 𝑎). In this case,
the repulsion between the dispersion curves of quasi-
acoustic and quasispin waves is well pronounced in a
wide wave vector interval Δ𝑘 ∼ 3× 105 cm−1. If the
shear modulus equals 4 GPa, the dispersion curves
of the free acoustic and spin waves touch each other
at a certain point, but the dispersion curves still re-
pulse each other (see Fig. 2.3, 𝑏). The reduction of the
shear modulus to 1.5 GPa gives rise to a significant
approaching of the quasispin and purely spin disper-
sion curves. The dispersion law for the quasiacoustic
wave is practically linear, but the speed of quasiacous-
tic wave is lower than that of the free acoustic wave
(see Fig. 2.3, 𝑐). The shear elastic modulus is propor-
tional to the square of the sound speed. Therefore,
even a minor reduction in the sound speed brings
about a significant difference between the real and
effective shear moduli: 𝐶eff/𝐶 ′ ≈ 0.75. Furthermore,
the softening of the shear elastic modulus leads to
a further reduction of the quasiacoustic wave veloc-
ity (see Fig. 2.3, 𝑑) and the restoration of the shear
elastic modulus nonlinearity.

The theoretical analysis of the spectra of coupled
waves in ferromagnetic alloys with the shape memory
effect testifies that there can be an abnormally strong
coupling of spin waves with the soft elastic vibration
mode, when approaching the martensitic transforma-
tion temperature. The main effect obtained owing to
this analysis consists in a substantial reduction of the
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c d
Fig. 2.3. Comparison of the dispersion curves for coupled magnetoelastic waves (solid curves) with the dis-
persion curves obtained for free spin and acoustic waves (dashed curves). The solid curves correspond to the
magnetic field direction H ‖[101], and the dashed curves to H ‖[001]

H || [001]

k || [110]

[100]

[001]

U || [ 10]1

H || [101]

]101[||H ]001[||H

eff
C

5 ,1

001

Fig. 2.4. Relative orientation of the prism-like specimen and
the wave and polarization vectors of the acoustic wave that is
suitable for the experimental observation of the magnetoelastic
interaction effects in the external magnetic fields H ‖[101] and
H ‖[001]

second transverse sound speed 𝑠𝑡2 and the shear elas-
tic modulus in the single-crystalline Ni–Mn–Ga. The
reduction can be observed experimentally, by chang-
ing the direction of the external magnetic field from
[001] to [101].

The orientation of a single crystal that is suit-
able for the observation of this effect is shown in
Fig. 2.4. The directions of the wave vector, the mag-
netic field, and the polarization vector are also shown
in the figure for illustration. The specimen has to be a
strongly elongated prism, with its long side being ori-
ented along the crystallographic direction [110]. If the
magnetic field is directed along the crystallographic
direction [101], the quasiacoustic wave frequency is
determined by the values of the effective modulus 𝐶eff

and the specimen length. The value of the effective
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modulus is close to that of the shear elastic modu-
lus, if the latter equals 5 GPa (see Fig. 2.2, 𝑑). If the
shear modulus values areclose to 1.5 GPa or lower, the
effective modulus can reach values of 100 MPa (see
Figs. 2.2, 𝑑 and 2.3, 𝑑). A typical length of experimen-
tal specimens is about 1 cm. Therefore, the resonance
frequency is about 105 Hz, if 𝐶eff ≈ 𝐶 ′ = 5 GPa, and
close to 104 Hz, if 𝐶eff ≈ 100 MPa.

It is worth noting that if the magnetic field is ap-
plied in the direction [101] and the magnitude of the
resonance field does not exceed 500 Oe, the phonon-
magnon coupling manifests itself in a wide interval
of wave vector magnitudes. In this case, the magne-
toelastic interaction can considerably affect the ther-
modynamic properties of ferromagnetic alloys of the
Ni–Mn–Ga family.

3. Coupled Magnetoelastic Waves
in a Ferromagnet with Uniaxial Symmetry

3.1. Magnetoelastic gap
in a uniaxial ferromagnet
as a manifestation of the Higgs effect

In various physical domains, there are examples of
systems that demonstrate the spontaneous violation
of their symmetry. These are systems, whose energy
is characterized by a certain symmetry, whereas the
real physical state of the system, which corresponds
to a partial solution of the equation of motion, is
not characterized by this symmetry. Such a situation
takes place, when the energy minimum of the system
corresponds to a number of states with a continuous
degeneracy parameter. The symmetry can be violated
owing to an arbitrarily small perturbation of a special
type [31, 32].

Currently, it is well known that there is a magne-
toelastic gap in the spin-wave spectra of magnetically
ordered materials owing to the interaction between
the spin and acoustic waves. In work [10], a hypothe-
sis was put forward that the appearance of the mag-
netoelastic gap is associated with the violation of the
magnetic Hamiltonian symmetry, if the magnetoelas-
tic interaction is made allowance for. However, spe-
cific calculations of this phenomenon were not carried
out. Earlier, such an effect was discovered by Higgs
in the quantum field theory [31].

Using the uniaxial ferromagnet as an example, let
us consider comprehensively the appearance of a mag-
netoelastic gap in the spectrum of spin waves, which

occurs owing to the spontaneous symmetry violation
in the spin system. We recall how the mass of Higgs
bosons arises. In the framework of a simplified model
[31], the spontaneous violation of system’s symme-
try is achieved due to the transition from the poten-
tial energy written in the form 𝑚2𝜙2/2 to a potential
energy that is an even function with two symmet-
ric minima. Here are speculations concerning a mul-
ticomponent field that is described by the field func-
tion 𝜑(𝜙1, 𝜙2, ..., 𝜙𝑛) and has the following important
property: its potential energy contains only terms
with even power exponents of 𝜑. The corresponding
system has a continuous rotational symmetry, which
does not change the value of 𝜙2.

In order to obtain a spontaneous symmetry viola-
tion, the potential energy has to be taken in the form

𝑉 (𝜙) = −𝜇2

2
(𝜑𝜑) +

ℎ2

2
(𝜑𝜑)2, (3.1)

where 𝜑𝜑 =
∑︀

𝑎 𝜙
2
𝑎. The potential energy minimum

is attained at

𝜑𝜑 = 𝜙2
0 =

𝜇2

ℎ2
. (3.2)

This is an equation with 𝑛 variables. Without los-
ing the generality, let us choose the solution of this
equation in the form

𝜑0 = (𝜙0, 0, ..., 0), (3.3)

where 𝜙0 = 𝜇/ℎ. Now we should shift the field func-
tion 𝜑 by the constant vector 𝜑0 that satisfies condi-
tion (3.3):

𝜑(𝑥) = 𝜑0 + u(𝑥). (3.4)

Then we obtain the following expression for the po-
tential energy:

𝑉 (𝜑0 + u(𝑥)) = 𝑉0 + 𝜇2𝑢2
1 + 𝜇ℎ𝑢1(uu) +

ℎ2

4
(uu)2.

(3.5)

In this expression, the quadratic term of only the
component 𝑢1 is contained. Hence, owing to the
symmetry violation, which is expressed by displace-
ment (3.4), the component 𝑢1 acquires the free mass
𝑚1 = 𝜇

√
2, whereas the other components are mass-

less. It is obvious that the symmetry of this solu-
tion cannot be classified as the rotational symme-
try in the 𝑛-dimensional space of the field function
𝜑(𝜙1, 𝜙2, ..., 𝜙𝑛).
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If the consideration is carried out in the quantum-
mechanical framework, a displacement by a constant
value breaks the commutation relation for Fermi par-
ticles and does not break it for Bose particles. In
other words, the mechanism of mass appearance at
the spontaneous symmetry violation takes place only
for bosons. The Higgs effect consists in that only one
kind of Bose particles acquires a mass [31]. The mass-
less particles are called Goldstone particles.

This situation is realized in magnets with uniaxial
symmetry, where the ground states with the magnetic
moment directed not along the easy axis are degener-
ate [3, 32, 33]. Magnetoelastic interactions in a uniax-
ial ferromagnet were taken into consideration rather
long ago and under various conditions [3, 34]. Howe-
ver, only the “easy-axis” ground state was considered,
which is not degenerate.

Let us analyze how the magnetoelastic interaction
affects the spectrum of spin waves in the case of the
“easy-plane” degenerate state. The energy of a uniax-
ial ferromagnet in the absence of an external magnetic
field can be written as follows [3]:

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
− 1

2
𝐾1𝜇

2
𝑧 −

1

4
𝐾2𝜇

4
𝑧, (3.6)

where 𝛼 is the inhomogeneous exchange interaction
constant, 𝐾1 and 𝐾2 are the uniaxial anisotropy con-
stants, 𝜇 = M/𝑀0 is the normalized magnetization
vector, and 𝑀0 is the saturation magnetization. Here,
the constants have the energy dimensionality.

In order to obtain the dispersion law for spin
waves in a ferromagnet, the equation of motion for
a magnetic moment, the Landau–Lifshitz equation
(2.8) [19], has to be used. By applying the standard
method [3, 33] to Eq. (2.8), the spin wave frequen-
cies for the ground states of a uniaxial ferromagnet
can be obtained. We are interested in the “easy-plane”
ground state, when the magnetization lies in the basis
plane (e.g., M ‖ ⟨100⟩), and the stability condition for
this state looks like 𝐾1 < 0. This state is degenerate
with a continuous degeneracy parameter correspond-
ing to rotations in the basis plane. The dispersion law
in this case has the form

𝜔2 = 𝛾2𝑀2
0

(︂
𝛼𝑘2

𝑀2
0

− 𝐾1

𝑀2
0

)︂
𝛼𝑘2

𝑀2
0

, (3.7)

where 𝜔 and 𝑘 are the frequency and the wave vector
of a spin wave, respectively. This spin wave is a Gold-
stone boson, because the magnon energy vanishes at

𝑘 = 0. The symmetry of this ground state for a def-
inite value of the magnetization in the basis plane
is evidently lower than the symmetry of the initial
Hamiltonian.

The degeneration is eliminated, if the external mag-
netic field oriented in the basis plane (e.g., H ‖⟨100⟩)
is taken into consideration [32]:

𝜔2 = 𝛾2𝑀2
0

(︂
𝛼𝑘2

𝑀2
0

− 𝐾1

𝑀2
0

+
𝐻

𝑀0

)︂(︂
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0

)︂
. (3.8)

The inclusion of the magnetic field violates the sym-
metry of the Hamiltonian. The latter is no more in-
variant with respect to rotations around the symme-
try axis [energy (3.6) should be summed up with the
term −𝐻𝑥𝑀𝑥]. More interesting is the consideration
of the case where the perturbation does not change
the Hamiltonian symmetry. The magnetoelastic in-
teraction in the crystal is just a perturbation of this
kind [32].

When taking the magnetoelastic interaction into
account, it is convenient again to write the total en-
ergy of a ferromagnet in the form (2.1), where the first
term is the magnetic energy of the crystal, which is
determined by expression (3.6), and the second term
is the elastic energy that looks like [18]

𝐹𝑒 =
1

2
𝐶11(E𝑥𝑥 + E𝑦𝑦)

2 +
1

2
𝐶33E

2
𝑧𝑧 +

+𝐶13(E𝑥𝑥 + E𝑦𝑦)E𝑧𝑧 +

+2𝐶44(E𝑥𝑧 +E𝑦𝑧)
2+

1

2
𝐶66(E

2
𝑥𝑥+E2

𝑦𝑦 +2E2
𝑥𝑦), (3.9)

where E𝑖𝑘 are the strain tensor components, and 𝐶𝑖𝑘

the elastic moduli of the second order for the uniax-
ial crystal. The third component describes the inter-
action between the magnetic and elastic subsystems
[34, 35]:

𝐹𝑚𝑒 =
1

2
𝐵11(𝜇

2
𝑥 + 𝜇2

𝑦)(E𝑥𝑥 + E𝑦𝑦)+

+
1

2
𝐵13𝜇

2
𝑧(E𝑥𝑥 + E𝑦𝑦) +

1

2
𝐵31(𝜇

2
𝑥 + 𝜇2

𝑦)E𝑧𝑧 +

+
1

2
𝐵33𝜇

2
𝑧E𝑧𝑧 +

1

2
𝐵44(𝜇𝑥𝜇𝑧E𝑥𝑧 + 𝜇𝑦𝜇𝑧E𝑦𝑧)+

+
1

2
𝐵66(𝜇

2
𝑥E𝑥𝑥 + 𝜇2

𝑦E𝑦𝑦 + 2𝜇𝑥𝜇𝑦E𝑥𝑦), (3.10)

where 𝐵𝑖𝑘 are the magnetoelastic interaction con-
stants in the uniaxial symmetry case.
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We emphasize that, in this case, the total en-
ergy (2.1) remains invariant with respect to rota-
tions around the symmetry axis. When calculating
the spectra of coupled oscillations, two equations of
motion have to be taken into consideration. These are
the Landau–Lifshitz equation (2.8) and the dynami-
cal equation for the displacement vector (2.9) [3, 18].
In effect, we change from mere spin and mere elastic
waves to coupled magnetoelastic oscillations [32]. Let
us consider the degenerate “easy-plane” ground state
and elucidate how the frequency of spin waves varies,
if the magnetoelastic interaction is taken into ac-
count. In the indicated ground state, there are non-
zero equilibrium values of the strain tensor compo-
nents. These values can be easily obtained from the
condition 𝜕𝐹/𝜕E𝑖𝑘 = 0. As a result, we have

E0
𝑥𝑥 = − 𝐵66

4𝐶66
− 2𝐵31𝐶13 − 𝐶33(2𝐵11 +𝐵66)

4(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

,

E0
𝑦𝑦 =

𝐵66

4𝐶66
− 2𝐵31𝐶13 − 𝐶33(2𝐵11 +𝐵66)

4(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

, (3.11)

E0
𝑧𝑧 =

𝐵31(2𝐶11 + 𝐶66)− 𝐶13(2𝐵11 +𝐵66)

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

.

Similarly to what was done when considering the
spectrum of mere spin waves (3.7) – i.e. small oscil-
lations of the magnetic moment (2.5) are considered,
where M(r, 𝑡) are small deviations from the equilib-
rium value 𝜇0 = (0, 0, 1) – the strain tensor com-
ponents can also be written as the sums of equilib-
rium values and small deviations from them (2.6),
where E0

𝑖𝑘 are defined by expressions (3.11), and 𝜀𝑖𝑘
are small deviations, which can be expressed in terms
of the displacement vector U by formula (2.7) [18].

Let us expand the energy density of a uniaxial fer-
romagnet in a power series in small deviations 𝑚𝑖 and
𝜀𝑖𝑘 and take into account that, in this ground state,
the component 𝑚𝑥 ≈ −(𝑚2

𝑦 +𝑚2
𝑧)/2 is of the second

order of smallness. Then, considering the terms up to
the second order of smallness with respect to small
deviations, we obtain

𝐹𝑚𝑒2 = 𝐵66𝑒𝑥𝑦𝑚𝑦 +
1

2
𝐵44𝑒𝑥𝑧𝑚𝑧, (3.12)

𝐹𝑚2 =
𝐵66

4𝐶66
𝑚2

𝑦 −
1

2
(𝐾𝑚𝑒 +𝐾1)𝑚

2
𝑧, (3.13)

where the notation 𝐾𝑚𝑒 = (𝐵11 − 𝐵13 + 𝐵66)E
0
𝑥𝑥 +

+(𝐵11 − 𝐵13)E
0
𝑦𝑦 + (𝐵31 − 𝐵33)E

0
𝑧𝑧 was introdu-

ced. We also omitted the equilibrium energy of the

zeroth order of smallness, because it does not con-
tribute to the dynamical equations. Expression (3.9)
for the elastic energy remains the same with an accu-
racy of substituting E𝑖𝑘 by 𝜀𝑖𝑘.

From expression (3.13), one can see that a magne-
toelastic gap must appear, because the coefficient be-
fore 𝑚𝑦 is not zero. It is important to mark that this
gap arises exclusively owing to the magnetoelastic
interaction. The coefficient before 𝑚𝑧 demonstrates
that the anisotropy constant is also renormalized.

By substituting the expansion of the total energy
into the dynamical equations (2.8) and (2.9) and by
changing to the Fourier components of the small de-
viations M = M0 exp {𝑖(kr− 𝜔𝑡)} and U = U0 ×
× exp {𝑖(kr− 𝜔𝑡)} with respect to the time 𝑡 and the
coordinates r, we can obtain the dispersion laws for
coupled magnetoelastic oscillations [3, 33]. However,
we are interested now in modifications of the spec-
trum of quasispin waves.

Omitting standard intermediate calculations, we
present the following results for the frequencies of
quasispin waves in the examined ground state (they
can be obtained from the dispersion law for coupled
magnetoelastic oscillations [32]):

𝜔2 = 𝛾2𝑀2
0

(︂
𝛼𝑘2

𝑀2
0

− 𝐾1

𝑀2
0

− 𝐾𝑚𝑒

𝑀2
0

)︂(︂
𝛼𝑘2

𝑀2
0

+
𝐵2

66

2𝑀2
0𝐶66

)︂
.

(3.14)

From expression (3.14), it is easy to see that, at 𝑘 = 0,
the spin wave frequency is different from zero [32]:

𝜔2 = 𝛾2

(︂
−𝐾1

𝑀2
0

− 𝐾𝑚𝑒

𝑀2
0

)︂
𝐵2

66

2𝐶66
. (3.15)

This is the very magnetoelastic gap that appears in
the “easy-plane” ground state of a uniaxial ferromag-
net, if the magnetoelastic interaction is taken into
account.

From the obtained results, it follows that if the
magnetoelastic interaction is taken into account, the
degeneration of the initially degenerate “easy-plane”
ground state of a uniaxial ferromagnet becomes elimi-
nated, and massless magnons (Goldstone bosons) dis-
appear. In other words, the magnetoelastic interac-
tion “transforms” the Goldstone mode into the Higgs
boson. It is also important to mark that the appear-
ance of a magnetoelastic gap does not depend on the
direction of the wave vector of an elastic wave.
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Expression (3.14) testifies that the magnetoelastic
interaction eliminates the ground state degeneration
even in the isotropic magnet (𝐾1 = 0), which is in full
agreement with general principles expounded in work
[10]. Thus, the magnetoelastic interaction results in
the appearance of a ground state, whose symmetry is
lower than the symmetry of Hamiltonian [32].

3.2. Spectra of coupled magnetoelastic
waves in a uniaxial ferromagnet

From the minimization condition (3.6) for the mag-
netic component of the energy, it is easy to show that,
in a uniaxial ferromagnet in the absence of an exter-
nal magnetic field (𝐻 = 0), there are three ground
states for the magnetization vector [33]:

∙ along the easy magnetization axis: M ‖ ⟨001⟩;
this is the “easy axis” phase; its existence condition is
𝐾1 +𝐾2 > 0;

∙ in the basis plane: e.g., M ‖ ⟨100⟩; this is the
“easy-plane” phase; its existence condition is 𝐾1 < 0;

∙ at the angle 𝜃 with respect to the easy magne-
tization axis, which is determined by the expression
cos2 𝜃 = −𝐾1

𝐾2
; this is the “angular” phase; its exis-

tence conditions are 𝐾2 < 0 and 0 < 𝐾1 < −𝐾2.
In real experiments dealing with the elastic and

magnetic properties of materials, the external mag-
netic field H is usually directed along the direction
⟨001⟩ or ⟨100⟩. Therefore, we will consider the corre-
sponding “easy-axis” and “easy-plane” ground states.

In order to determine the dispersion laws for cou-
pled magnetoelastic waves, let us use the dynamical
equations for the magnetization vector 𝜇 [Eq. (2.8)]
and the particle displacement vector U [Eq. (2.9)].
For further calculations, we expand the total energy
density (2.1) in a series in small deviations 𝑚𝑖 and
𝜀𝑖𝑘, substitute them into the dynamical equations
(2.8) and (2.9), and linearize the latter. In the ob-
tained equations, we change to the Fourier compo-
nents of small deviations M = M0 exp {𝑖(kr− 𝜔𝑡)}
and U = U0 exp {𝑖(kr− 𝜔𝑡)}, where 𝜔 is the fre-
quency, and k the wave vector of collective waves,
with respect to the time 𝑡 and the coordinates r. Then
Eqs. (2.8) and (2.9), bring us to a system of six
equations for the components of the vectors M0 and
U0. The obtained systems of equations are given
in Appendix B for each ground state of a uniaxial
ferromagnet.

From the condition that the determinant of the
system of dynamical equations equals zero, we ob-

tain the dispersion laws for coupled magnetoelastic
waves in the ground states of a cubic ferromagnet. Let
us consider a few directions for the wave vector of
elastic waves, which are used in experimental stud-
ies of acoustic waves in ferromagnets with uniaxial
symmetry.

Phase “easy-axis”: H ‖ M ‖ ⟨001⟩
The equilibrium values of the strain tensor compo-
nents in this ground state look like

E0
𝑥𝑥 = E0

𝑦𝑦 =
𝐵13𝐶33 −𝐵33𝐶13

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

,

E0
𝑧𝑧 =

−𝐵13𝐶13 −𝐵33(2𝐶11 + 𝐶66)

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

.

(3.16)

The dispersion laws are as follows. If k ‖ ⟨100⟩ or
k‖ ⟨010⟩,(︂
𝜔2− (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2− 𝐶66

2𝜌
𝑘2
)︂[︂(︂

𝜔2− 𝐶44

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︂
= 0. (3.17)

If k‖ ⟨001⟩,(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂[︂

𝜔2

(︂
𝜔2 − 2𝐶44

𝜌
𝑘2
)︂
(𝜔2−𝛾2𝑀2

0𝜔
2
𝑚‖)−

−𝐵2
44

{︂
𝜔𝑚||𝛾

2𝑘2

8𝜌

(︂
𝜔2 − 𝐶44

𝜌
𝑘2
)︂}︂]︂

= 0. (3.18)

If k‖ ⟨110⟩(︂
𝜔2− (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2− 𝐶66

2𝜌
𝑘2
)︂[︂(︂

𝜔2− 2𝐶44

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︂
= 0. (3.19)

If k‖ ⟨11̄0⟩ ,(︂
𝜔2 − (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2 − 𝐶66

2𝜌
𝑘2
)︂
×

×
[︂
𝜔2(𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚‖)−𝐵2

44

{︂
𝜔𝑚‖𝛾

2𝑘2

16𝜌

}︂]︂
= 0.

(3.20)
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In expressions (3.17)–(3.20), the following notation
was introduced:

𝜔𝑚‖ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐾𝑚𝑒

𝑀2
0

+
𝐾1

𝑀2
0

+
𝐾2

𝑀2
0

, (3.21)

where

𝐾𝑚𝑒 = (𝐵11 −𝐵13 +𝐵66)E
0
𝑥𝑥 +

+𝐵11 −𝐵13)E
0
𝑦𝑦 + (𝐵31 −𝐵33)E

0
𝑧𝑧.

Phase “easy-plane”: H ‖ M ‖ ⟨100⟩
The equilibrium values of the strain tensor compo-
nents in this ground state are determined by expres-
sions (3.11).

The dispersion laws are as follows. If k ‖ ⟨100⟩ or
k ‖ ⟨010⟩ ,(︂
𝜔2 − (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂(︂

𝜔2 − 𝐶44

𝜌
𝑘2
)︂
×

×
[︂(︂

𝜔2 − 𝐶66

2𝜌
𝑘2
)︂
(𝜔2 − 𝛾2𝑀2

0𝜔𝑚1⊥𝜔𝑚2⊥)−

−𝐵2
66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︂
= 0. (3.22)

If k ‖ ⟨001⟩,(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂[︂

𝜔2

(︂
𝜔2 − 2𝐶44

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−

−𝐵2
44

{︂
𝜔𝑚2⊥𝛾

2𝑘2

16𝜌

(︂
𝜔2 − 𝐶44

𝜌
𝑘2
)︂}︂]︂

= 0. (3.23)

If: k ‖ ⟨110⟩,(︂
𝜔2− 𝐶66

2𝜌
𝑘2
)︂(︂

𝜔2− 𝐶44

𝜌
𝑘2
)︂[︂(︂

𝜔2− (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−𝐵2

66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︂
= 0.

(3.24)
If k ‖ ⟨11̄0⟩,

𝜔2

(︂
𝜔2 − 𝐶66

2𝜌
𝑘2
)︂[︂(︂

𝜔2 − (𝐶11 + 𝐶66)

𝜌
𝑘2
)︂
×

× (𝜔2 − 𝛾2𝑀2
0𝜔𝑚1⊥𝜔𝑚2⊥)−𝐵2

66

{︂
𝜔𝑚1⊥𝛾

2𝑘2

4𝜌

}︂]︂
= 0.

(3.25)

In expressions (3.22)–(3.25), the following notations
were introduced:

𝜔𝑚1⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
− 𝐾1

𝑀2
0

− 𝐾𝑚𝑒

𝑀2
0

,

𝜔𝑚2⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐵2
66

2𝑀2
0𝐶66

.

(3.26)

Expressions (3.17)–(3.25) are the dispersion laws
for coupled magnetoelastic waves in a uniaxial fer-
romagnet written in the general form. According to
their structure, these dispersion equations have the
standard form [3,4]. If the magnetoelastic interaction
is neglected (𝐵𝑖𝑘 → 0), they are split into classical
dispersion laws for spin waves [3] and elastic waves in
cubic crystals [18].

The dispersion laws (3.17)–(3.25) calculated for
coupled magnetoelastic waves in a ferromagnet with
uniaxial symmetry make it possible to estimate the
influence of the magnetic subsystem on the elas-
tic properties of the crystal, namely, on the corre-
sponding elastic moduli. From the dispersion laws
(3.17)–(3.25), it follows that the following acoustic
modes interact with spin waves in a uniaxial ferro-
magnet: 𝑠21 = 𝐶44/𝜌, 𝑠22 = 2𝐶44/𝜌, 𝑠23 = 𝐶66/2𝜌, and
𝑠24 = (𝐶11+𝐶66)/𝜌. For illustration, Table 3.1 demon-
strates the possibility of the magnetoelastic interac-

Table 3.1. Interaction of acoustic
modes with spin waves in a ferromagnet
with uniaxial symmetry

Acoustic mode
and wave vector

direction

Phase
“easy axis”:
H‖M‖⟨001⟩

Phase
“easy plane”:
H‖M‖⟨100⟩

𝑠1
k ‖ ⟨100⟩ and k ‖ ⟨010⟩ 𝐵44 No interaction

𝑠2
k ‖ ⟨001⟩ 𝐵44 𝐵44

𝑠2
k ‖ ⟨110⟩ 𝐵44 No interaction

𝑠3
k ‖ ⟨100⟩ and k ‖ ⟨010⟩ No interaction 𝐵66

𝑠4
k ‖ ⟨110⟩ No interaction 𝐵66

𝑠4
k ‖ ⟨11̄0⟩ No interaction 𝐵66
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tion for each acoustic mode depending on the mag-
netic moment direction in a uniaxial ferromagnet.

From Table 3.1, it becomes evident that the acous-
tic modes 𝑠3 and 𝑠4 do not interact with spin waves in
the “easy-axis” ground state, and the acoustic mode
𝑠1 in the “easy-plane” ground state. The magnetoe-
lastic interaction between acoustic and spin waves is
characterized exclusively by the constants 𝐵44 (the
acoustic modes 𝑠1 and 𝑠2) and 𝐵66 (the acoustic
modes 𝑠3 and 𝑠4). The other magnetoelastic con-
stants are responsible only for the formation of a mag-
netoelastic gap in the spectrum of coupled oscillations
[see expressions (3.21) and (3.26)].

4. Damping of Magnetoelastic
Waves in Ferromagnets

A general equation describing both the dynamic and
static properties of magnetically ordered media was
first proposed by Landau and Lifshits in work [19].
This paper became one of the most popular works of
those authors. It does not lose its relevance till now,
and the equation proposed in this work is deservedly
referred to in the literature as the Landau–Lifshits
equation.

A fundamental result of work [19] consists in the
derivation of the quasiequilibrium thermodynamic
potential for a ferromagnet at low temperatures. This
procedure is based on the consideration of a crys-
tal symmetry and the classification of interactions in
ferromagnets into two classes: weak relativistic and
strong exchange interactions. Another, not less fun-
damental, result consists in the introduction of the
effective magnetic field as a variational derivative of
the ferromagnet thermodynamic potential with re-
spect to the magnetization. At that time, the models
that were widely used for the description of a spin
wave dissipation did not correspond to those basic
phenomenological principles. A term that is respon-
sible for the magnetization relaxation in the Landau–
Lifshits equation was proposed by Landau proceed-
ing from general physical ideas concerning dissipative
processes [19]. Later Gilbert constructed a dissipative
function for the ferromagnet that corresponds to the
Landau–Lifshits relaxation and proposed a formula
for the relaxation term written in terms of the mag-
netization derivative with respect to time [20].

Landau and Lifshits in their work and Gilbert in his
one used the model of a ferromagnet with a constant,

by absolute value, magnetization. In other words, the
longitudinal susceptibility of a ferromagnet was con-
sidered to equal zero (i.e. it was not taken into ac-
count). Irrespective of the vector equation of motion,
the Landau–Lifshits–Gilbert relaxation term is char-
acterized by a single relaxation constant, which cor-
responds to an isotropic medium. A consideration of
the expression for the relaxation term in the frame-
work of models [19, 20] demonstrates that it does not
make allowance for the symmetry of a magnetic ma-
terial, which results in plenty of physical contradic-
tions. It is also important that the relaxation term
in the Landau–Lifshits or Gilbert form is associated
with the spin-spin and spin-orbit interactions. This
circumstance, in turn, does not allow dissipative pro-
cesses that are connected with the exchange inter-
action in crystals and are important in many cases
[21–23] to be taken into account.

In the next decades, the theory of magnetism by
Landau has been widely developed further. However,
in many cases [36–38], the application of classical
models proposed in the works by Landau and Lif-
shits turned out insufficient for the description of a
number of phenomena. The corresponding researches
showed that the Landau theory had to be improved,
especially if dissipative processes in magnetically or-
dered structures are dealt with.

When constructing a dissipative function that de-
scribes the damping of collective magnetoacoustic
waves, let us proceed from the expression for the to-
tal energy of a ferromagnet. In the case concerned,
the latter should consist of the magnetic, elastic, and
magnetoelastic components:

𝐹 = 𝐹𝑚 + 𝐹𝑒 + 𝐹𝑚𝑒. (4.1)

In the case of uniaxial symmetry, the magnetic com-
ponent of the ferromagnet energy has the form

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
+

(︀
𝜇2 − 1

)︀2
8𝜒

−

− 1

2
𝐾1𝜇

2
𝑧 −

1

4
𝐾2𝜇

4
𝑧 −MH. (4.2)

This expression differs from expression (3.6) by the
presence of a term that makes allowance for the
homogeneous exchange interaction. The latter can
insert a significant contribution, when considering
the dissipative processes with exchange interaction.

852 ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 9



Magnetoelastic Waves in Ferromagnets

Accordingly, for a ferromagnet with cubic symmetry,
we have

𝐹𝑚 =
𝛼

2

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
+

(︀
𝜇2 − 1

)︀2
8𝜒

+

+𝐾1

(︀
𝜇2
𝑥𝜇

2
𝑦 + 𝜇2

𝑥𝜇
2
𝑧 + 𝜇2

𝑦𝜇
2
𝑧

)︀
+𝐾2𝜇

2
𝑥𝜇

2
𝑦𝜇

2
𝑧 −MH.

(4.3)

The elastic energy of a uniaxial crystal can be written
in the form [18]

𝐹𝑒=
1

2
𝐶11(E𝑥𝑥 +E𝑦𝑦)

2+
1

2
𝐶33E

2
𝑧𝑧+𝐶13(E𝑥𝑥+E𝑦𝑦)×

×E𝑧𝑧 +2𝐶44(E𝑥𝑧 +E𝑦𝑧)
2+

1

2
𝐶66(E

2
𝑥𝑥 +E2

𝑦𝑦 +2E2
𝑥𝑦),

(4.4)

where E𝑖𝑘 are the strain tensor components, and 𝐶𝑖𝑘

the elastic moduli of the second order for a uniax-
ial crystal. In the case of cubic symmetry, the elastic
energy reads

𝐹𝑒 =
1

2
𝐶11(E

2
𝑥𝑥 + E2

𝑦𝑦 + E2
𝑧𝑧) + 𝐶12(E𝑥𝑥E𝑦𝑦 +

+E𝑥𝑥E𝑧𝑧 + E𝑦𝑦E𝑧𝑧) + 2𝐶44(E
2
𝑥𝑦 + E2

𝑥𝑧 + E2
𝑦𝑧), (4.5)

It can also be written in form (2.3), as was proposed
in works [23, 24].

The last term on the right-hand side of expression
(4.1) describes the interaction between the magnetic
and elastic subsystems. In the case of uniaxial sym-
metry, it looks like [34, 35]

𝐹𝑚𝑒 =
1

2
𝐵11(𝜇

2
𝑥 + 𝜇2

𝑦)(E𝑥𝑥 + E𝑦𝑦)+

+
1

2
𝐵13𝜇

2
𝑧(E𝑥𝑥 + E𝑦𝑦) +

1

2
𝐵31(𝜇

2
𝑥 + 𝜇2

𝑦)E𝑧𝑧 +

+
1

2
𝐵33𝜇

2
𝑧E𝑧𝑧 +

1

2
𝐵44(𝜇𝑥𝜇𝑧E𝑥𝑧 + 𝜇𝑦𝜇𝑧E𝑦𝑧)+

+
1

2
𝐵66(𝜇

2
𝑥E𝑥𝑥 + 𝜇2

𝑦E𝑦𝑦 + 2𝜇𝑥𝜇𝑦E𝑥𝑦), (4.6)

where 𝐵𝑖𝑘 are the corresponding constants of the
magnetoelastic interaction. For a cubic crystal, the
magnetoelastic energy can be written in the form [4]

𝐹𝑚𝑒 = 𝐵1(𝜇
2
𝑥E𝑥𝑥 + 𝜇2

𝑦E𝑦𝑦 + 𝜇2
𝑧E𝑧𝑧)+

+2𝐵2(𝜇𝑥𝜇𝑦E𝑥𝑦 + 𝜇𝑥𝜇𝑧E𝑥𝑧 + 𝜇𝑦𝜇𝑧E𝑦𝑧), (4.7)

or expression (2.4), which is more convenient in some
cases, can be used.

In works [21, 22], a method was proposed that al-
lows one to obtain a dissipative function for a fer-
romagnet proceeding from the crystal symmetry and
the conservation laws for the magnetization of a crys-
tal. It should be noted that the construction of a dis-
sipative function for a ferromagnet is based on the
phenomenological principles that were expounded in
the works by Landau and Lifshits. According to those
principles, the dissipative function is constructed, fol-
lowing the same rules as when constructing a qua-
siequilibrium thermodynamic potential, and it must
include terms of the same origin as the total crystal
energy does [18, 35]. Therefore, it is quite reasonable
to represent the dissipative function density similarly
to expression (4.1), i.e. as a sum of three terms,

𝑞 = 𝑞𝑚 + 𝑞𝑒 + 𝑞𝑚𝑒, (4.8)

which describe the relaxation processes of the magne-
tic, elastic, and magnetoelastic origins, respectively.

Following works [21, 22, 33], the magnetic compo-
nent of the dissipative function can be expressed in
the form

𝑞𝑚 =
1

2
𝜆𝑟
11

(︀
(𝐻eff

𝑥 )2 + (𝐻eff
𝑦 )2

)︀
+

1

2
𝜆ex

(︂
𝜕Heff

𝜕𝑥𝑖

)︂2
,

(4.9)
for a uniaxial ferromagnet, and

𝑞𝑚 =
1

2
𝜆𝑟
11

(︀
(𝐻eff

𝑥 )2 + (𝐻eff
𝑦 )2 + (𝐻eff

𝑧 )2
)︀
+

+
1

2
𝜆ex

(︂
𝜕Heff

𝜕𝑥𝑖

)︂2
, (4.10)

for a cubic crystal.
The elastic component of the dissipative function

has to depend on the strain tensor derivatives with
respect to the time and to be quadratic [18]. Thus,
the most general form of this component looks like

𝑞𝑒 =
1

2
𝜆𝑒
𝑖𝑗,𝑠𝑝

𝜕𝐸𝑖𝑗

𝜕𝑡

𝜕𝐸𝑠𝑝

𝜕𝑡
. (4.11)

The fourth-rank tensor 𝜆𝑒
𝑖𝑗,𝑠𝑝 is called the viscosity

tensor, and its components are determined by the
crystal symmetry, similarly to the elastic constant
tensor that enters the elastic energy [18]. For a fer-
romagnet with uniaxial symmetry, we have

𝑞𝑒 =
1

2
𝜆𝑒
11

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂2
+

1

2
𝜆𝑒
33

(︂
𝜕𝐸𝑧𝑧

𝜕𝑡

)︂2
+
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+𝜆𝑒
13

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂
𝜕𝐸𝑧𝑧

𝜕𝑡
+

+2𝜆𝑒
44

(︂
𝜕𝐸𝑥𝑧

𝜕𝑡
+

𝜕𝐸𝑦𝑧

𝜕𝑡

)︂2
+

+
1

2
𝜆𝑒
66

[︃(︂
𝜕𝐸𝑥𝑥

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑦𝑦

𝜕𝑡

)︂2
+ 2

(︂
𝜕𝐸𝑥𝑦

𝜕𝑡

)︂2]︃
. (4.12)

For a ferromagnet with cubic symmetry,

𝑞𝑒 =
1

2
𝜆𝑒
11

(︃(︂
𝜕𝐸𝑥𝑥

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑦𝑦

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑧𝑧

𝜕𝑡

)︂2)︃
+

+𝜆𝑒
12

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡

𝜕𝐸𝑦𝑦

𝜕𝑡
+

𝜕𝐸𝑥𝑥

𝜕𝑡

𝜕𝐸𝑧𝑧

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

𝜕𝐸𝑧𝑧

𝜕𝑡

)︂
+

+2𝜆𝑒
44

(︃(︂
𝜕𝐸𝑥𝑦

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑦𝑧

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑦𝑧

𝜕𝑡

)︂2)︃
. (4.13)

The magnetoelastic component of the dissipative
function is constructed by analogy with the corre-
sponding component of the total energy of a fer-
romagnet. Again, proceeding from expressions (4.9),
(4.10), and (4.11), this component has to include the
strain tensor derivatives with respect to the time and
the effective magnetic field components. It is known
that the dissipative function must be invariant with
respect to the transformations of the crystal symme-
try group. Hence, the magnetoelastic component of
the dissipative function should be constructed as a
quadratic form composed from the invariants consist-
ing of the strain tensor derivatives with respect to the
time and the gradients of the effective magnetic field,

𝑞𝑚𝑒 =
1

2
𝜆𝑚𝑒
𝑖𝑗,𝑠𝑝

𝜕𝐸𝑖𝑗

𝜕𝑡

(︃
𝜕𝐻eff

𝑠

𝜕𝑥𝑝
+

𝜕𝐻eff
𝑝

𝜕𝑥𝑠

)︃
. (4.14)

For a ferromagnet with uniaxial symmetry, it looks
like

𝑞𝑚𝑒 =
1

2
𝜆𝑚𝑒
11

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂(︃
𝜕𝐻eff

𝑥

𝜕𝑥
+

𝜕𝐻eff
𝑦

𝜕𝑦

)︃
+

+
1

2
𝜆𝑚𝑒
13

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂
𝜕𝐻eff

𝑧

𝜕𝑧
+

+
1

2
𝜆𝑚𝑒
31

𝜕𝐸𝑧𝑧

𝜕𝑡

(︃
𝜕𝐻eff

𝑥

𝜕𝑥
+

𝜕𝐻eff
𝑦

𝜕𝑦

)︃
+
1

2
𝜆𝑚𝑒
33

𝜕𝐸𝑧𝑧

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧
+

+
1

2
𝜆𝑚𝑒
44

(︃
𝜕𝐸𝑥𝑧

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑧
+

𝜕𝐸𝑧𝑥

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧
+

+
𝜕𝐸𝑦𝑧

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑧
+

𝜕𝐸𝑧𝑦

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧

)︃
+

+
1

2
𝜆𝑚𝑒
66

(︃
𝜕𝐸𝑥𝑥

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑥
+

𝜕𝐸𝑦𝑦

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑦
+

+
𝜕𝐸𝑥𝑦

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑦
+

𝜕𝐸𝑦𝑥

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑥

)︃
. (4.15)

Accordingly, for a cubic crystal,

𝑞𝑚𝑒=𝜆𝑚𝑒
1

(︃
𝜕𝐸𝑥𝑥

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑥
+
𝜕𝐸𝑦𝑦

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑦
+
𝜕𝐸𝑧𝑧

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧

)︃
+

+2𝜆𝑚𝑒
2

(︃
𝜕𝐸𝑥𝑦

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑥
+

𝜕𝐸𝑦𝑥

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑥
+

𝜕𝐸𝑥𝑧

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑧
+

+
𝜕𝐸𝑧𝑥

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧
+

𝜕𝐸𝑦𝑧

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑧
+

𝜕𝐸𝑧𝑦

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑥

)︃
. (4.16)

While calculating the damping of coupled mag-
netoacoustic waves, the dynamical equations (2.8)
and (2.9) appended with the corresponding relaxation
terms have to be used:

𝜕M

𝜕𝑡
= −𝛾𝜇×Heff +R𝑚, (4.17)

𝜌Ü = − 𝛿𝐹

𝛿U
+R𝑒, (4.18)

where the relaxation terms read [18, 21, 22]

R𝑚 =
𝛿𝑞

𝛿Heff
, (4.19)

R𝑒 =
𝛿𝑞

𝛿
(︀
𝜕𝑈
𝜕𝑡

)︀. (4.20)

Changing in Eqs. (4.17) and (4.18) to the Fourier
components of the small deviations M = M0 ×
× exp {𝑖(kr− 𝜔𝑡)} and U = U0 exp {𝑖(kr− 𝜔𝑡)},
where 𝜔 and k are the frequency and wave vector,
respectively, of collective waves, with respect to the
time 𝑡 and the coordinates r, we arrive at a system of
six equations for the components of the vectors M0

and U0. From the condition for this system of equa-
tions to have a non-trivial solution (the determinant
of the system is equal to zero), we obtain a disper-
sion law for coupled magnetoacoustic oscillations, in
which their damping is taken into account. It should
be noted that if the relaxation processes in the mag-
net are neglected, the obtained result must coincide
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with the dispersion laws (2.16)–(2.20) for a cubic fer-
romagnet and the dispersion laws (3.17)–(3.25) for a
uniaxial one. However, if the magnetoelastic interac-
tion is neglected, we separately obtain the spectra of
spin and acoustic waves.

It should be noted that a more detailed consid-
eration of the problem concerning the relaxation of
coupled magnetoelastic oscillations and the calcula-
tion of corresponding spectra making allowance for
their damping deserves a separate publication, which
is planned by the authors.

5. Conclusions

In this work, the thorough analysis of the main types
of models used to describe the interaction between
the spin and acoustic waves in magnetically ordered
materials has been carried out. The dispersion laws
for coupled magnetoacoustic waves in ferromagnets
with cubic symmetry are calculated. The behavior
of the spectra of coupled magnetoacoustic waves in
the vicinity of lattice phase transitions, namely, in
the vicinity of the martensitic phase transformations
in materials with the shape memory effect, is ana-
lyzed. The elastic moduli decrease in the vicinity of
those phase transitions, which results in a growth of
the magnetoelastic interaction.

It is shown that the interaction (the magnetoelas-
tic interaction coefficient) between acoustic and spin
waves depends on the directions of the oscillation
wave vector and the magnetic moment in a ferromag-
net. The magnetoelastic interaction coefficient can be
strongly changed (it even can vanish), by depending
on the specific parameters. This fact explains the de-
pendence of the elastic moduli of a ferromagnet on
the direction of the external magnetic field, which
was revealed in many experiments.

The results are used to interpret experimental data
obtained for the Ni–Mn–Ga alloy. They allow the
phenomenon of a drastic reduction of the elastic mod-
uli of this alloy when approaching its martensitic
phase transition point to be explained theoretically. It
is demonstrated that the main influence on the elas-
tic characteristics of this material is exerted by the
inhomogeneous magnetostriction.

Similar calculations of the dispersion laws for cou-
pled magnetoacoustic waves are also performed in the
case of ferromagnets with uniaxial symmetry. The in-
fluence of the magnetoacoustic interaction on the dis-

persion laws for quasispin waves in the degenerate
ground state of an “easy-plane” uniaxial ferromagnet
is analyzed. The results of calculations show that the
magnetoelastic interaction eliminates the degenera-
tion and gives rise to the appearance of a magne-
toacoustic gap in the ferromagnet spectrum. In other
words, the magnetoelastic interaction “transforms”
the Goldstone mode into a Higgs boson. In this case,
the appearance of a magnetoelastic gap does not de-
pend on the direction of the oscillation wave vector.

In the case of uniaxial ferromagnet, it is shown that
the magnetoelastic interaction can strongly increase
in the vicinity of lattice phase transitions, which is
accompanied by a drastic modification of the ferro-
magnet elastic moduli.

The dependence of the magnetoelastic interaction
on the wave-vector and magnetic-moment directions
in a uniaxial ferromagnet also takes place and, in
some cases, is even more pronounced. The fact that
some acoustic modes interact with spin waves in a
ground state of a ferromagnet and do not interact in
the other one enables an experimenter to accurately
determine some magnetoelastic constants for a uni-
axial ferromagnet.

We have also constructed a model dissipative func-
tion that describes the relaxation processes associ-
ated with the damping of coupled magnetoacous-
tic waves in ferromagnets with various symmetry
properties. The obtained model dissipative function
makes allowance for the ferromagnet symmetry and
describes both the exchange and relativistic interac-
tions in the crystal.

This work contains the results of researches
sponsored in the framework of the project
No. 0117U000433 of the National Academy of Scien-
ces of Ukraine and the project No. 0117U004340 of
the Ministry of Education and Science of Ukraine.

APPENDIX A:
Systems of equations for the ground
states of a cubic ferromagnet

Phase 1 : H ‖ M ‖ ⟨001⟩

The system of dynamical equations looks like

(𝜌𝜔2 − 𝐶11𝑘
2
𝑥 − 𝐶44(𝑘

2
𝑦 + 𝑘2𝑧))𝑈0𝑥 −

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑧 −

− 𝑖
1

2
𝛿2𝑘𝑧𝑚0𝑥 − 𝑖

2

3
(𝛿0 − 6𝛿1)𝑘𝑥𝑚0𝑧 = 0; (A1)

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 9 855



V.G. Bar’yakhtar, A.G. Danilevich

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑥 + (𝜌𝜔2 −
−𝐶11𝑘

2
𝑦 − 𝐶44(𝑘

2
𝑥 + 𝑘2𝑧))𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑧 −

− 𝑖
1

2
𝛿2𝑘𝑧𝑚0𝑦 − 𝑖

2

3
(𝛿0 − 6𝛿1)𝑘𝑦𝑚0𝑧 = 0; (A2)

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑥 − (𝐶12 +

+𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑦 + (𝜌𝜔2 − 𝐶11𝑘
2
𝑧 − 𝐶44(𝑘

2
𝑥 + 𝑘2𝑦))𝑈0𝑧−

− 𝑖
1

2
𝛿2𝑘𝑥𝑚0𝑥 − 𝑖

1

2
𝛿2𝑘𝑦𝑚0𝑦 − 𝑖

2

3
(𝛿0 + 12𝛿1)𝑘𝑧𝑚0𝑧 = 0; (A3)

𝑖
1

2𝑀0
𝛾𝛿2𝑘𝑧𝑈0𝑦 + 𝑖

1

2𝑀0
𝛾𝛿2𝑘𝑦𝑈0𝑧 +

+ 𝑖𝜔𝑚0𝑥 − 𝛾𝑀0𝜔𝑚1𝑚0𝑦 = 0; (A4)

− 𝑖
1

2𝑀0
𝛾𝛿2𝑘𝑧𝑈0𝑥 − 𝑖

1

2𝑀0
𝛾𝛿2𝑘𝑥𝑈0𝑧 +

+ 𝛾𝑀0𝜔𝑚1𝑚0𝑥 + 𝑖𝜔𝑚0𝑦 = 0; (A5)

𝑖𝜔𝑚0𝑧 = 0. (A6)

In expressions (A4) and (A5), the notation

𝜔𝑚1 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

2𝐾1

𝑀2
0

+
72𝛿21

𝑀2
0 (𝐶11 − 𝐶12)

was introduced.

Phase 2 : H ‖ M ‖ ⟨101⟩

The system of dynamical equations looks like

(𝜌𝜔2 − 𝐶11𝑘
2
𝑥 − 𝐶44(𝑘

2
𝑦 + 𝑘2𝑧))𝑈0𝑥 −

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑧 −

− 𝑖
√
2

(︂(︂
1

3
𝛿0+4𝛿1

)︂
𝑘𝑥+

1

4
𝛿2𝑘𝑧

)︂
𝑚0𝑥− 𝑖

√
2

4
𝛿2𝑘𝑦𝑚0𝑦 −

− 𝑖
√
2

(︂(︂
1

3
𝛿0 − 2𝛿1

)︂
𝑘𝑥 +

1

4
𝛿2𝑘𝑧

)︂
𝑚0𝑧 = 0; (A7)

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑥 + (𝜌𝜔2 − 𝐶11𝑘
2
𝑦 −

−𝐶44(𝑘
2
𝑥 + 𝑘2𝑧))𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑧 −

− 𝑖

√
2

3
(𝛿0 − 6𝛿1)𝑘𝑦𝑚0𝑥 −

− 𝑖

√
2

4
𝛿2(𝑘𝑥 + 𝑘𝑧)𝑚0𝑦 − 𝑖

√
2

3
(𝛿0 − 6𝛿1)𝑘𝑦𝑚0𝑧 = 0; (A8)

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑥 − (𝐶12 + 𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶11𝑘
2
𝑧 − 𝐶44(𝑘

2
𝑥 + 𝑘2𝑦))𝑈0𝑧 −

− 𝑖
√
2

(︂(︂
1

3
𝛿0−2𝛿1

)︂
𝑘𝑥+

1

4
𝛿2𝑘𝑧

)︂
𝑚0𝑥− 𝑖

√
2

4
𝛿2𝑘𝑦𝑚0𝑦 −

− 𝑖
√
2

(︂(︂
1

3
𝛿0 + 4𝛿1

)︂
𝑘𝑥 +

1

4
𝛿2𝑘𝑧

)︂
𝑚0𝑧 = 0; (A9)

𝑖
1

4𝑀0
𝛾𝛿2𝑘𝑦𝑈0𝑥 + 𝑖

1

4𝑀0
𝛾𝛿2(𝑘𝑥 + 𝑘𝑧)𝑈0𝑦 +

+ 𝑖
1

4𝑀0
𝛾𝛿2𝑘𝑦𝑈0𝑧 + 𝑖𝜔𝑚0𝑥 −

√
2

2
𝛾𝑀0𝜔𝑚2𝑚0𝑦 = 0; (A10)

− 𝑖
6

𝑀0
𝛾𝛿1𝑘𝑥𝑈0𝑥 + 𝑖

6

𝑀0
𝛾𝛿1𝑘𝑧𝑈0𝑧 +

√
2

2
𝛾𝑀0𝜔𝑚3𝑚0𝑥 +

+ 𝑖𝜔𝑚0𝑦 −
√
2

2
𝛾𝑀0𝜔𝑚3𝑚0𝑧 = 0; (A11)

− 𝑖
1

4𝑀0
𝛾𝛿2𝑘𝑦𝑈0𝑥 − 𝑖

1

4𝑀0
𝛾𝛿2(𝑘𝑥 + 𝑘𝑧)𝑈0𝑦 −

− 𝑖
1

4𝑀0
𝛾𝛿2𝑘𝑦𝑈0𝑧 +

√
2

2
𝛾𝑀0𝜔𝑚2𝑚0𝑦 + 𝑖𝜔𝑚0𝑧 = 0. (A12)

In expressions (A10)–(A12), the notations

𝜔𝑚2 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐾1

𝑀2
0

+
𝐾2

2𝑀2
0

+

+
36𝛿21

𝑀2
0 (𝐶11 − 𝐶12)

+
𝛿22

8𝑀2
0𝐶44

,

𝜔𝑚3 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
−

2𝐾1

𝑀2
0 0

+
𝛿22

4𝑀2
0𝐶44

were introduced.

Phase 3: H ‖ M ‖ ⟨111⟩

The system of dynamical equations looks like

(𝜌𝜔2 − 𝐶11𝑘
2
𝑥 − 𝐶44(𝑘

2
𝑦 + 𝑘2𝑧))𝑈0𝑥 −

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑧 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 + 8𝛿1

)︂
𝑘𝑥 +

1

2
𝛿2(𝑘𝑦 + 𝑘𝑧)

)︂
𝑚0𝑥 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑥 +

1

2
𝛿2𝑘𝑦

)︂
𝑚0𝑦 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑥 +

1

2
𝛿2𝑘𝑧

)︂
𝑚0𝑧 = 0; (A13)

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑦𝑈0𝑥 + (𝜌𝜔2 − 𝐶11𝑘
2
𝑦−

−𝐶44(𝑘
2
𝑥 + 𝑘2𝑧))𝑈0𝑦 − (𝐶12 + 𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑧 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑦 +

1

2
𝛿2𝑘𝑥

)︂
𝑚0𝑥 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 + 8𝛿1

)︂
𝑘𝑦 +

1

2
𝛿2(𝑘𝑥 + 𝑘𝑧)

)︂
𝑚0𝑦 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑦 +

1

2
𝛿2𝑘𝑧

)︂
𝑚0𝑧 = 0; (A14)

− (𝐶12 + 𝐶44)𝑘𝑥𝑘𝑧𝑈0𝑥 − (𝐶12 + 𝐶44)𝑘𝑦𝑘𝑧𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶11𝑘
2
𝑧 − 𝐶44(𝑘

2
𝑥 + 𝑘2𝑦))𝑈0𝑧 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑧 +

1

2
𝛿2𝑘𝑥

)︂
𝑚0𝑥 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 − 4𝛿1

)︂
𝑘𝑧 +

1

2
𝛿2𝑘𝑦

)︂
𝑚0𝑦 −

− 𝑖

√
3

3

(︂(︂
2

3
𝛿0 + 8𝛿1

)︂
𝑘𝑧 +

1

2
𝛿2(𝑘𝑥 + 𝑘𝑦)

)︂
𝑚0𝑧 = 0; (A15)

𝑖
1

6𝑀0
𝛾𝛿2(𝑘𝑦 − 𝑘𝑧)𝑈0𝑥 + 𝑖

1

6𝑀0
𝛾(24𝛿1𝑘𝑦 + 𝛿2𝑘𝑥)𝑈0𝑦 −

− 𝑖
1

6𝑀0
𝛾(24𝛿1𝑘𝑧 + 𝛿2𝑘𝑥)𝑈0𝑧 +

+ 𝑖𝜔𝑚0𝑥 −
√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑦 +

√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑧 = 0; (A16)

− 𝑖
1

6𝑀0
𝛾(24𝛿1𝑘𝑥 + 𝛿2𝑘𝑦)𝑈0𝑥 − 𝑖

1

6𝑀0
𝛾𝛿2(𝑘𝑥 −
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− 𝑘𝑧)𝑈0𝑦 + 𝑖
1

6𝑀0
𝛾(24𝛿1𝑘𝑧 + 𝛿2𝑘𝑦)𝑈0𝑧 +

+

√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑥 + 𝑖𝜔𝑚0𝑦 −

√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑧 = 0; (A17)

𝑖
1

6𝑀0
𝛾(24𝛿1𝑘𝑥 + 𝛿2𝑘𝑧)𝑈0𝑥 − 𝑖

1

6𝑀0
×

× 𝛾(24𝛿1𝑘𝑦 + 𝛿2𝑘𝑧)𝑈0𝑦 + 𝑖
1

6𝑀0
𝛾𝛿2(𝑘𝑥 − 𝑘𝑦)𝑈0𝑧 −

−
√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑥 +

√
3

3
𝛾𝑀0𝜔𝑚4𝑚0𝑦 + 𝑖𝜔𝑚0𝑧 = 0. (A18)

In expressions (A16)–(A18), the notation

𝜔𝑚4 =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
−

4𝐾1

3𝑀2
0

−
4𝐾2

9𝑀2
0

+
𝛿22

4𝑀2
0𝐶44

was introduced.

APPENDIX B:
Systems of equations for the ground
states of a uniaxial ferromagnet

Phase “easy axis”: H ‖ M ‖ ⟨001⟩

The system of dynamical equations looks like

(𝜌𝜔2 − (𝐶11 + 𝐶66)𝑘
2
𝑥 −

1

2
𝐶66𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧)𝑈0𝑥 −

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑧 +

+ 𝑖
1

4
𝐵44𝑘𝑧𝑚0𝑥 + 𝑖𝐵13𝑘𝑥𝑚0𝑧 = 0; (B1)

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑥 +

+

(︂
𝜌𝜔2 −

1

2
𝐶66𝑘

2
𝑥 − (𝐶11 + 𝐶66)𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑧 +

+ 𝑖
1

4
𝐵44𝑘𝑧𝑚0𝑦 + 𝑖𝐵13𝑘𝑦𝑚0𝑧 = 0; (B2)

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑥 −
− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶44(𝑘𝑥 + 𝑘𝑦)
2 − 𝐶33𝑘

2
𝑧)𝑈0𝑧 +

+ 𝑖
1

4
𝐵44𝑘𝑥𝑚0𝑥 + 𝑖

1

4
𝐵44𝑘𝑦𝑚0𝑦 + 𝑖𝐵33𝑘𝑦𝑚0𝑧 = 0; (B3)

− 𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑦 − 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑦𝑈0𝑧 + 𝑖𝜔𝑚0𝑥 −

− 𝛾𝑀0𝜔𝑚||𝑚0𝑦 = 0; (B4)

𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑧𝑈0𝑥 + 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑧 +

+ 𝛾𝑀0𝜔𝑚||𝑚0𝑥 + 𝑖𝜔𝑚0𝑦 = 0; (B5)
𝑖𝜔𝑚0𝑧 = 0. (B6)
In expressions (B4) and (B5), the notation

𝜔𝑚‖ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐾𝑚𝑒

𝑀2
0

+
𝐾1

𝑀2
0

+
𝐾2

𝑀2
0

,

where

𝐾𝑚𝑒 = (𝐵11 −𝐵13 +𝐵66)E
0
𝑥𝑥 +

+(𝐵11 −𝐵13)E
0
𝑦𝑦 + (𝐵31 −𝐵33)E

0
𝑧𝑧 ,

was introduced.

Phase “easy plane”: H ‖ M ‖ ⟨100⟩

The system of dynamical equations looks like

(𝜌𝜔2 − (𝐶11 + 𝐶66)𝑘
2
𝑥 −

1

2
𝐶66𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧)𝑈0𝑥 −

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑧 + 𝑖(𝐵11 +𝐵66)×

× 𝑘𝑥𝑚0𝑥 + 𝑖
1

2
𝐵66𝑘𝑦𝑚0𝑦 + 𝑖

1

4
𝐵44𝑘𝑧𝑚0𝑧 = 0, (B7)

−
(︂(︂

𝐶11 +
1

2
𝐶66

)︂
𝑘𝑥𝑘𝑦 + 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑥 +

+

(︂
𝜌𝜔2 −

1

2
𝐶66𝑘

2
𝑥 − (𝐶11 + 𝐶66)𝑘

2
𝑦 − 𝐶44𝑘

2
𝑧

)︂
𝑈0𝑦 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑧 +

+ 𝑖𝐵11𝑘𝑦𝑚0𝑥 + 𝑖
1

2
𝐵66𝑘𝑥𝑚0𝑦 = 0, (B8)

− ((𝐶13 + 𝐶44)𝑘𝑥𝑘𝑧 + 𝐶44𝑘𝑦𝑘𝑧)𝑈0𝑥 −

− ((𝐶13 + 𝐶44)𝑘𝑦𝑘𝑧 + 𝐶44𝑘𝑥𝑘𝑧)𝑈0𝑦 +

+(𝜌𝜔2 − 𝐶44(𝑘𝑥 + 𝑘𝑦)
2 − 𝐶33𝑘

2
𝑧)𝑈0𝑧 +

+ 𝑖𝐵31𝑘𝑧𝑚0𝑥 + 𝑖
1

4
𝐵44𝑘𝑥𝑚0𝑧 = 0, (B9)

𝑖𝜔𝑚0𝑥 = 0, (B10)

− 𝑖
1

4𝑀0
𝛾𝐵44𝑘𝑧𝑈0𝑥 − 𝑖

1

4𝑀0
𝛾𝐵44𝑘𝑥𝑈0𝑧 + 𝑖𝜔𝑚0𝑦 −

− 𝛾𝑀0𝜔𝑚1⊥𝑚0𝑧 = 0, (B11)

𝑖
1

4𝑀0
𝛾𝐵66𝑘𝑦𝑈0𝑥 + 𝑖

1

4𝑀0
𝛾𝐵66𝑘𝑥𝑈0𝑦 +

+ 𝛾𝑀0𝜔𝑚2⊥𝑚0𝑦 + 𝑖𝜔𝑚0𝑧 = 0. (B12)

In expressions (B11) and (B12), the notations

𝜔𝑚1⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
−

𝐾1

𝑀2
0

−
𝐾𝑚𝑒

𝑀2
0

,

𝜔𝑚2⊥ =
𝛼𝑘2

𝑀2
0

+
𝐻

𝑀0
+

𝐵2
66

2𝑀2
0𝐶66

were introduced.
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МАГНIТОПРУЖНI ХВИЛI
В ФЕРОМАГНЕТИКАХ В ОКОЛI
СТРУКТУРНИХ ФАЗОВИХ ПЕРЕХОДIВ У ҐРАТЦI

Р е з ю м е

Розрахованi закони дисперсiї зв’язаних магнiтопружних
хвиль для феромагнетикiв кубiчної та одновiсної симетрiї.
Проведено аналiз особливостей отриманих законiв дисперсiї
в околi спiн-переорiєнтацiйних фазових переходiв. Показа-
но, що взаємодiя мiж звуковими та спiновими хвилями за-
лежить вiд напрямку магнiтного моменту феромагнетика.
Дослiджено вплив магнiтопружної взаємодiї на закон дис-
персiї квазiспiнових хвиль у виродженому основному ста-
нi одновiсного феромагнетика “легка площина”. Розрахунки
показують, що магнiтопружна взаємодiя знiмає вироджен-

ня та приводить до появи магнiтоакустичної щiлини у спе-
ктрi. Проаналiзовано поведiнку спектрiв зв’язаних магнiто-
пружних хвиль в околi фазових переходiв в гратцi, а саме
в околi мартенситних фазових перетворень в матерiалах з
ефектом пам’ятi форми. Отриманi результати використа-
нi для iнтерпретацiї експериментальних даних для сплаву
Ni–Mn–Ga. Теоретично пояснене явище рiзкого зменшення
пружних модулiв даного сплаву при наближеннi до мартен-
ситних фазових переходiв. Показано, що при цьому основ-
ний вплив на пружнi характеристики матерiалу вiдiграє
неоднорiдна магнiтострикцiя. Побудована модель дисипа-
тивної функцiї, що описує релаксацiйнi процеси обумовленi
затуханням зв’язаних магнiтопружних хвиль у феромагне-
тиках кубiчної та одновiсної симетрiї. Отримана модель ди-
сипативної функцiї базується на врахуваннi симетрiї магне-
тика та описує як обмiнну, так i релятивiстську взаємодiю
в кристалi.
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