М.П. ГОРІШНИЙ

Інститут фізики НАН України, відділ молекулярної фотоелектроніки (Просп. Науки, 46, Київ 03028; e-mail: miron.gorishny@gmail.com)

ВИЗНАЧЕННЯ ЕНЕРГІЇ УРБАХА E_u І ОПТИЧНОЇ ШИРИНИ ЗАБОРОНЕНОЇ ЗОНИ E_g СУБМІКРОННИХ ПЛІВОК ФУЛЕРЕНІВ С₆₀ і С₇₀. ЗАЛЕЖНОСТІ E_u І E_g ЦИХ ПЛІВОК ВІД ЇХ ТОВЩИНИ В ДІАПАЗОНІ 20–5000 нм

Детально досліджено довгохвильовий край спектрів коефіцієнта поглинання α плівок фулеренів C_{60} і C_{70} товщиною 20–5000 нм в області 1,492–2,605 еВ. Вперше визначено величини ширини оптичної забороненої зони E_g і енергії Урбаха E_u субмікронних плівок C_{60} і C_{70} . Встановлено, що величина E_u зменшується, а величина E_g збільшується при зростанні товщини плівок C_{60} і C_{70} від 20 до 5000 нм і від 20 до 1000 нм відповідно. Найбільше, проміжне і найменше значення E_g плівок C_{60} і C_{70} одержано методами Таука, класичним і Коді відповідно. Середне значення $\langle E_g \rangle$ співпадає з величиною E_g для класичного методу. Оцінено середні величини параметра $\langle \alpha_0 \rangle$ експоненціальних ділянок довгохвильових крайових спектрів $\alpha(E)$, які значно більші для плівок C_{70} . Довгохвильові крайові спектри $\alpha(E)$ апроксимовано експоненціальними лініями з параметрами $\langle \alpha_0 \rangle$, $\langle E_g \rangle$ і E_u .

Ключові слова: плівка, спектр поглинання, апроксимація, функція Гауса, фулерени С₆₀ і С₇₀, енергія Урбаха, оптична ширина забороненої зони.

1. Вступ

УДК 535.393.2

Фулерени С₆₀ і С₇₀ були відкриті в 1985 році [1]. Молекула С₆₀ – це квазісферичний кластер симетрією I_h , утворений 12 п'ятикутними і 20 шестикутними гранями з 60 атомами карбону в їхніх вершинах. В молекулі С₇₀ симетрією D_{5h} дві півсфери кластера С₆₀ з'єднані поясом з 5 додаткових бензольних кілець вздовж екваторіальної лінії, внаслідок чого молекула С₇₀ має квазіеліпсоїдну форму [2]. Ці матеріали широко використовуються як акцептори електронів в органічних сонячних елементах [3]. С₆₀ застосовувався в сонячних елементах [4], фотоелектричних пристроях [5], фотокаталізаторах [6], фототерапії [7] і біодатчиках [8]. С₇₀ сильніше поглинає в довгохвильовому спектральному діапазоні 1,771–2,480 нм і підходить для заміни C₆₀ в сонячних елементах [9]. Досліджено фотоелектричні властивості об'ємних гетеропереходів на основі похідних C₆₀ і C₇₀ з неароматичними і тетрациклічними арильними замісниками (електронні акцептори), що інкорпоровані в полімерну матрицю PTB7-Th (донор електронів). При тому, найвищу продуктивність спостережено для цих похідних з моноциклічними і біциклічними ароматичними фрагментами, для яких напруга холостого ходу V_{xx} і густина струму короткого замикання $J_{\kappa3}$ становлять 0,8 В і 10 мА/см² відповідно [10].

За даними мас-спектрометрії [11], у процесі синтезу фулеренів утворюються молекули з різною кількістю атомів карбону. Основними компонентами цієї суміші є найбільш стабільні молекули C₆₀ і C₇₀. В роботі [12] за спектрами поглинання C₆₀, C₇₀ і суміші C₆₀/C₇₀ досліджено динаміку змін складу плівок C₆₀/C₇₀ в процесі їх термічного напилення у вакуумі.

Таук та ін. описали непрямі електронні переходи між розширеними енергетичними станами валентної зони і зони провідності плівок аморфного

Цитування: Горішний М.П. Визначення енергії Урбаха E_u і оптичної ширини забороненої зони E_g субмікронних плівок фулеренів С₆₀ і С₇₀. Залежності E_u і E_g цих плівок від їх товщини в діапазоні 20–5000 нм. Укр. фіз. журн. **70**, № 5, 305 (2025).

[©] Видавець ВД "Академперіодика" НАН України, 2025. Стаття опублікована за умовами відкритого доступу за ліцензією СС BY-NC-ND (https://creativecommons.org/ licenses/by-nc-nd/4.0/).

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

германію (a-Ge) відношенням: $\omega^2 \varepsilon_2 \sim (h\omega - E_q)^2$, де ω – циклічна частота світла; ε_2 – уявна частина комплексної діелектричної функції ε ; $h\omega$ – енергія фотона світла і E_g – оптична ширина забороненої зони відповідно. При тому, величина Е_g визначалась екстраполяцією прямолінійної ділянки залежності $h\omega$ $(\varepsilon_2)^{0,5} = f(h\omega)$ до нульового значення ординати [13]. Методами спектроскопії фототермічного відхилення і пропускання досліджено розподіл локалізованих станів всередині забороненої зони у плівках товщиною 0,52–1,28 мкм сплавів на основі аморфного кремнію (гідрогенізовані a-SiC і a-SiGe). При тому, на залежності $\log \alpha = f(hv)$ виділено три області краю поглинання цих плівок: область дефектів (1,0–1,5 eB); хвіст Урбаха (1,5– 1,9 еВ) і область переходів між розширеними станами біля країв валентної зони і зони провідності (1,9-2,2 eB). Для плівок a-SiC і a-SiGe величини E_q і енергії Урбаха E_u становлять 1,79–2,17 еВ і 58-115 меВ відповідно [14].

Край поглинання плівок C₆₀ подібний до такого для плівок на основі аморфного Si (*a*-SiC i *a*-Si:H). При тому, спостережено вібронну структуру (резонанси) 1,51; 1,68; 1,83; 1,93 і 2,00 еВ в забороненій зоні плівок C₆₀. Для цих плівок $E_g = 1,64$ еВ і $E_u = 61$ меВ [15, 16]. Край спектра поглинання плівок C₇₀ товщиною 1 мкм подібний до такого для плівок *a*-Si:H/SiN товщиною 1,6 мкм. Для C₇₀ одержано величини $E_g = 1,65$ еВ і $E_u = 55$ меВ, які близькі до таких для *a*-Si:H/SiN, що становлять 1,66 еВ і 69 меВ відповідно. В області енергій фотонів E < 1,6 еВ плече поглинання С₇₀ при 1,5 еВ разюче схоже на поглинання звисаючих зв'язків кремнію в *a*-Si:H/SiN [17].

Під дією зовнішнього тиску спостережено збільшення величини і червоне зміщення краю поглинання полікристалічних гранул суміші C_{60}/C_{70} . При тому, величина E_g зменшується і наближається до нуля при тиску 20,5 ГПа. Після зняття цього тиску край поглинання цих гранул відновлюється до початкового вигляду, що свідчить про відсутність деструкції молекул C_{60} і C_{70} . Припускається, що при тисках $\geq 20,5$ ГПа гранули C_{60}/C_{70} можуть мати металічну провідність [18]. Для полікристалічних гранул C_{70} спостережено червоне зміщення краю поглинання без зміни його нахилу при тисках ≤ 10 ГПа [19].

Для плівок C₆₀ характерні три фази в залежності від температури: орієнтаційна заморожена фаза 1 ($T \leq 150$ К); фаза 2 орієнтаційного розладу ($150 < T \leq 260$ К) і фаза 3 вільного обертання молекул С₆₀ (260 < T < 470 К). Величини E_g і E_u плівок С₆₀ товщиною 1,0–8,5 мкм не змінюються у фазі 1 і змінюються повільно у фазі 2 та швидко у фазі 3. При тому, у фазах 2 і 3 величина E_g зменшується, а величина E_u збільшується при зростанні температури плівки С₇₀ товщиною 8,5 мкм. Ці величини становили 1,6–1,7 еВ і 30–59 меВ відповідно. При тому, на величину E_u сильно впливає орієнтаційний розлад молекул С₆₀, а інтеркаляція O₂ не змінює її. Це означає, що хвостовий параметр E_u є внутрішньою характеристикою плівок С₆₀ [20].

Умови приготування сильно впливають на структуру, оптичні властивості і механічні напруження у плівках C₆₀. Комплексні оптичні і електронмікроскопічні дослідження показали, що полікристалічні плівки C₆₀ мають край фундаментального поглинання біля 1,65 еВ і залежність E_g від величини механічного напруження $P dE_g/dP = -2.8 \times 10^{-10}$ еВ/Па. В аморфних плівках C₆₀ механічне напруження зменшується і їх край поглинання знаходиться біля 2,2 еВ [21].

В роботах [13-21] досліджено довгохвильовий край поглинання і визначено величини E_q і E_u плівок \mathbf{C}_{60}
і \mathbf{C}_{70} товщиною $d \geq 1$ мкм і відсутні дані по визначенню величини E_g і E_u плівок C_{60} і C_{70} товщиною d < 1 мкм. Для субмікронних плівок С₆₀ і С₇₀ ці дослідження актуальні та необхідні для глибшого розуміння роботи сонячних елементів, сенсорів та інших пристроїв на основі різних композитів, до складу яких входять тонкі шари C_{60} і C_{70} . Величина E_u визначає крутизну нахилу довгохвильового краю поглинання і необхідна для оцінки ступеня структурованості субмікронних плівок С₆₀ і С₇₀, зумовленого електронними станами дефектів в забороненій зоні. За величиною E_a можна оцінювати можливе значення порогів поглинання цих плівок, що дуже важливо для визначення ефективності перетворення світлової енергії в електричну енергію сонячних елементів та інших подібних пристроїв на основі композитів з субмікронними шарами C₆₀ і C₇₀.

В нашій роботі вперше буде визначено величини E_g і E_u субмікронних плівок C₆₀ і C₇₀ з метою виявлення можливих особливостей характеристик краю поглинання цих плівок. Буде проведено аналіз спектрів поглинання плівок C₆₀ і C₇₀ товщиною

в межах 20–5000 нм з метою визначення залежності величи
н E_g і E_u від товщини цих плівок.

2. Прямі і непрямі електронні переходи і оптична ширина забороненої зони в напівпровідниках

В кристалічних напівпровідниках згідно з напівкласичною теорією, в якій енергія електронів квантується і фотони описуються класичними електромагнітними хвилями, швидкість переходу (ймовірність переходу за одиницю часу) електрона з валентної зони в зону провідності визначається рівнянням [22]:

$$W = \left(\frac{2\pi}{\hbar}\right) |M|^2 N(E), \qquad (1)$$

де M, N(E) і E – матричний елемент переходу, спільна електронно-діркова густина станів і енергія фотона ($E = \hbar \omega = h\nu$) відповідно. При прямому (вертикальному) переході хвильовий вектор **k** електрона не змінюється. В цьому випадку коефіцієнт поглинання $\alpha(E < E_g) = 0$ і

$$\alpha(E \ge E_g) \sim (E - E_g)^{0.5},\tag{2}$$

де E_g – ширина оптичної забороненої зони кристалічного (полікристалічного) напівпровідника. При тому, величину E_g згідно з співвідношенням (2) можна визначити шляхом екстраполяції прямолінійної ділянки графіка $\alpha^2 = f(E)$ до точки з ординатою $\alpha^2 = 0$ і абсцисою $E = E_g$ [22, 23].

В непрямому (невертикальному) переході хвильовий вектор **k** електрона змінюється. В цьому випадку поглинання фотона електроном супроводжується поглинанням або випромінюванням фонона з врахуванням закону збереження імпульсу. Швидкість непрямого переходу W (рівняння (1)) менша від такої для прямого переходу. Відповідний коефіцієнт поглинання $\alpha = 0$ при енергії фотонів $E < E_q$ і

$$\alpha \left(E \ge E_g \right) \sim \left(E \pm \hbar \Omega - E_g \right)^2, \tag{3}$$

де $\hbar\Omega$ – енергія фонона при його випромінюванні (+ $\hbar\Omega$) і поглинанні (- $\hbar\Omega$) відповідно [22, 24]. Оскільки $\hbar\Omega \ll E$, то співвідношення (3) можна записати у вигляді рівняння з врахуванням, що $E = h\nu$:

$$(\alpha)^{0,5} = A \left(hv - E_g \right),\tag{4}$$

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

де A – стала величина. Отже, при непрямих переходах величину E_g кристалічних (полікристалічних) напівпровідників згідно з рівнянням (4) можна визначити шляхом екстраполяції прямолінійної ділянки графіка $\alpha^{0,5} = f(hv)$ до точки з ординатою $\alpha^{0,5} = 0$ і абсцисою $hv = E_g$. Нижче для зручності метод визначення величини E_g згідно з рівнянням (4) будемо називати класичним.

Край поглинання аморфних плівок германію описано співвідношенням Таука [13]:

$$\omega^2 \varepsilon_2 \sim (\hbar \omega - E_g)^2. \tag{5}$$

Це співвідношення можна перетворити в рівняння:

$$\omega^2 \varepsilon_2 = A_1 (\hbar \omega - E_g)^2, \tag{6}$$

де A_1 – стала величина. Уявна складова діелектричної функції $\varepsilon_2 = 2nk$, де n і k – показники заломлення і поглинання середовища відповідно. Коефіцієнт поглинання середовища $\alpha = 2\omega k/c$, де c – швидкість світла в середовищі [25]. Після математичних перетворень одержимо, що $\varepsilon_2 = \alpha cn/\omega$. Підставимо цей вираз для ε_2 в рівняння (6) і врахуємо, що $\hbar\omega = h\nu$. Після математичних перетворень одержимо:

$$(\alpha hv)^{0,5} = A_2 (hv - E_g), \tag{7}$$

де $A_2 = A_1 \hbar/(cn)$ – стала величина. Рівняння (7) використовується для опису краю поглинання непрямих електронних переходів в аморфних напівпровідниках.

Інший підхід для опису непрямих переходів в аморфних напівпровідниках запропоновано Коді і співавторами на основі їх припущення, що дипольний момент переходу M (рівняння (1)) постійний [26]:

$$(\alpha/hv)^{0,5} = A_3 (hv - E_g), \tag{8}$$

де A_3 – стала величина. На основі методів Таука і Коді величину E_g можна визначити екстраполяцією прямолінійних ділянок графіків рівнянь (7) і (8) до нульових значень ординат $(\alpha hv)^{0,5}$ і $(\alpha/hv)^{0,5}$ відповідно.

Край коефіцієнта поглинання α аморфних напівпровідників на відміну від різкого краю їх кристалічних аналогів є широким і його умовно можна розділити на три області: а) міжзонне поглинання з $\alpha > 10^4$ см⁻¹; б) експоненціальна область (хвіст Урбаха) з $\alpha = 1-10^3$ см⁻¹ і с) хвіст слабкого поглинання з $\alpha < 1$ см⁻¹. Причиною краю Урбаха є електронні переходи між дефектними станами в забороненій зоні поблизу верхнього краю валентної зони і нижнього краю зони провідності. Хвіст слабкого поглинання може бути зумовленим домішками. Якщо припустити, що дефектні стани в аморфному напівпровіднику приблизно описуються параболічними смугами, то густини електронних станів N(E) поблизу країв валентної зони і зони провідності можуть екстраполюватись глибше в заборонену зону. Тоді $E_g = E_{c \, opt} - E_{v \, opt}$, де $E_{c \, opt}$ і $E_{v \, opt}$ – мінімум і максимум екстрапольованих параболічних смуг густини біля країв зони провідності і валентної зони відповідно [27, 28].

Хвіст поглинання Урбаха описується такою функціональною залежністю [27]:

$$\alpha = \alpha_0 \exp\left(\frac{E - E_g}{E_u}\right),\tag{9}$$

де α_0 і E_u – стала величина (вимірюється в см⁻¹) і енергія Урбаха відповідно. Після логарифмування рівняння (9) маємо:

$$\log (\alpha) = \log (\alpha_0) + (E - E_g)/(E_u \cdot \ln 10),$$

де ln 10 $\approx 2,3026$. Тоді для двох значень $\alpha(E_2)$
і $\alpha(E_1)$ різниця $\log (\alpha(E_2)) - \log (\alpha(E_1))(E_2 - \log \alpha(E_1)))$

$$-E_1)/(2,3026 \cdot E_u) i E_u = \frac{E_2 - E_1}{2,3026(\log(\alpha(E_2)) - \log(\alpha(E_1)))}.$$
 (10)

Отже, енергія Урбаха E_u чисельно рівна або обернена величині тангенсу кута нахилу прямолінійної ділянки графіка $\log(\alpha) = f(E)$ до осі ординат або осі абсцис відповідно.

В роботі [22] детально досліджено спектри $\alpha(E)$ кристалів, порошків і аморфних Si, Ge і GaAs. Обчислення E_g цих напівпровідників проведено на основі графіків α (лінійна регресія), α^2 , $\alpha^{0,5}$, $(\alpha \cdot E)^{0,5}$ і $(\alpha/E)^{0,5}$ від енергії фотонів E та інших методів. Запропоновано нову методологію визначення E_g з використанням апроксимації спектра $\alpha(E)$ сигмоїдною функцією Больцмана (sigmoid-Boltzmann function).

В останні десятиріччя метод Таука став популярним для вивчення прямих і непрямих переходів кристалічних і полікристалічних напівпровідників. Необхідною умовою використання цього методу є те, що край поглинання утворюється тільки одним міжзонним переходом між параболічними смугами. Квантовані матеріали різної розмірності (двовимірні, одновимірні і точкові) не можуть досліджуватись методом Таука, бо мають сильні смугові хвости, що перекривають фундаментальне поглинання [27].

В даній роботі використано формули (4), (7), (8) і (10) для визначення величин E_g і E_u плівок C₆₀ і C₇₀ різної товщини.

3. Спектри поглинання плівок фулеренів C₆₀ і C₇₀ різної товщини

В роботах [9, 15, 16, 17, 20 і 29] вихідні спектри поглинання плівок C₆₀ і C₇₀ різної товщини наведено в координатах D(E), log D(E) і log $\alpha(E)$, де D, α і E – оптична густина, коефіцієнт поглинання і енергія фотонів відповідно. В нашій роботі ці спектри скопійовано і трансформовано в координатах D(E) та приведено до початкових значень D_0 в межах від 0,001 до 0,005. Після того приведені спектри D(E)перераховано в координатах $\alpha(E)$. На наш погляд, спектри $\alpha(E)$ є більш інформативними. Для всіх цих перетворень використано комп'ютерну програму Origin.

В роботі [12] спектри поглинання плівок C₆₀ і C₇₀ товщиною 20 нм апроксимовано функціями Гауса в області 1,4–6,2 еВ. Для плівки C₆₀ у довгохвильовій області 1,4–3,0 еВ спостережено смуги поглинання 1,999; 2,469 (плече) і 2,774 еВ, які ідентифіковано як $h_u \to t_{1u}$ перехід (перша смуга) і два $h_u \to t_{1g}$ переходи (друга і третя смуги). В спектрах поглинання плівки C₇₀ в області 1,4– 3,0 еВ проявляється широка смуга при 2,344 еВ $(e''_2 \to a''_2$ перехід) і слабкі смуги (плечі) 1,889 еВ $(e''_1 \to e''_1$ або $a''_2 \to a''_1$ переходи); 2,022 еВ (вібронне повторення смуги 1,889 еВ з внутрішньомолекулярною частотою 1073 см⁻¹) і 2,176 еВ $(a'_2 \to a''_1)$

При енергії фотонів E = 1,999 еВ (область $h_u \rightarrow t_{1u}$ переходу) одержано такі значення ефективного коефіцієнта поглинання α : 8,88 · 10³; 6,33 · 10³; 3,18 · 10³; 0,85 · 10³ і 6,60 · 10³ см⁻¹ для плівок C₆₀ товщиною 20, 70, 900, ~1000 і 5000 нм (рис. 1, криві 1, 2, 3, 4 і 5 відповідно). Порівняння цих спектрів показує, що величина α зменшується при збільшенні товщини плівок C₆₀, тобто закон Бугера-Ламберта не виконується (криві 1, 2, 3 і 4). Для плівки C₆₀ товщиною 5000 нм (крива 5) величи-

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

308

Рис. 1. Довгохвильові крайові спектри коефіцієнта поглинання α плівок С₆₀ товщиною 20, 70, 900, (~1000) і 5000 нм (криві 1, 2, 3, 4 і 5 відповідно). Ці криві створено на основі оригінальних спектрів, які скопійовано з: [9] (для кривої 1), [29] (для кривих 2 і 3), [16] (для кривої 4) і [20] (для кривої 5)

на $\alpha \in 6$ ільшою від такої для плівок C₆₀ товщиною 900 і ~1000 нм (криві 3 і 4 відповідно) і є близькою до такої для плівки C₆₀ товщиною 70 нм при E = 1,999 eB (крива 2). Величина α плівок C₆₀ товщиною 20 і 70 нм є однакова і становить 3, 17 · 10³ см⁻¹ при E = 1,796 eB (криві 1 і 2). Аналіз спектрів поглинання D(E), які в даній (нашій) роботі не наведено, показав, що оптична густина D плівок C₆₀ товщиною ~1000 нм менша від такої для плівок C₆₀ товщиною 900 нм. Це свідчить про те, що товщина ~1000 нм плівок C₆₀ в роботах [15, 16] завищена. При виконанні закону Бугера– Ламберта вона повинна становити 241 нм порівняно з плівкою C₆₀ товщиною 900 нм.

При енергії фотонів E = 1,999 еВ (область $a''_2 \rightarrow$ $\rightarrow a''_1$ переходу) одержано такі значення величини α: 36,44 · 10³; 19,32 · 10³; 2,96 · 10³ i 12,86 · 10³ cm⁻¹ для плівок C₇₀ товщиною 20, 160, ~1000 і 1000 нм (рис. 2, криві 1, 2, 3 і 4 відповідно). Спостережено зменшення величини коефіцієнта поглинання α при збільшенні товщини плівок C_{70} від 20 до 1000 нм, тобто закон Бугера–Ламберта не виконується, як і для плівок С₆₀. Величина товщини ~1000 нм плівки С₇₀ в роботах [15, 16] є завищеною. Наші оцінки показують, що порівняно з плівкою С₇₀ товщиною 1000 нм (крива 4) при виконанні закону Бугера-Ламберта вона повинна становити 230 нм. Для плівок C₆₀ і C₇₀ товщиною 20 нм коефіцієнт поглинання α другої плівки в 4,1 разів більший, що свідчить про сильніше поглинання С₇₀ в довгохвильовій області 1,6-2,1 eB.

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

Рис. 2. Довгохвильові крайові спектри коефіцієнта поглинання α плівок С₇₀ товщиною 20, 160, ~1000 і 1000 нм (криві 1, 2, 3 і 4 відповідно). Ці криві створено на основі оригінальних спектрів, які скопійовано з: [9] (для кривої 1), [17] (для кривих 2, 4) і [16] (для кривої 3)

Рис. 3. Спектри довгохвильового краю коефіцієнта поглинання α плівки С₆₀ товщиною 5000 нм в напівлогарифмічному масштабі: на вставці ліворуч криві 1, 2 і 3 відповідають вихідному спектру, базовій лінії і їх різниці відповідно (*a*); апроксимація функціями Гауса кривої 3 з використанням комп'ютерної програми Origin (δ). Назва осі ординат є однаковою для всіх графіків на рис. 3, *a* і 3, *b*. Вихідні дані для кривої 1 взято з [20]

В роботі [15] спостережено смуги при 1,51; 1,68; 1,83; 1,93 і 2,00 еВ на довгохвильовому краю спектра поглинання $\log \alpha = f(E)$ плівки C₆₀ товщиною ~1000 нм. Припускається, що ці смуги утворюють вібронну прогресію з 0 \rightarrow 0-переходом при 1,51 еВ [15]. З метою підтвердження цього припущення в даній роботі досліджено довгохвильовий край спектра поглинання $\log \alpha = f(E)$ плівки C₆₀ товщиною 5000 нм, для якої ця структура повинна проявлятись краще. Відповідний спектр поглинання, базову лінію та їх різницю наведено на рис. 3, *а* (вкладка ліворуч, криві 1, 2 та 3 відповідно). Для кривої 3 проведено апроксимацію функціями Гау-

Рис. 4. Спектри довгохвильового краю коефіцієнта поглинання α плівок C₆₀ товщиною 20, 70, 900, (~1000) і 5000 нм (криві 1, 2, 3, 4 і 5 відповідно) в напівлогарифмічному масштабі. Штриховою лінією позначено екстрапольовану пряму апроксимованої експоненціальної ділянки кривої 4. Вихідні дані для кривої 1 взято з [9]; кривих 2 і 3 – з [29]; кривої 4 – з [16] і кривої 5 – з [20]

са і одержано смуги при 1,536; 1,640; 1,757; 1,855 і 1,939 еВ (рис. 3, δ), які за положенням близькі до наведених вище смуг, за винятком смуги при 2,00 еВ. Смуга 2,00 еВ спостережена в спектрах поглинання плівок C₆₀ меншої товщини і за положенням близька до енергії 1,999 еВ синглетного ($h_u \rightarrow t_{1u}$)-переходу [12]. Смуга 1,536 еВ за положенням близька до енергії 0 \rightarrow 0 – триплетного екситона C₆₀, яка становить 1,50 еВ [30]. Враховуючи ці дані, можна припустити, що довгохвильовий край поглинання плівок C₆₀ формується в результаті накладання смуг вібронної прогресії триплетного екситона при 1,536; 1,640; 1,757; 1,855 і 1,939 еВ та смуги синглетного екситона 1,999 еВ.

Спостережені вище зменшення величини коефіцієнта поглинання α при зростанні товщини плівок С₆₀ і С₇₀ зумовлені такими причинами: а) різною точністю вимірювання товщини цих плівок в роботах [9, 15, 16, 17, 20 і 29]; б) зменшенням ефективного поглинання внаслідок збільшення концентрації різноманітних молекулярних агрегатів у плівках більшої товщини. Детальне вивчення цих причин не є метою даної роботи і може бути предметом наступних досліджень.

Визначення величини енергії Урбаха *E_u* за спектрами коефіцієнта поглинання α плівок C₆₀ і C₇₀ різної товщини

Енергія Урбаха E_u є важливою характеристикою плівок C₆₀ і C₇₀. За її величиною можна визначати

крутизну нахилу довгохвильового краю поглинання і оцінювати ступінь упорядкування структури цих плівок.

Для визначення величини E_u використано piвняння (10) і результати апроксимації прямими лініями експоненціальних ділянок спектрів $\alpha(E)$ з використанням програми Origin. Спектри поглинання $\log \alpha(E)$ плівок C₆₀ товщиною 20, 70, 900, ~1000 і 5000 нм наведено на рис. 4 (криві 1, 2, 3, 4 і 5 відповідно). В напівлогарифмічному масштабі експоненціальні ділянки цих графіків для всіх плівок С₆₀ спостережено у вигляді прямих ліній. Наприклад, штриховою лінією наведено екстрапольовану пряму апроксимації до кривої 4. Графіки $\log \alpha(E)$ плівок C₆₀ товщиною ~1000 і 5000 нм мають S-подібний вигляд (криві 4 і 5 – відповідно). На цих графіках спостережено три області: початок слабкого поглинання E < 1,63 eB $(\log \alpha(E) \leq 1,26$ в.о.); експоненціальне поглинання 1,63–1,89 eB (1,26 $< \log \alpha(E) \leq 2,62$ в.о.) і поглинання $h_u \rightarrow t_{1u}$ -переходу 1,89–2,000 eB $(2,62 < \log \alpha(E) \le 3,81$ в.о.). Відповідні вихідні спектри виміряно методами спектроскопії оптичного пропускання і фототермічного відхилення [16, 20]. Другий метод є більш чутливим в довгохвильовій області і дозволяє точніше виміряти області слабкого і експоненціального поглинання цих плівок. Спектри поглинання плівок товщиною 20, 70 і 900 нм (криві 1, 2 і 3 відповідно) виміряно лише методом спектроскопії оптичного пропускання [9, 29]. Для цих плівок в даній роботі спостережено другу і третю області поглинання.

Величина E_u визначалась за кутом нахилу екстрапольованих прямих апроксимації згідно з рівнянням (10). Одержано такі значення E_u : 82, 66, 60, 81 і 35 меВ для плівок С₆₀ товщиною 20, 70, 900, ~1000 і 5000 нм відповідно. Зменшення величини E_u може свідчити про зменшення концентрації дефектних станів в забороненій зоні і, відповідно, збільшення ступеня упорядкування структури плівок С₆₀ при зростанні їх товщини від 20 до 5000 нм.

На рис. 5 наведено спектри $\log \alpha(E)$ плівок C₇₀ різної товщини. Величину E_u для плівки C₇₀ товщиною ~1000 нм визначено в області енергій фотонів E 1,492–1,618 і 1,492–1,808 еВ (крива 3). В першій і в другій області одержано значення E_u 61 і 79 меВ відповідно. Перше значення E_u співпадає з таким плівок C₆₀ товщиною ~1000 нм, яке одер-

Фулерен	<i>d</i> , нм	E_g , eB			$F \setminus oB$	E MOB	lor ou p o	log on P.O.	E. oB	E. oB	$\langle \alpha_{\nu} \rangle = \alpha r^{-1}$
		$(\alpha^* E)^{0,5}$	$(\alpha)^{0,5}$	$(\alpha/E)^{0,5}$	$\langle L_g \rangle$, eb	L_u , med	$\log \alpha_1$, B.O.	$\log \alpha_2$, B.O.	E_1 , eD	122, eD	\au_0/, CM
C ₆₀	20	1,596	1,586	1,576	1,586	82	2,700	3,502	1,645	1,796	244,71
	70	1,637	1,632	1,625	1,631	66	2,464	3,387	$1,\!645$	1,785	235,92
	900	1,653	1,649	1,645	1,649	60	1,722	2,923	$1,\!645$	1,811	56,32
	~ 1000	1,665	1,658	1,651	1,658	81	1,276	2,439	1,638	1,856	24,00
	5000	1,675	1,675	$1,\!672$	$1,\!674$	35	1,215	2,889	1,632	1,767	54,40
C70	20	1,663	1,652	1,640	1,652	79	2,805	4,037	1,614	1,837	1039,79
	160	1,604	1,595	1,582	1,594	77	2,442	3,758	1,562	1,795	420,14
	~ 1000	1,662	1,637	1,608	1,636	79	1,002	2,811	1,492	1,808	67,77
	1000	1,683	1,678	1,673	1,678	57	2,410	3,526	1,673	1,820	279,31

Tаблиця 1. Значення величин оптичної ширини забороненої зони E_g , енергії Урбаха E_u , і параметра $\langle \alpha_0 \rangle$ для плівок фулеренів С₆₀ і С₇₀ різної товщини

жано в роботах [15, 16]. В даній роботі для аналізу використано значення 79 меВ, яке визначене в більш широкій області енергій фотонів. Отже, величина E_u становить 79, 77, 79 і 57 меВ для плівок С₇₀ товщиною 20, 160, ~1000 і 1000 нм (криві 1, 2, 3 і 4 відповідно), тобто E_u також зменшується при збільшенні товщини цих плівок від 20 до 1000 нм. Винятками є плівки С₆₀ і С₇₀ товщиною ~1000 нм, для яких E_u становить 81 і 79 меВ відповідно. Можна припустити, що в [15, 16] досліджено термічно осаджені плівки С₆₀ з меншим ступенем упорядкування структури.

Значення E_u , координат початку $(E_1; \log \alpha_1)$ та кінця $(E_2; \log \alpha_2)$ співпадання екстрапольованих прямих апроксимації із графіками $\log \alpha = f(E)$ для всіх плівок C₆₀ та C₇₀ наведено в табл. 1.

Встановлено, що для всіх плівок величини E_u , визначені за рівнянням (10) і з використанням прямолінійної апроксимації в програмі Origin, практично співпадають. При прямолінійній апроксимації відносна похибка вимірювань E_u для плівок C₆₀ та C₇₀ не перевищувала 5% з коефіцієнтом кореляції більшому від 0,995. В даній роботі для всіх цих плівок величини E_u одержані при D_0 в межах від 0,001 до 0,005.

5. Визначення оптичної ширини забороненої зони *E*_g плівок C₆₀ і C₇₀

Вище було показано, що величина ширини оптичної забороненої зони E_g непрямих електронних переходів аморфних і склоподібних напівпровід-

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

ників визначається методами Таука і Коді шляхом екстраполяції прямолінійних ділянок графіків функцій ($\alpha^* E$)^{0,5} і (α/E)^{0,5} від енергії фотонів E до нульових значень ординат. Значення відповідних абсцис визначають величину E_g . Для знаходження величини E_g непрямих електронних переходів кристалічних і полікристалічних напівпровідників використовують графік функції (α)^{0,5} = f(E) (вище ми умовно назвали цей метод класичним).

Графіки функцій $(\alpha^* E)^{0,5}$, $(\alpha)^{0,5}$ і $(\alpha/E)^{0,5}$ від енергії фотонів E побудовано на основі рівнянь (7), (4) і (8) відповідно. Для плівки С₆₀ товщи-

Рис. 5. Спектри довгохвильового краю коефіцієнта поглинання α плівок С₇₀ товщиною 20, 160, ~1000 і 1000 нм (криві *1, 2, 3* і 4 відповідно) в напівлогарифмічному масштабі. Штриховою лінією позначено екстрапольовану пряму апроксимації експоненціальної ділянки кривої 4. Вихідні дані для кривої 1 взято з [9]; кривих 2 і 3 – з [17] і кривої 4 – з [16]

Рис. 6. Залежності функцій ($\alpha^* E$)^{0,5}, (α)^{0,5} і (α/E)^{0,5} від енергії падаючих фотонів *E* для довгохвильового краю спектра поглинання плівки С₆₀ товщиною 20 нм. Цифрова шкала осі ординат однакова для трьох графіків. Для кожного графіка назва осі ординат відповідає напису праворуч біля цих графіків. Величини α і *E* виміряно в см⁻¹ і еВ відповідно

Рис. 7. Залежності функцій $(\alpha^* E)^{,5}$, $(\alpha)^{0,5}$ і $(\alpha/E)^{0,5}$ від енергії падаючих фотонів *Е* для довгохвильового краю спектра поглинання плівки С₇₀ товщиною 20 нм. Всі позначення такі ж, як на рис. 6

ною 20 нм ці графіки з екстрапольованими прямолінійними ділянками наведено на рис. 6. Величину E_g визначено шляхом перетину екстрапольованої прямолінійної ділянки графіка з горизонтальною прямою нульової ординати. За абсцисами цих точок одержано такі значення величини E_g : 1,596; 1,586 і 1,576 еВ для функцій ($\alpha^* E$)^{0,5} (метод Таука), (α)^{0,5} (класичний метод) і (α/E)^{0,5} (метод Коді) від E відповідно. Найбільше значення E_g дає метод Таука, проміжне – класичний метод і найменше – метод Коді. Величина $\langle E_g \rangle = 1,586$ еВ чисельно дорівнює середньому від значень E_g , які одержано для трьох методів. Вона практично співпадає з величиною E_g , визначеною згідно з класичним методом. Зміна величини E_g для трьох методів відносно $\langle E_g \rangle$ становить 0,63; 0,00 і -0,63% відповідно.

Графіки функцій ($\alpha^* E$)^{0,5}, (α)^{0,5} і (α/E)^{0,5} від Eдля плівки С₇₀ товщиною 20 нм наведено на рис. 7. Для графіків функцій ($\alpha^* E$)^{0,5}, (α)^{0,5} і (α/E)^{0,5} від E одержано значення E_g 1,663; 1,652 і 1,640 еВ відповідно. Зміна величини E_g для трьох методів відносно $\langle E_g \rangle = 1,652$ еВ становить 0,67; 0,00 і – 0,73% відповідно. Порівняння показує, що розбіжність між $\langle E_g \rangle$ і значеннями E_g для трьох методів є близькою за величиною для плівок С₆₀ і С₇₀.

Величина $\langle E_g \rangle$ плівок C₆₀ збільшується від 1,586 до 1,674 еВ при зростанні їх товщини від 20 до 5000 нм. Для плівок C₇₀ величина $\langle E_g \rangle$ збільшується від 1,594 до 1,678 еВ при зростанні їх товщини від 160 до 1000 нм. Винятком є плівка C₇₀ товщиною 20 нм, для якої E_g більша і становить 1,652 еВ. Якщо це значення розглядати як відхилення, то можна стверджувати, що величина E_g також зростає при збільшенні їх товщини від 20 до 1000 нм.

За результатами апроксимації прямими лініями в програмі Origin відносна похибка вимірювання E_g всіх плівок C₆₀ і C₇₀ не перевищувала 5% з коефіцієнтом кореляції не менше 0,992.

Отже, $\langle E_g \rangle$ плівок C₆₀ і C₇₀ близькі за величиною і збільшуються при зростанні їх товщини в межах 20–5000 і 20–1000 нм відповідно.

Електронно-мікроскопічні дослідження структури плівок суміші C_{60}/C_{70} товщиною 195 нм показали, що вона залежить від типу підкладки і є переважно аморфною, в яку вкраплені округлі і голчасті кристаліти розміром в межах 50-200 нм [12]. Враховуючи це, можна стверджувати, що при збільшенні товщини плівок С₆₀ і С₇₀ зростає інтенсивність утворення кристалітів у віддалених від підкладки шарах цих плівок, яка зумовлена вандер-ваальсовою взаємодією між молекулами С₆₀ і С₇₀. Це зумовлює збільшення відносної маси кристалічної фази у плівках С₆₀ і С₇₀ більшої товщини. Для кристалічної фази характерна більша крутизна нахилу довгохвильового краю поглинання (менша величина E_u) і більша величина E_q порівняно з аморфною фазою. Тому спостережене вище збільшення ступеня впорядкування структури (зменшення величини E_u) і величини E_g

при зростанні товщини плівок C₆₀ і C₇₀ зумовлене збільшенням внеску кристалічної фази в поглинання цих плівок.

6. Визначення параметра α₀ плівок C₆₀ і C₇₀

Після логарифмування рівняння (9) і наступних математичних перетворень з заміною E_g на $\langle E_g \rangle$ одержимо

$$\log \alpha_0 = \log \alpha - \frac{(E - \langle E_g \rangle)}{2,3026 \cdot E_u},\tag{11}$$

де енергія фотонів Е належить проміжку абсцис $\{E_1; E_2\}$ співпадання екстрапольованої апроксимації прямими лініями і експоненціальних ділянок графіків функцій $\log \alpha = f(E)$. Після потенціювання знаходимо величину α_0 . Згідно з рівнянням (11), параметр $\log \langle \alpha_0 \rangle = \log \alpha_0 (E = \langle E_q \rangle)$ на графіку $\log \alpha = f(E)$, при умові, що $\langle E_q \rangle$ належить проміжку $\{E_1; E_2\}$. Такий спосіб можна умовно назвати прямим потенціюванням. Якщо $\langle E_g \rangle$ не належить проміжку $\{E_1; E_2\}$, то необхідно розрахувати величину α_0 згідно з рівнянням (11) при енергії фотонів E з проміжку $\{E_1; E_2\}$. На основі усереднення цих даних визначено величину $\langle \alpha_0 \rangle$. Аналіз даних табл. 1 показав, що $\langle E_q \rangle$ належить проміжку $\{E_1; E_2\}$ для плівок C₆₀ товщиною ~ 1000 і 5000 нм та всіх плівок С₇₀. Для цих плівок $\langle \alpha_0 \rangle$ можна визначати прямим потенціюванням. Наприклад, прямим потенціюванням визначено значення α_0 23,83 і 54,12 см⁻¹, які близькі за величиною до значень $\langle \alpha_0 \rangle$ 24,00 і 54,40 см⁻¹ (табл. 1), обчислених за рівнянням (11) для плівок C_{60} товщиною ~1000 і 5000 нм відповідно. Величина різниці $(\alpha_0 - \langle \alpha_0 \rangle)$ відносно розрахованих значень $\langle \alpha_0 \rangle$ цих плівок становить -0.7 і -0.5%відповідно.

Для прикладу на рис. 8 довгохвильовий крайовий спектр коефіцієнта поглинання α плівок C₆₀ товщиною 5000 нм (суцільна крива) апроксимовано експонентою (штрихова крива), розрахованою згідно з рівнянням (11) і такими параметрами: $\langle \alpha_0 \rangle = 54,40 \text{ см}^{-1}$; $\langle E_g \rangle = 1,674$ еВ і $E_u = 0,035$ еВ. Спостережено, що експоненціальна лінія і спектр $\alpha(E)$ співпадають на проміжку енергій фотонів E {1,632; 1,767 еВ}. При E < 1,632 еВ і E > 1,767 еВ експоненціальна лінія проходить нижче і вище спектра α (рис. 8, *a*, вставка ліворуч і рис. 8, *б* відповідно). Те саме спостережено

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

Рис. 8. Спектр коефіцієнта поглинання α плівки C₆₀ товщиною 5000 нм (суцільна крива) і його апроксимація експоненціальною лінією (штрихова крива): a – в області 1,414– 1,654 еВ (вставка, ліворуч); δ – в області 1,414–1,822 еВ. Вихідні дані для суцільної кривої взято з [20]

но для спектрів $\alpha(E)$ плівок C₆₀ і C₇₀ товщиною $d \geq 1$ мкм, якщо їх апроксимувати експоненціальними лініями з характерними для цих плівок параметрами $\langle \alpha_0 \rangle$, $\langle E_g \rangle$ і E_u , наведеними в табл. 1. Встановлено, що для субмікронних плівок C₆₀ і C₇₀ апроксимована експоненціальна лінія співпадає з спектром $\alpha(E)$ і проходить вище нього в області $E_1 \leq E \leq E_2$ і $E > E_2$ відповідно.

Область слабкого поглинання 1,4–1,6 еВ вихідних спектрів субмікронних плівок C_{60} і C_{70} в роботах [17, 29] записана у вигляді горизонтальної прямої лінії. Ця область відповідає умові $E < E_1$. Можна припустити, що для субмікронних плівок C_{60} і C_{70} в цій області апроксимована експоненціальна лінія буде проходити нижче спектра $\alpha(E)$, як у випадку плівки C_{60} товщиною 5000 нм (рис. 8, *a*).

7. Порівняння літературних і одержаних в даній роботі результатів для величин E_g і E_u плівок С₆₀ та С₇₀ різної товщини

Науковий інтерес становлять дослідження залежності величин E_g і E_u від товщини плівок C_{60} і C_{70} . Запропоновано три методи визначення величини E_g під спільною назвою "рівняння Таука", які визначаються залежностями функцій ($\alpha^* E$)^{0,5}, (α)^{0,5} і (α/E)^{0,5} від енергії падаючих фотонів $E = h\nu$ [17]. В даній роботі ці методи описано рівняннями (7), (4) і (8) під різними назвами: " метод Таука", "класичний метод" і "метод Коді" згідно з даними роботи [22]. В даній роботі вперше визначено величини E_g і E_u плівок С₆₀ товщиною 20, 70 і 900 нм та плівок С₇₀ товщиною 20 і 160 нм. Для цих плівок С₆₀ середня величина $\langle E_g \rangle$ становить 1,586; 1,631 і 1,649 еВ, а $E_u - 82$, 66 і 60 меВ відповідно. Величина $\langle E_g \rangle$ плівок С₇₀ субмікронної товщини становить 1,652 і 1,594 еВ, а $E_u - 79$ і 77 меВ відповідно (табл. 1).

З метою порівняння літературні і результати даної роботи для плівок C₆₀ і C₇₀ наведено в табл. 2. В цій таблиці результати даної роботи виділено жирним курсивом. Для плівки C₆₀ товщиною ~1000 нм у [15, 16] величини E_g і E_u становлять 1,640 еВ і 61 меВ відповідно. Ці величини на 1,1 і 24,7% менші від таких у даній роботі (1,658 еВ (середнє значення) і 81 меВ відповідно). Для плівки C₆₀ товщиною 5000 нм величини E_g і E_u становлять 1,650 еВ і 37 меВ [20]. Ці величини відрізняються на (-1,4) і 5,7% від таких у даній роботі (1,674 еВ (середнє значення) і 35 меВ відповідно).

Для плівки С₇₀ товщиною 1000 нм величини E_g визначались методами Таука, класичним і Коді. Згідно з цими методами для E_g одержано значення 1,660; 1,650 і 1,640 еВ відповідно [17], які на 1,7; 1,7 і 2,0% менші від таких у даній роботі (1,683; 1,678 і 1,673 еВ відповідно). При тому, значення $E_u = 55$ меВ в роботі [17] на 3,5% менше від $E_u = 57$ меВ, одержаного в даній роботі. Для плівки С₇₀ товщиною ~1000 нм оціночне значення E_g становило ~1,5 еВ [16], яке на 8,31% менше від значення в даній роботі ($\langle E_g \rangle = 1,636$ еВ). При то-

Таблиця 2. Порівняння літературних і наших даних для E_g і E_u плівок C₆₀ і C₇₀ різної товщини

Фуле- рен	<i>d</i> , нм	E_g , eB	Різни- ця, %	$E_u,$ меВ	Різни- ця, %
C ₆₀	~1000 ~1000 [15, 16] 5000 5000 [20]	<pre>(1,658) 1,640 (1,674) 1,650</pre>	$^{-1,1}$	81 61 35 37	-24,7 5,7
C70	1000 (Таук) 1000 (Таук) [17] 1000 (класичний) 1000 (класичний) [17] 1000 (Коді) 1000 (Коді) [17]	1,683 1,660 1,678 1,650 1,673 1,640 (1,626)	-1,7 -1,7 -2,0	57 55 57 55 57 55 55 70	-3,5 -3,5 -3,5
	~ 1000 ~ 1000 [16]	(1,030) ~1,500	-8,31	- 19	—

му, у [16] величина E_u плівок C_{70} не визначалась. В даній роботі $E_u = 79$ меВ.

Отже, величини E_g , які одержано в даній роботі, добре узгоджуються з відповідними літературними даними. При тому, відносна їх різниця не перевищувала 2,0%, якщо не враховувати відносну різницю 8,31% для оціночного значення $E_g \sim 1,5$ eB для плівки C₇₀ товщиною ~1000 нм.

Величини E_u задовільно узгоджуються для плівки C_{60} товщиною 5000 і 1000 нм (відносна величина різниці становить 5,7 і –3,5%, відповідно). Для плівки C_{60} товщиною ~1000 нм відносна величина різниці для E_u є значною і становить (-24,7%).

8. Висновки

Детально досліджено довгохвильовий край спектрів коефіцієнта поглинання $\alpha(E)$ плівок фулеренів C₆₀ і C₇₀ товщиною 20–5000 нм в області 1,492– 2,605 еВ.

Вперше визначено величини E_g і E_u плівок C₆₀ товщиною 20, 70 і 900 нм та плівок С₇₀ товщиною 20 і 160 нм. Для цих плівок С₆₀ середня величина $\langle E_g \rangle$ становить 1,586; 1,631 і 1,649 еВ, а величина E_u – 82, 66 і 60 меВ відповідно. Величина $\langle E_g \rangle$ плівок С₇₀ субмікронної товщини становить 1,652 і 1,594 еВ, а величина E_u – 79 і 77 меВ відповідно.

На основі отриманих у даній роботі та літературних результатів, встановлено, що величина E_u зменшується, а величина E_g зростає при збільшенні товщини плівок C₆₀ і C₇₀ від 20 до 5000 нм і від 20 до 1000 нм відповідно. Це свідчить про зростання ступеня впорядкованості структури і збільшення внеску кристалічної фази в поглинання цих плівок.

Для плівок C₆₀ і C₇₀ найбільше, проміжне і найменше значення оптичної ширини забороненої зони E_g одержано методами Таука, класичним і Коді відповідно. Середнє значення $\langle E_g \rangle$ співпадає з величиною E_g для класичного методу.

Оцінено середні величини параметра $\langle \alpha_0 \rangle$ експоненціальних ділянок довгохвильових крайових спектрів $\alpha(E)$, які значно більші для плівок С₇₀. Це зумовлено сильнішим поглинанням С₇₀ порівняно з таким для С₆₀. Величина $\log \langle \alpha_0 \rangle$ дорівнює ординаті з абсцисою $E = \langle E_g \rangle$, при умові, що $\langle E_g \rangle$ належить проміжку абсцис $\{E_1; E_2\}$ точок співпадання прямих ліній апроксимації і експоненціальної ділянки спектра $\log \alpha(E)$.

Довгохвильові крайові спектри $\alpha(E)$ апроксимовано експоненціальними лініями з параметрами $\langle \alpha_0 \rangle$, $\langle E_g \rangle$ і E_u . Встановлено, що для всіх плівок C₆₀ і C₇₀ апроксимована експоненціальна лінія співпадає з спектром $\alpha(E)$ і проходить вище нього при енергіях фотонів $E_1 \leq E \leq E_2$ і $E > E_2$ відповідно. Ця експонента проходить нижче спектра $\alpha(E)$ при $E < E_1$ для плівок C₆₀ і C₇₀ товщиною $d \geq 1$ мкм.

Робота виконана за кошти бюджету НАН України (проект № 1.4.В/209).

- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C₆₀: Buckminsterfullerene. *Nature* **318** (6042), 162 (1985).
- A. Graja, J.-P. Farges. Optical spectra of C₆₀ and C₇₀ complexes. Their similarities and differences. *Adv. Mater. Opt. Electron.* 8, 215 (1998).
- L. Benatto, C.F.N. Marchiori, T. Talka, M. Aramini, N.A.D. Yamamoto, S. Huotari, L.S. Roman, M. Koehler. Comparing C₆₀ and C₇₀ as acceptor in organic solar cells: Influence of the electronic structure and aggregation size on the photovoltaic characteristics. *Thin Solid Films.* 697, 137827 (2020).
- Y. Yi, V. Coropceanu, J.-L. Brédas. Exciton-dissociation and charge-recombination processes in pentacene/C₆₀ solar cells: Theoretical insight into the impact of interface geometry. J. Am. Chem. Soc. **131** (43), 15777 (2009).
- P. Brown, P.V. Kamat. Quantum dot solar cells. Electrophoretic deposition of CdSe-C₆₀ composite films and capture of photogenerated electrons with nC₆₀ cluster shell. J. Am. Chem. Soc. 130 (28), 8890 (2008).
- 6. H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production, *Appl. Catal. B* 239, 408 (2018).
- P. Mroz, G.P. Tegos, H. Gali, T. Wharton, T. Sarna, M.R. Hamblin. Photodynamic therapy with fullerenes. *Photoch. Photobid. Sci.* 6 (11), 1139 (2007).
- S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim. Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors. *Biosens. Bioelectron.* 63, 354 (2015).
- S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo. Improved bulk heterojunction organic solar cells employing C₇₀ fullerenes. *Appl. Phys. Lett.* **94** (22), 223307 (2009).
- W. Mech, P. Piotrowski, K. Zarebska, K.P. Korona, M. Kaminska, M. Skompska, A. Kaim. The impact of the presence of aromatic Rings in the substituent on the performance of C₆₀/C₇₀ fullerene – based acceptor materials in photovoltaic cells. J. Electronic Materials 51, 6995 (2022).
- H. Ajie, M.M. Alvarez, S.J. Anz, R.D.Beck, F. Diederich, K. Fostiropoulos, D.R. Kraetschmer, M. Rubin, K.E. Schri-

ISSN 2071-0194. Укр. фіз. журн. 2025. Т. 70, № 5

ver, D. Sensharma, R.L. Whetten. Characterization of the soluble all-carbon molecules C_{60} and C_{70} . J. Phys. Chem. **94**, 8630 (1990).

- M.P. Gorishnyi. Surface morphology of the films of the C₆₀/C₇₀ fullerene mixture. Identification of C₆₀ and C₇₀ in the C₆₀/C₇₀ films using absorption spectra. Ukr. J. Phys. 68 (5), 318 (2023).
- J. Tauc, R. Grigorovici, A. Vancu. Optical properties and electronic structure of amorphous Germanium. *Phys. Stat.* Sol. 15, 627 (1966).
- A. Skumanich, A. Frova, N.M. Amer. Urbach tail and gap states in hydrogenated *a*-SiC and *a*-SiGe alloys. *Solid State Communic.* 54 (7), 597 (1985).
- A. Scumanich. Optical absorption spectra of carbon 60 thin films from 0.4 to 6.2 eV. Chem. Phys. Lett. 182 (5), 486 (1991).
- A. Scumanich. Optical Spectra of Fullerenes: C₆₀ a new amorphous semiconductor? *Mat. Res. Soc. Symp. Proc.* 270, 299 (1992). Material Research Society.
- W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Qian, W. Li. Optical absorption spectra of C₇₀ thin films. J. Appl. Phys. 80 (1), 489 (1996).
- V.K. Dolganov, O.V. Zharikov, I.N. Kremenskaja, K.P. Meletov, Yu.A. Ossipyan. High pressure study of the absorption edge of crystalline C₆₀/C₇₀ mixture. *Solid State Commun.* 83 (1), 63 (1992).
- K.P. Meletov, V.K. Dolganov, Yu.A. Ossipyan. Absorption Spectra of fullerite C₇₀ at pressures up to 10 GPa. *Solid State Commun.* 87 (7), 639 (1993).
- T. Gotoh, S. Nonomura, H. Watanabe, S. Nitta, D. Han. Temperature dependence of the optical-absorption edge in C₆₀ thin films. *Phys. Rev. B* 58 (15), 10060 (1998).
- 21. E.Yu. Kolyadina, L.A. Matveeva, P.L. Neluba, E.F. Venger. Analysis of the fundamental absorption edge of the films obtained from the C₆₀ fullerene molecular beam in vacuum and effect of internal mechanical stresses on it. Semiconductor Physics, Quantum Electronics & Optoelectronics 18 (3), 349 (2015).
- A.R. Zanatta. Revisiting the optical bandgap of semiconductors and the proposal unified methodology to its determination. *Scie. Rep.* 9, 11225 (2019).
- Fox, M. In Optical properties of solids. Chapters 1-3 (Oxford Univ. Press, 2008) [ISBN: 978-0-19-850613-3].
- P.Y. Yu, M. Cardona. In Fundamentals of semiconductors. Chapter 6 (Springer, 1996) [ISBN: 3-540-61461-3].
- A.R. Forouhi, I. Bloomer. Optical properties of crystalline semiconductors and dielectrics. *Phys. Rev. B* 38 (3), 1865 (1988).
- G.D. Cody, B.G. Brooks, B. Abeles. Optical absorption above the optical gap of amorphous silicon hydride. *Solar Energy Mater.* 8 (1–3), 231 (1982).
- J. Klein, L. Kampermann, B. Mockenhaupt, M. Behrens, J. Strunk, G. Bacher. Limitations of the Tauc Plot Method. *Adv. Funct. Mater.* 33, 2304523 (2023).
- 28. N. Sharma, K. Prabakar, S. Ilango, S. Dash, A.K. Tyagi. Optical band-gap and associated Urbach energy tails in defected AIN thin films grown by ion beam sputter deposi-

tion: Effect of assisted ion energy. Adv. Mater. Proc. $\mathbf{2}$ (5), 342 (2017).

- W. Krätschmer, L. Lamb, K. Fostiropoulos, D.R. Huffman. Solid C₆₀: A new form of carbon. *Nature* **347**, 354 (1990).
- 30. S. Kazaoui, N. Minami, Y. Tanabe, M.J. Burne, A. Eilmes, P. Petelenz. Comprehensive analysis of intermolecular charge-transfer excited states in C₆₀ and C₇₀ films. *Phys. Rev. B* 58 (12), 7689 (1998).
 Ogepжaho 15.05.24

$M.P.\ Gorishnyi$

DETERMINATION OF THE URBACH ENERGY E_u AND THE OPTICAL BAND GAP E_g IN SUBMICRON C₆₀ AND C₇₀ FULLERENE FILMS. DEPENDENCES OF E_u AND E_g OF THE FILMS ON THEIR THICKNESS IN THE RANGE 20–5000 nm

The long-wavelength spectral edge of the absorption coefficient α has been studied in detail within a spectral interval of 1.492–2.605 eV for C₆₀ and C₇₀ fullerene films with thicknesses rang-

ing from 20 to 5000 nm. The values of the optical band gap E_g and the Urbach energy E_u in submicron C_{60} and C_{70} films are determined for the first time. It is found that the E_u -value decreases and the E_g -value increases, as the thickness of C_{60} films increases from 20 to 5000 nm, and the thickness of C_{70} films from 20 to 1000 nm. The highest, intermediate, and lowest E_g -values for C_{60} and C_{70} films are obtained using the Tauc, classical, and Cody methods, respectively. The average value of E_g , $\langle E_g \rangle$, coincides with the E_g -value obtained using the classical method. The average values of the parameter α_0 , $\langle \alpha_0 \rangle$, within the exponential sections of the $\alpha(E)$ spectra are estimated; they turned out significantly larger for C_{70} films. The long-wavelength edge of the spectra $\alpha(E)$ is approximated by exponential dependences with the parameters $\langle \alpha_0 \rangle$, $\langle E_g \rangle$, and E_u .

K e y w o r d s: film, absorption spectrum, approximation, Gaussian function, C₆₀ and C₇₀ fullerenes, Urbach energy, optical band gap.