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ENHANCEMENT OF SQUEEZING
AND ENTANGLEMENT IN A NON-DEGENERATE
THREE-LEVEL CASCADE LASER
WITH COHERENTLY DRIVEN CAVITY

We study a nondegenerate three-level cascade laser coupled to a two-mode vacuum reservoir,
by employing the stochastic differential equations associated with the normal ordering. The
amplification of the properties of squeezing and entanglement of the cavity light is investi-
gated. We have found that there is an entanglement between the states of the light generated
in the cavity, due to the strong correlation of the light emitted, when the atom decays from
the top level to the bottom level via the intermediate one. We have also obtained that the two
cavity modes are strongly entangled, and the degree of entanglement is directly related to the
two-mode squeezing.
K e yw o r d s: atomic coherence, quadrature squeezing, entanglement.

1. Introduction
Quantum entanglement is the term given to the phe-
nomena, whereby particles can be generated or inter-
act in ways such that the quantum state of each parti-
cle cannot be described independently. In such cases,
the system of particles is said to be entangled, and it
is not proper to consider any of the individual parti-
cles in isolation from the others, but only as a single
entangled state. Moreover, the entanglement is one
of the most counter-intuitive aspects of the quantum
world and an enigmatic powerful property. The gen-
eration and manipulation of the entanglement have
attracted a great interest owing to their wide appli-
cations in quantum teleportation [1], quantum dense
coding [2], quantum computation [3], quantum error
correction [4], and quantum cryptography [5].

The efficiency of the quantum information pro-
cessing highly depends on the degree of entangle-
ment. Hence, it is desirable to generate a strongly
entangled continuous variable state. Moreover, it has
been shown that non-degenerate three-level cascade
lasers can generate a macroscopic entangled state. In
such lasers, the crucial role is played by the atomic
coherence, which can be induced either by initially
preparing the atoms in a coherent superposition of
the top and bottom levels [6–10] or by the coupling

c○ T. ABEBE, 2018

of these levels by strong coherent light [11–17]. The
injected coherent superposition creates a population
transfer pathway, which is the basis for the corre-
lated two-photon emission. Hence, a nondegenerate
three-level laser is believed to be a source of a two-
mode squeezed light that is characterized by a strong
correlation of two photons at two frequencies usually
placed symmetrically at either side of the central fre-
quency. The squeezing exists in the correlated state
formed by the two modes, but it does not exist in sin-
gle modes. In general, as a result of the strong corre-
lation between the modes, a two-mode squeezed state
violates certain classical inequalities and, hence, can
be applied to preparing a Einstein–Podolsky–Rosen
(EPR)-type entanglement [18].

Here, we will analyze a nondegenerate three-level
cascade laser coupled to a two-mode vacuum reservoir
via a single-port mirror. As shown in Fig. 1 for the
nondegenerate cascade configuration, when the atom
decays from level |𝑎⟩ to |𝑐⟩ via |𝑏⟩, two photons with
different frequencies are generated. In this respect, we
define a nondegenerate three-level cascade laser as
a quantum optical system, in which nondegenerate
three-level atoms, which are in a cascade configura-
tion and initially prepared in a coherent superposition
of the top and bottom levels, are injected at a con-
stant rate into a cavity. Then we derive the pertinent
master equation in the linear and adiabatic approxi-
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Fig. 1. Schematic representation of a two-mode three-level
cascade laser

mation schemes in the good cavity limit with the aid
of the pertinent stochastic differential equations asso-
ciated with the normal ordering. The resulting master
equation is used to obtain the equation of evolution
of the cavity mode operators. Using the steady-state
solutions of these equations, we study the two-mode
steady state quadrature squeezing. Moreover, by ap-
plying the same solutions, we will analyze the en-
tanglement properties, by applying the entanglement
measure proposed by Duan et al. [19].

2. Hamiltonian and Master Equation

We consider a nondegenerate three-level cascade laser
coupled to a two-mode vacuum reservoir. In this
quantum optical system, three-level atoms in a cas-
cade configuration, initially prepared in a coherent
superposition of the top and bottom levels, are in-
jected into a cavity at a constant rate 𝑟𝑎 and removed
after a certain time 𝜏 . The transitions between levels
|𝑎⟩ and |𝑏⟩ and between levels |𝑏⟩ and |𝑐⟩ are dipole-
allowed. However, the direct transition between levels
|𝑎⟩ and |𝑐⟩ is dipole-forbidden. The interaction of the
cavity modes with external driving fields and with a
single three-level cascade atom is described, in the
rotating wave approximation and in the interaction
picture, by the Hamiltonian

�̂� = 𝑖𝑔
[︀
�̂�|𝑎⟩⟨𝑏| − |𝑏⟩⟨𝑎|�̂�† − |𝑐⟩⟨𝑏|�̂�† + �̂�|𝑏⟩⟨𝑐|

]︀
+

+ 𝑖𝜀(�̂�† − �̂�+ �̂�† − �̂�), (1)

where 𝜀, considered to be real and constant, is propor-
tional to the amplitude of the driving coherent light,
𝑔 is a coupling constant, and �̂� and �̂� are, respectively,
the annihilation operators for the two cavity modes.

In this paper, we take the initial state of a three-
level atom to be

|𝜓𝐴(0)⟩ = 𝐶𝑎(0)|𝑎⟩+ 𝐶𝑐(0)|𝑐⟩. (2)

Hence, the initial density operator for a single atom
has the form

𝜌𝐴(0) = 𝜌(0)𝑎𝑎 |𝑎⟩⟨𝑎|+ 𝜌(0)𝑎𝑐 |𝑎⟩⟨𝑐|+ 𝜌(0)𝑐𝑎 |𝑐⟩⟨𝑎|+

+ 𝜌(0)𝑐𝑐 |𝑐⟩⟨𝑐|, (3)

where 𝜌(0)𝑎𝑎 = |𝐶𝑎|2 and 𝜌
(0)
𝑐𝑐 = |𝐶𝑐|2 are, respectively,

the probabilities for the atom to be initially in the
upper and lower levels, and 𝜌

(0)
𝑎𝑐 = 𝐶𝑎𝐶

*
𝑐 and 𝜌

(0)
𝑐𝑎 =

= 𝐶𝑐𝐶
*
𝑎 represent the initial atomic coherence of the

atom [20]. Using Eqs. (1) and (3) and employing the
linear and adiabatic approximation schemes in the
good cavity limit, we obtain the master equation for
the cavity modes of the quantum optical system under
consideration to be

𝑑

𝑑𝑡
𝜌 = 𝜀[𝜌�̂�− �̂�𝜌+ 𝜌�̂�− �̂�𝜌+ �̂�†𝜌− 𝜌�̂�† + �̂�†𝜌− 𝜌�̂�†] +

+
𝜅

2

[︀
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︀
+
𝐴𝜌

(0)
𝑎𝑎

2

[︀
2�̂�†𝜌�̂�− �̂��̂�†𝜌−

− 𝜌�̂��̂�†
]︀
+

1

2
(𝜅+𝐴𝜌(0)𝑐𝑐 )

[︀
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︀
+

+
𝐴𝜌

(0)
𝑎𝑐

2

[︀
𝜌�̂�†�̂�† + �̂�†�̂�†𝜌− 2�̂�†𝜌�̂�†

]︀
+

+
𝐴𝜌

(0)
𝑐𝑎

2

[︀
�̂��̂�𝜌+ 𝜌�̂��̂�− 2�̂�𝜌�̂�

]︀
, (4)

where 𝐴 = 2𝑟𝑎𝑔
2

𝛾2 is the linear gain coefficient, 𝛾 being
the spontaneous atomic decay rate, and 𝜅 is the cavity
mode damping constant.

3. Stochastic Differential Equations

We now seek to obtain the stochastic differential
equations associated with the normal ordering for
the cavity mode variables. To this end, by applying
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Eq. (4) and the fact that 𝑑
𝑑𝑡 ⟨𝐴⟩ = 𝑇𝑟

(︁
𝑑𝜌
𝑑𝑡𝐴

)︁
, we can

easily obtain
𝑑

𝑑𝑡
⟨�̂�⟩ = −𝜇

2
⟨�̂�⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
⟨�̂�†⟩+ 𝜀, (5)

𝑑

𝑑𝑡
⟨�̂�⟩ = −𝜈

2
⟨�̂�⟩+ 𝐴𝜌

(0)
𝑎𝑐

2
⟨�̂�†⟩+ 𝜀, (6)

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −𝜇⟨�̂�†�̂�⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
(⟨�̂�†�̂�†⟩+ ⟨�̂��̂�⟩)+

+ 𝜀⟨(�̂�†⟩+ ⟨�̂�⟩) +𝐴𝜌(0)𝑎𝑎 , (7)

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −𝜈⟨�̂�†�̂�⟩+ 𝐴𝜌

(0)
𝑎𝑐

2
(⟨�̂�†�̂�†⟩+ ⟨�̂��̂�⟩)+

+ 𝜀(⟨�̂�†⟩+ ⟨�̂�⟩), (8)

𝑑

𝑑𝑡
⟨�̂��̂�⟩ = −𝜉

2
⟨�̂��̂�⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
(⟨�̂�†�̂�⟩+ ⟨�̂�†�̂�⟩ − 1)+

+ 𝜀(⟨�̂�⟩+ ⟨�̂�⟩), (9)

where 𝜇 = 𝜅 − 𝐴𝜌
(0)
𝑎𝑎 , 𝜈 = 𝜅 + 𝐴𝜌

(0)
𝑐𝑐 , and 𝜉 = 2𝜅 +

𝐴(𝜌
(0)
𝑐𝑐 − 𝜌

(0)
𝑎𝑎 ).

We note that all operators in Eqs. (5)–(9) are in the
normal order. As a result, the corresponding expres-
sions in terms of the 𝑐-number variables associated
with the normal ordering can be put in the form
𝑑

𝑑𝑡
⟨𝛼⟩ = −𝜇

2
⟨𝛼⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
⟨𝛽*⟩+ 𝜀, (10)

𝑑

𝑑𝑡
⟨𝛽⟩ = −𝜈

2
⟨𝛽⟩+ 𝐴𝜌

(0)
𝑎𝑐

2
⟨𝛼*⟩+ 𝜀, (11)

𝑑

𝑑𝑡
⟨𝛼*𝛼⟩ = −𝜇⟨𝛼*𝛼⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
(⟨𝛼*𝛽*⟩+ ⟨𝛼𝛽⟩)+

+ 𝜀⟨(𝛼*⟩+ ⟨𝛼⟩) +𝐴𝜌(0)𝑎𝑎 , (12)

𝑑

𝑑𝑡
⟨𝛽*𝛽⟩ = −𝜈⟨𝛽*𝛽⟩+ 𝐴𝜌

(0)
𝑎𝑐

2
(⟨𝛼*𝛽*⟩+ ⟨𝛼𝛽⟩)+

+ 𝜀(⟨𝛽*⟩+ ⟨𝛽⟩), (13)

𝑑

𝑑𝑡
⟨𝛼𝛽⟩ = −𝜉

2
⟨𝛼𝛽⟩ − 𝐴𝜌

(0)
𝑎𝑐

2
(⟨𝛽*𝛽⟩+ ⟨𝛼*𝛼⟩ − 1)+

+ 𝜀(⟨𝛼⟩+ ⟨𝛽⟩) + 𝐴𝜌
(0)
𝑎𝑐

2
. (14)

On the basis of Eqs. (10) and (11), one can write

𝑑

𝑑𝑡
𝛼(𝑡) = −1

2
(𝜅−𝐴𝜌(0)𝑎𝑎 )𝛼(𝑡)−

𝐴𝜌
(0)
𝑎𝑐

2
𝛽*(𝑡)+

+ 𝜀+ 𝑓𝛼(𝑡), (15)

𝑑

𝑑𝑡
𝛽*(𝑡) = −1

2
(𝜅+𝐴𝜌(0)𝑐𝑐 )𝛽*(𝑡)− 𝐴𝜌

(0)
𝑎𝑐

2
𝛼(𝑡)+

+ 𝜀+ 𝑓*𝛽(𝑡), (16)

where 𝑓𝛼(𝑡) and 𝑓*𝛽(𝑡) are the pertinent noise forces,
whose properties remain to be determined. It is obvi-
ous that the expectation values of Eqs. (15) and (16)
are identical to (10) and (11) provided that

⟨𝑓𝛼(𝑡)⟩ = ⟨𝑓*𝛽(𝑡)⟩ = 0. (17)

Moreover, making use of (15) and (16), we can verify
that

⟨𝑓𝛼(𝑡′)𝑓*𝛼(𝑡)⟩ = 𝐴𝜌(0)𝑎𝑎 𝛿(𝑡− 𝑡′), (18)

⟨𝑓𝛼(𝑡′)𝑓𝛽(𝑡)⟩ = ⟨𝑓𝛽(𝑡′)𝑓𝛼(𝑡)⟩ =
𝐴𝜌

(0)
𝑐𝑎

2
𝛿(𝑡− 𝑡′), (19)

⟨𝑓𝛼(𝑡′)𝑓𝛼(𝑡)⟩ = ⟨𝑓𝛽(𝑡′)𝑓𝛽(𝑡)⟩ = 0, (20)

⟨𝑓*𝛽(𝑡′)𝑓𝛽(𝑡)⟩ = ⟨𝑓*𝛼(𝑡′)𝑓𝛽(𝑡)⟩ = ⟨𝑓*𝛼(𝑡)𝑓𝛽(𝑡′)⟩ = 0.

(21)

We note that (17)–(21) represent the mean and cor-
relation properties of the noise forces.

It proves to be useful to introduce a parameter,
which relates the probabilities of the atom to be in
the upper and lower levels. We define a parameter 𝜂
such that

𝜌(0)𝑎𝑎 =
1− 𝜂

2
. (22)

In view of the fact that

𝜌(0)𝑐𝑐 =
1 + 𝜂

2
(23)

and

|𝜌(0)𝑎𝑐 |2 = 𝜌(0)𝑎𝑎 𝜌
(0)
𝑐𝑐 , (24)

we easily find

𝜌(0)𝑎𝑐 =
1

2

√︀
1− 𝜂2, (25)

with −1 ≤ 𝜂 ≤ 1. We note that the steady-state so-
lutions Eqs. (10)–(14) are valid only for non-negative
values of 𝜂, that is, 0 ≤ 𝜂 ≤ 1. Hence, with regard for
(22–25), we express (10) and (11) as

𝑑

𝑑𝑡
𝛼(𝑡) = −

(︂
Γ− 𝐴

4

)︂
𝛼(𝑡)−Δ𝛽*(𝑡) + 𝜀+ 𝑓𝛼(𝑡), (26)
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𝑑

𝑑𝑡
𝛽*(𝑡) = −

(︂
Γ +

𝐴

4

)︂
𝛽*(𝑡)+Δ𝛼(𝑡)+ 𝜀+ 𝑓*𝛽(𝑡), (27)

where Γ = (2𝜅+𝐴𝜂)/4 and Δ =
𝐴
√

1−𝜂2

4 .
We realize that (26) and (27) are coupled differ-

ential equations. In order to solve these differential
equations, we introduce a matrix equation of the form

𝑑

𝑑𝑡
𝑈(𝑡) = −𝑀𝑈(𝑡) +𝑁(𝑡), (28)

in which

𝑈(𝑡) =

(︂
𝛼(𝑡)

𝛽*(𝑡)

)︂
, (29)

𝑀 =

(︂
Γ− 𝐴

4 Δ
−Δ Γ+ 𝐴

4

)︂
, (30)

𝑁(𝑡) =

(︂
𝑓𝛼(𝑡) + 𝜀

𝑓*𝛽(𝑡) + 𝜀

)︂
. (31)

Following the procedure described in Ref. [21], we
obtain

𝛼(𝑡)=𝐴+(𝑡)𝛼(0)+𝐵+(𝑡)𝛽
*(0)+𝐹+(𝑡)+𝐺+(𝑡), (32)

𝛽*(𝑡)=𝐴−(𝑡)𝛽(0)+𝐵−(𝑡)𝛼
*(0)+𝐹−(𝑡)+𝐺−(𝑡), (33)

where

𝐴±(𝑡)=
1

2𝜂

[︁
(𝜂∓1)𝑒−(Γ+𝐴𝜂/4)𝑡+(𝜂±1)𝑒−(𝜅/2)𝑡

]︁
, (34)

𝐵±(𝑡) = ±2Δ

𝐴𝜂

[︁
𝑒−(Γ+𝐴𝜂/4)𝑡 − 𝑒−(𝜅/2)𝑡

]︁
, (35)

𝐹±(𝑡) =
1

2𝜂

𝑡∫︁
0

[︁
(𝜂 ∓ 1)𝑒−(Γ+𝐴𝜂/4)(𝑡−𝑡′) +

+(𝜂 ± 1)𝑒−[𝜅/2](𝑡−𝑡′)
]︁
𝑓𝛼(𝑡

′)𝑑𝑡′ ±

± 𝜀[4Δ∓𝐴(𝜂 ± 1)]

𝜅𝐴𝜂

(︁
𝑒−(𝜅/2)𝑡 − 1

)︁
, (36)

𝐺±(𝑡) = ±2Δ

𝐴𝜂

𝑡∫︁
0

[︁
𝑒−[Γ+𝐴𝜂/4](𝑡−𝑡′) − 𝑒−[𝜅/2](𝑡−𝑡′)

]︁
×

× 𝑓*𝛽(𝑡
′)𝑑𝑡′ ∓ 𝜀[4Δ±𝐴(𝜂 ∓ 1)]

𝐴𝜂(4Γ− 𝜅)

(︁
𝑒−[Γ+𝐴𝜂/4]𝑡−1

)︁
. (37)

One can be realize that a well-behaved solution of
(28) exists in the steady state provided that 𝜂 >
> −𝜅/𝐴. Hence, 𝜂 = −𝜅/𝐴 can be interpreted as
a threshold condition.

4. Quadrature Variance

Here, we seek to analyze the quadrature squeezing
properties of the two-mode light in the cavity. The
squeezing properties of the two-mode light in the cav-
ity can be described by two quadrature operators de-
fined as

𝑐+ = 𝑐† + 𝑐 (38)

and

𝑐− = 𝑖(𝑐† − 𝑐), (39)

where 𝑐 = 1√
2
(�̂�+ �̂�). These quadrature operators sat-

isfy the commutation relation [𝑐+, 𝑐−] = 2𝑖. On the
basis of these definitions, a two-mode light is said to
be in a two-mode squeezed state, if either Δ𝑐2+ < 1 or
Δ𝑐2− < 1. The variances of the quadrature operators
can be expressed as

Δ𝑐2± = ⟨𝑐2±⟩ − ⟨𝑐±⟩2. (40)

It is possible to express the variance of the quadrature
operators (38) and (39) in terms of the 𝑐-number vari-
ables associated with the normal ordering, by taking
the cavity modes to be initially in a two-mode vacuum
state, as

Δ𝑐2± = 1+ ⟨𝛼*(𝑡)𝛼(𝑡)⟩+ ⟨𝛽*(𝑡)𝛽(𝑡)⟩+ 2⟨𝛼*(𝑡)𝛽(𝑡)⟩∓

∓ 1

2
[(⟨𝛼*(𝑡)⟩+ ⟨𝛽*(𝑡)⟩)± (⟨𝛼(𝑡)⟩+ ⟨𝛽(𝑡)⟩)]±

±
[︀
⟨𝛼2(𝑡)⟩+ ⟨𝛽2(𝑡)⟩+ 2⟨𝛼(𝑡)𝛽(𝑡)⟩

]︀
. (41)

Thus, using the steady-state solutions of (10)–(14),
the steady-state quadrature variances are found to
be

Δ𝑐2± =
(2𝜅+𝐴(1 + 𝜂))(2𝜅+𝐴𝜂 ±𝐴

√︀
1− 𝜂2)

2(2𝜅+𝐴𝜂)(𝜅+𝐴𝜂)
+

+
𝐴2(1− 𝜂2)

2(2𝜅+𝐴𝜂)(𝜅+𝐴𝜂)
. (42)

We clearly see from Eq. (42) that the quadrature vari-
ances are independent of the parameter 𝜀, which rep-
resents the driving coherent light. This shows that the
driving coherent light has no effect on the degree of
squeezing of the two-mode light. This is due to the
fact that the external coherent light does not intro-
duce an additional coherence to the system, which is
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believed to be the source of squeezing in three-level
cascade lasers [6–8, 10].

In Fig. 2, we plot the variances of the squeezed
quadratures Δ𝑐2− versus 𝜂 as the parameter for differ-
ent values of the linear gain coefficient. It is possible
to see from this plots that the two-mode squeezing
increases with the linear gain coefficient like Tesfa’s
work [20]. Moreover, the value of 𝜂, at which the
maximum squeezing occurs, decreases to zero, as the
linear gain coefficient increases. Therefore, the two-
mode squeezing can be optimized by choosing small
values 𝜂 and large values of 𝐴/𝜅. For instance, for
𝐴/𝜅 = 500, the level of the squeezing is found to be
70% at 𝜂 = 0.1 and below the vacuum level.

5. Entanglement Amplification

Here, we seek to study the entanglement condition for
two modes in the cavity. A pair of particles is taken to
be entangled in quantum theory, if its states cannot
be expressed as a product of the states of its indi-
vidual constituents. The preparation and manipula-
tion of these entangled states that have nonclassical
and nonlocal properties lead to a better understand-
ing of the basic quantum principles. In other words,
if the density operator for the combined state cannot
be described as a combination of the product density
operators of the constituents,

𝜌 ̸=
∑︁
𝑗

𝑃𝑗𝜌
(1)
𝑗 ⊗ 𝜌

(2)
𝑗 , (43)

where 𝑃𝑗 ≥ 0, and
∑︀

𝑗 𝑃𝑗 = 1 is set to ensure the nor-
malization of the combined density of state. To study
the properties of the entanglement produced by this
quantum optical system, we need an entanglement
criterion for the system. According to the criteria set
by Duan et al. [19], a quantum state of the system
is entangled provided that the sum of the variances
of the two EPR-type operators �̂� and 𝑣 satisfies the
condition

(Δ�̂�)2 + (Δ𝑣)2 < 2, (44)

where

�̂� = �̂�𝑎 − �̂�𝑏, 𝑣 = 𝑝𝑎 + 𝑝𝑏, (45)

with

�̂�𝑎 = (�̂�† + �̂�)/
√
2, �̂�𝑏 = (�̂�† + �̂�)/

√
2,

𝑝𝑎 = 𝑖(�̂�† − �̂�)/
√
2, 𝑝𝑏 = 𝑖(�̂�† − �̂�)/

√
2
, (46)
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Fig. 2. Plots of the quadrature variance Δ𝑐2− of the cavity
radiation versus 𝜂 in the steady state for 𝜅 = 0.15 and for
different values of the linear gain coefficient

being the quadrature operators for the modes �̂� and
�̂�. The total variance of the operators �̂� and 𝑣 can be
written as

Δ�̂�2 = Δ𝑣2 = 1 + ⟨𝛼*(𝑡)𝛼(𝑡)⟩+ ⟨𝛽*(𝑡)𝛽(𝑡)⟩+

+2
[︀
⟨𝛼*(𝑡)𝛽(𝑡)⟩ − ⟨𝛼(𝑡)𝛽(𝑡)⟩

]︀
−

−
[︀
⟨𝛼2(𝑡)⟩+ ⟨𝛽2(𝑡)⟩

]︀
. (47)

Thus, in view of Eq. (49) together with (41), the sum
of the variances of �̂� and 𝑣 can be expressed as

Δ�̂�2 +Δ𝑣2 = 2Δ𝑐2−, (48)

where Δ𝑐2− is given by Eq. (41). We see from this re-
sult that the degree of entanglement is directly pro-
portional to the degree of squeezing of the two-mode
light. Thus, with the aid of Eq. (42), we get

Δ�̂�2+Δ𝑣2=
(2𝜅+𝐴(1 + 𝜂))

(︁
2𝜅+𝐴𝜂 ±𝐴

√︀
1−𝜂2

)︁
(2𝜅+𝐴𝜂)(𝜅+𝐴𝜂)

+

+
𝐴2

(︀
1− 𝜂2

)︀
(2𝜅+𝐴𝜂)(𝜅+𝐴𝜂)

. (49)

We immediately note that this particular entan-
glement measure is directly related to the two-mode
squeezing. This direct relationship shows that, when-
ever there is a two-mode squeezing in the system,
there will be entanglement in the system as well. It
also follows that the degree of entanglement does not
depend on the external driving coherent light. This
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Fig. 3. Plots of Δ�̂�2+Δ𝑣2 of the two-mode light in the cavity
in the steady state versus 𝜂 for 𝜅 = 0.15 and for different values
of the linear gain coefficient

is attributed to the fact that the coherent fields do
not introduce an additional atomic coherence to the
system, and the same is true in the case of squeez-
ing. Using criterion (44) that a significant entangle-
ment between the states of the light generated in the
cavity of a nondegenerate three-level cascade laser can
be manifested due to the strong correlation between
the radiation emitted, when the atoms decay from the
upper energy level to the lower via the intermediate
energy level.

Based on criterion (44), we clearly see from Fig. 3
that the two states of the generated light are strongly
entangled in the steady state. The entanglement dis-
appears, when there is no atomic coherence, and it
would be stronger for certain values of the atomic co-
herence for every value of the linear gain coefficient. It
can easily be seen that the degree of entanglement in-
creases with the rate, at which the atoms are injected
into the cavity, 𝐴.

6. Conclusion

In this paper, we have studied the steady-state two-
mode squeezing and entanglement of the light pro-
duced by a nondegenerate three-level cascade laser
coupled to a two-mode vacuum reservoir in the lin-
ear and adiabatic approximation schemes in the good
cavity limit. It is found that the two-mode cavity ra-
diation exhibits squeezing properties under certain
conditions pertaining to the initial preparation of
the superposition, where the degree of squeezing in-

creases with the linear gain coefficient. In particular,
the squeezing property exists, if the atoms are ini-
tially prepared in such a way that there are more
atoms on the bottom level than on the upper level.

Moreover, we have also found that there is a sig-
nificant entanglement between the states of the light
generated in the cavity of a nondegenerate three-level
cascade laser due to the strong correlation of the light
emitted, when the atom decays from the top level to
the bottom level via the intermediate level. The re-
sults obtained indicate that the two cavity modes are
strongly entangled, and the degree of entanglement is
directly related to the two-mode squeezing.
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Т.Абебе

ПОСИЛЕННЯ СТИСНЕННЯ
I ЗАПЛУТУВАННЯ У НЕВИРОДЖЕНОМУ
ТРИРIВНЕВОМУ КАСКАДНОМУ ЛАЗЕРI
З КОГЕРЕНТНО КЕРОВАНОЮ ПОРОЖНИНОЮ

Р е з ю м е

Розглянуто невироджений трирiвневий каскадний лазер,
пов’язаний з двомодовим вакуумним резервуаром, застосо-
вуючи стохастичнi диференцiальнi рiвняння, що вiдповiда-
ють нормальному упорядкуванню. Вивчено посилення сти-
снення i заплутування порожнинної моди свiтла. Показано,
що є заплутування мiж станами свiтла, яке генерується в
порожнинi завдяки сильнiй кореляцiї свiтла, що випромi-
нює атом при переходi з верхнього на нижнiй рiвень через
промiжний. Знайдено, що двi порожниннi моди сильно за-
плутанi, i ступiнь заплутування безпосередньо пов’язана з
двомодовим стисненням.
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