
NANOSYSTEMS

74 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 1

ELECTRON GREEN’S FUNCTION OF GRAPHENE
IN THE AHARONOV–BOHM POTENTIAL

A.O. SLOBODENIUK

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03143, Ukraine; e-mail: aslobodeniuk@ gmail. com )

PACS 2.10.Fk, 73.22.Pr

c©2011

The dynamics of electron excitations, which are described by the
Dirac equation, in the Aharonov–Bohm field has been studied.
The eigenfunctions and the spectrum of the Hamiltonian of a sys-
tem have been used to construct the integral formula for the elec-
tron Green’s function. Possible applications of the results obtained
to numerically calculate the electronic properties of graphene have
been discussed.

1. Introduction

The modern condensed matter physics has experienced
a large impact in its development owing to the discovery
of graphene, a new allotropic modification of carbon.
Graphene is a two-dimensional crystal with a hexago-
nal (honey-comb) atomic arrangement. It was found to
be a conductor with a spectrum of electron excitations
that is unusual for condensed systems, the dynamics of
which can be described on the basis of the Dirac equation
rather than the Schrödinger one, as it happens as a rule.
Such a spectrum together with a true two-dimensionality
makes graphene an object interesting from the viewpoint
of its electronic properties. It is also worth noting that,
since the behavior of graphene can be described in the
framework of field theory, this substance turned out use-
ful for the sake of verification of some effects in quantum
electrodynamics.

A considerable body of researches dealing with
graphene aims at finding the dependence of its electronic
properties on the external magnetic field. In the ma-
jority of works on this topic, the field is considered as
uniform. At the same time, the study of the case of
non-uniform field comprises the next stage of researches
[1]. Among nontrivial models for such a field, the sim-
plest example is a field created by an infinitesimally

thin solenoid, the vector-potential of which is known as
the Aharonov–Bohm potential (ABP). From the view-
point of applied researches, the closest to the ABP is the
vector-potential created by the Abrikosov vortex in type-
II superconductors. Since most of electronic properties
of a substance can be expressed in terms of its Green’s
function (GF), we tried to find GF for two-dimensional
electron excitations in the AB field. It was the main
purpose of this work.

2. Fundamentals

By the term “Green’s function” we mean the solution of
the equation

[E − Ĥ(r)]G(E, r, r′) = δ(r− r′), (1)

where Ĥ(r) is the Hamiltonian of the system, r the
radius-vector, and E the parameter of energy, which,
generally speaking, can be complex-valued. It is known
that GF can be constructed in the form

G(E, r, r′) =
∑
n

Ψn(r)Ψ†n(r
′)

E − En + i0
, (2)

using the eigenfunctions Ψn(r) and eigenvalues En of the
equation

[Ĥ(r)− En]Ψn(r) = 0, (3)

where n runs through the complete set of quantum num-
bers that enumerate the characteristic wave functions.
To eliminate the ambiguity, the quantity E is appended
with an infinitesimally small imaginary term. The sum-
mation operator means the discrete summation, if the
spectrum is discrete, and the integration, if it is continu-
ous. If the spectrum is characterized by both continuous
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and discrete quantum numbers, the summation operator
means the integration and the summation, respectively.

In the case of the Dirac equation, the Hamiltonian
and GF are matrices, whereas the solution of the Dirac
equation is a spinor. The Hamiltonian, which describes
electron excitations in graphene, can be presented as a
sum [2]

Ĥ(r) = Ĥ(r,+1)⊕ Ĥ(r,−1). (4)

Both Hamiltonians Ĥ(r, ζ), where the parameter ζ = ±1
corresponds to that or another Dirac cone, have identical
structures,

Ĥ(r, ζ) = −i~vFγ0
ζγ

j
ζDj + γ0

ζΔ, (5)

where vF is the Fermi velocity, Δ the quantity that de-
termines a number of excitations (it was introduced for
the sake of generality), and γ-matrices look like

γ0
ζ = σ3, γ

1
ζ = iσ2, γ

2
ζ = −iσ1ζ. (6)

It is worth noting that the γ-matrix representation (6)
is only one of many representations that can be used to
describe graphene. A transition from one representation
to another is executed with the use of a certain unitary
transformation. The extended derivative in the Dirac
equation has the form

Dj =
∂

∂xj
− i e

~c
Aj , (7)

where e < 0 is the electron charge, c the light velocity,
and Aj the j-th component of the vector-potential A in
the Cartesian coordinates. Since Hamiltonians (5) have
the same matrix structure, it is convenient to consider
them simultaneously, using the parameter ζ to distin-
guish between them. The procedure of determination of
eigenfunctions is reduced to the solution of a system of
differential equations that are determined by the Hamil-
tonians Ĥ(r, ζ).

3. Aharonov–Bohm Potential

Let us also discuss what is meant by solutions of the
Dirac equation with the ABP. The analysis of solutions
obtained for the potential created by an infinitesimally
thin solenoid contains a number of mathematical diffi-
culties associated with the ABP singularity at the point,
where the solenoid is located [3]. As was shown in work
[4], regular potentials similar to the ABP do not contain
the aforementioned difficulties (in particular, the solu-
tions of the Dirac equation are unambiguous for such
potentials).

Nevertheless, to avoid the necessity to analyze unphys-
ical solutions, we will consider solutions of the Dirac
equation in a regular potential. For this purpose, the
potential of a solenoidal field will be characterized by
the dimensional parameter Rs, a characteristic radius of
the solenoid tube. In the limiting case Rs → 0, this
potential transforms into the ABP. By the solutions of
the Dirac equation, which depend now on the parameter
Rs, we mean the solutions of the regular problem in the
same limit.

4. Solutions of the Dirac Equation with the
Aharonov–Bohm Potential

Consider the equation of motion in polar coordinates
r = (r, ϕ) for a two-dimensional electron in an axially
symmetric magnetic field with the vector-potential

A = eϕAϕ(r). (8)

Expressing the spinor in the form

Ψ(r) =
(
ψ1(r)
iψ2(r)

)
, (9)

we obtain the system of equations

C−e
iζϕψ1(r)−

(
∂

∂r
− iζ

r

∂

∂ϕ
− eζAϕ

~c

)
ψ2(r) = 0, (10)

(
∂

∂r
+
iζ

r

∂

∂ϕ
+
eζAϕ

~c

)
ψ1(r)+C+e

−iζϕψ2(r) = 0, (11)

where C± = (E ±Δ)/~vF.
Let us consider the following regularized vector-

potential:

Areg
ϕ (r) =

{
0, r < R;
~c
|e|

η
r , r > R.

(12)

The dimensionless parameter η, where η ∈ [0, 1), con-
trols the magnetic field flux ηΦ0, where Φ0 = 2π~c/|e|,
through the solenoid tube. The discontinuity of the po-
tential determines the following matching conditions for
the radial spinor components ψ1(r) and ψ2(r), the upper
and lower ones, respectively:

ψ′1(Rs + 0)− ψ′1(Rs − 0) =
ζη

Rs
ψ1(Rs),

ψ1(Rs + 0) = ψ1(Rs − 0), (13)
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ψ′2(Rs + 0)− ψ′2(Rs − 0) = − ζη
Rs

ψ2(Rs),

ψ2(Rs + 0) = ψ2(Rs − 0), (14)

where the prime means the differentiation with respect
to r. To find the functions ψ1(r) and ψ2(r), it is nec-
essary to pass from the system of equations (10), (11)
to the system of second-order differential equations: one
equation for each spinor component separately. In this
case, the new system of equations and the correspond-
ing boundary conditions actual for ζ = 1 transform
into another system of equations and boundary condi-
tions actual for ζ = −1, provided that the permuta-
tion ψ1(r) ↔ ψ2(r) is made. Therefore, without any
loss of generality, it is enough to examine the prob-
lem in the case ζ = 1. We introduce the notation
E(k) =

√
(~vF)2k2 + Δ2, where k is a two-dimensional

wave vector, and k is its absolute value. The normalized
solutions of the Dirac equation with the normalizing co-
efficient

Cm =

√
k

4πE(k)
eimϕ (15)

have the following forms in the limit Rs → 0: for positive
energies (E = E(k)),

Ψ(+)
m (r) = Cm

(
e−iϕ

√
E(k) + ΔJ|m+η−1|(kr)

±i
√
E(k)−ΔJ|m+η|(kr)

)
,

(16)

and, for negative energies (E = −E(k)),

Ψ(−)
m (r) = Cm

(
e−iϕ

√
E(k)−ΔJ|m+η−1|(kr)

∓i
√
E(k) + ΔJ|m+η|(kr)

)
.

(17)

The upper signs before the second terms in both formu-
las correspond to positive m-values, and the lower signs
to negative ones. At m = 0, we obtain: for positive
energies (E = E(k)),

Ψ(+)
0 (r) = C0

(
e−iϕ

√
E(k) + ΔJ1−η(kr)

−i
√
E(k)−ΔJ−η(kr)

)
, (18)

and, for negative ones (E = −E(k)),

Ψ(−)
0 (r) = C0

(
e−iϕ

√
E(k)−ΔJ1−η(kr)

i
√
E(k) + ΔJ−η(kr)

)
. (19)

Note that, at m = 0, the system of Dirac equations has
two quadratically integrated, linearly independent solu-
tions. This ambiguity is associated with the singular
behavior of the ABP. The consideration of the regular-
ized potential (12) does not meet those difficulties and
gives rise to an unambiguous solution in this case.

5. Construction of Green’s Function for the
System

The electron GF for graphene in the ABP is determined
by its diagonal elements. Really, from Eq. (1), the fol-
lowing equalities for non-diagonal matrix elements of GF
are obtained (one should bear in mind that, owing to the
aforesaid, the calculations given below correspond to the
case ζ = 1):

G12(E, r, r′) =
e−iϕ

iC−

(
∂

∂r
− i1

r

∂

∂ϕ
+
η

r

)
G22(E, r, r′),

(20)

G21(E, r, r′) =
eiϕ

iC+

(
∂

∂r
+ i

1
r

∂

∂ϕ
− η

r

)
G11(E, r, r′).

(21)

Let us introduce the notation q =
√
E2 −Δ2/~vF.

Then, the diagonal elements of GF can be written down
as follows:

G11(E, r, r′) =
(E + Δ)
2π(~vF)2

∞∫
0

kdk G11(r, r′)
q2 − k2 + i0sgnE

, (22)

G22(E, r, r′) =
(E −Δ)
2π(~vF)2

∞∫
0

kdk G22(r, r′)
q2 − k2 + i0sgnE

, (23)

where

G11(r, r′) =
∞∑

m=−∞
eim(ϕ−ϕ′)J|m+η|(kr)J|m+η|(kr′), (24)

G22(r, r′) = G11(r, r′)−
∑
α=±1

sgnα Jαη(kr)Jαη(kr′). (25)

So, to find components (22) and (23), it is necessary to
calculate the expressions

F1(q, r, r′) =

∞∫
0

kdk

q2 − k2 + i0sgnE
×
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×
∞∑

m=−∞
eim(ϕ−ϕ′)J|m+η|(kr)J|m+η|(kr′), (26)

and

F2(q, r, r′) =

∞∫
0

kdk

q2 − k2 + i0sgnE
×

×[J−η(kr)J−η(kr′)− Jη(kr)Jη(kr′)]. (27)

Let us calculate quantity (26), by using the method
proposed in work [5]. Namely, we consider the analytical
continuation of the function, which is fixed by the rule
q + i0sgnE → z = iQsgnE:

F1(Q, r, r′) = −
∞∫
0

kdk

Q2 + k2

∞∑
m=−∞

eim(ϕ−ϕ′)×

×J|m+η|(kr)J|m+η|(kr′). (28)

The values of the difference θ = ϕ − ϕ′ fall within the
interval [−π, π]. The absolute value of θ determines
the smallest angles between the radius-vectors r and r′,
whereas its sign reflects their relative position. The an-
gles θ = ±π correspond to the same arrangement of
radius-vectors. Let us calculate every integral in the
sum, by using the equality [6]

∞∫
0

kdk

Q2 + k2
J|m+η|(kr)J|m+η|(kr′) =

= I|m+η|(Qr−)K|m+η|(Qr+), (29)

where r− and r+ are the smallest and largest, respec-
tively, values of the radii r and r′. Let us consider the
case where r− = r and r+ = r′ (if r− = r′ and r+ = r,
the corresponding final GF can be obtained, by making
the permutation r ↔ r′ in the GF derived with regard
for the first assignments). Let us apply the integral rep-
resentations of cylindrical functions [7]

Iν(z) =
1

2πi

∫
C

ez coshω−νωdω, (30)

Kν(z) =
1
2

∞∫
−∞

e−z cosh v−νvdv, (31)

where the path of integration C starts and ends at the
points −iπ+∞ and iπ+∞, respectively. Let us rewrite
sum (28), by removing the absolute values in the sub-
scripts of cylindrical functions:

F1(Q, r, r′) = − 1
4πi

∞∫
−∞

dv

∫
C

dωS(Q, r, r′)×

×eQr chω−Qr′ ch v, (32)

where

S(Q, r, r′) =
∞∑
m=0

eimθe−(m+η)(v+ω)+

+
∞∑
m=1

e−imθe−(m−η)(v+ω). (33)

To calculate the function F1(Q, r, r′), the following
trick is used. Consider the expression

F1(Q, r, r′, a) = − 1
4πi

∞∫
−a

dv

∫
C

dωS(Q, r, r′)×

×eQr chω−Qr′ ch v, (34)

where a is a positive real number. The quantity
F1(Q, r, r′) is sought as a limit of F1(Q, r, r′, a) as a →
∞. Let us choose the path of integration C that satis-
fies the condition Reω > a. The latter makes it possible
to sum up the series in Eq. (33) taking the following
properties of geometrical progressions:

S(Q, r, r′) =
e−η(v+ω)

1− eiθ−(ω+v)
− eη(v+ω)

1− eiθ+(ω+v)
. (35)

It is easy to verify that, at the substitutions v → −v in
the first and ω → −ω in the second terms, they become
identical to each other. Therefore, at such a change of
variables, function (34) can be written down in the form

F1(Q, r, r′, a) =
1

4πi

 a∫
−∞

dv

∫
C

dω +

∞∫
−a

dv

∫
C′

dω

×

× eη(v−ω)

eiθ+v−ω − 1
eQ(r chω−r′ ch v), (36)
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where C ′ is the path symmetric to the path C with re-
spect to the coordinate origin. Let us consider the limit
a→∞ and use the identity∫
C

dωf(ω) +
∫
C′

dωf(ω) =

=

iπ+∞∫
iπ−∞

dωf(ω) +

−iπ−∞∫
−iπ+∞

dωf(ω) +
∮
C′′
dωf(ω), (37)

where C ′′ is a rectangular path, the length of which ex-
ceeds 2a and the width is equal to 2πi, and which is
traced counter-clockwise, i.e.

F1(Q, r, r′) = I1 + I2, (38)

where

I1 = − 1
4πi

∞∫
−∞

dv

∮
dω

eη(v−ω)

1− eiθ+v−ω
eQ(r coshω−r′ cosh v),

(39)

I2 =
sinπη

2π

∞∫
−∞

dv

∫ ∞
−∞
dω

eη(v−ω)

1 + eiθ+v−ω
e−Q(r coshω+r′ cosh v).

(40)

The calculation of integral I1 does not meet any diffi-
culty in the case θ 6= π, because there is only one inte-
grand pole within the path C ′′. In the case θ = π, one
must take into account that two poles of the integrand
are located on the path of integration. Calculating the
path integral and using the integral representation of the
McDonald function, we obtain

I1 =

{
−e−iηθK0(QR), θ 6= ±π;
− cosπηK0(QR), θ = ±π,

(41)

where R = |r− r′|.
Proceeding from the integral representation of the Mc-

Donald function, integral I2 is reduced to a one-fold one,
so that

I2 =
sinπη
π

∞∫
−∞

dx
eηx

1 + eiθ+x
K0(QRx), (42)

where Rx = (r2 + r′2 + 2rr′ coshx)1/2. Even in sim-
ple cases, this integral gives rise to rather cumbersome

expressions, the application of which does not simplify
calculations, where GF is required. Therefore, the ex-
plicit form of integral (42) or its asymptotic behavior
has to be studied separately in every problem. Hence,
let us preserve this term in its integral form.

The inverse change Q→ −iq sgnE allows the ultimate
expression to be written down, namely:
if θ 6= π,

F1(q, r, r′) = ∓ iπ
2
e−iηθH

(j)
0 (qR)±

± i sinπη
2

∞∫
−∞

dx
eηx

1 + eiθ+x
H

(j)
0 (qRx), (43)

where j = 1, 2 and the upper and lower signs correspond
to E > 0 and E < 0, respectively;
if θ = ±π,

F1(q, r, r′) = ∓ iπ
2

cosπηH(j)
0 (qR)±

± i sinπη
2

∞∫
−∞

dx
eηx

1− ex
H

(j)
0 (qRx), (44)

where the choice of signs and j-values is the same as that
in formula (43), and the integral is taken in the principal
value sense. The last equality was obtained with the use
of the identities [8]

Kν(iz) = − iπ
2
e−iπν/2H(2)

ν (z),

Kν(−iz) =
iπ

2
eiπν/2H(1)

ν (z). (45)

Now, let us derive the expression for F2(q, r, r′), by
considering its analytical continuation

F2(Q, r, r′) =

∞∫
0

kdk

Q2 + k2

∑
α=±1

sgnαJαη(kr)Jαη(kr′). (46)

Using formula (29) and the expression for the McDonald
function Kν(z) in terms of the modified Bessel function
Iν(z) [8],

Kν(z) =
π

2 sinπν
[I−ν(z)− Iν(z)], (47)

we obtain the expression

F2(Q, r, r′) = −2 sinπη
π

Kη(Qr)Kη(Qr′). (48)
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Analogously to the first expression, we find

F2(q, r, r′) =
π sinπη

2
e±iπηH(j)

η (qr)H(j)
η (qr′), (49)

where j = 1, 2, and the upper and lower signs correspond
to E > 0 and E < 0, respectively.

The formulas derived for the functions F1(q, r, r′) and
F2(q, r, r′) are used to construct GF. Hence, this al-
lows us to draw conclusion that the problem of electron
GF derivation for graphene, which contains a solenoidal
field–in other words, the ABP,–has been actually solved.

6. Conclusion

The obtained GF differs substantially from that for a
free Dirac particle [9]. Such a difference is explained
by the long-range character of the ABP. Consequently,
provided that there are structures in graphene, which are
characterized by a magnetic field flux, it is natural to use
the GF obtained above as the main approximation, while
calculating the electron properties of such systems.

Two examples of such systems could be mentioned.
The first example includes systems with magnetic impu-
rities (see, e.g., work [10], where the influence of mag-
netic impurities on the conductivity in a two-dimensional
electron gas was studied). The second example includes
graphene with defects of its crystal lattice. As was shown
in works [11, 12], the equations that govern the dynam-
ics of electron excitations in graphene with defects are
equivalent to the equations that describe ideal graphene
in the presence of additional ABPs, the centers of which
are positioned at the defect locations. This fact allows
one to determine the contribution of defects in graphene
to graphene electron properties in the framework of the
field-theory approach.

The fabrication of a two-dimensional electron system
with a magnetic vortex is not difficult now [13, 14]. It
makes possible to determine the efficiency of using the
corresponding GF in the calculations of electron prop-
erties of graphene with the help of scanning tunnel mi-
croscopy [15].
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ЕЛЕКТРОННА ФУНКЦIЯ ГРIНА ГРАФЕНА
В ПОТЕНЦIАЛI ААРОНОВА–БОМА

А.О. Слободенюк

Р е з ю м е

Розглянуто динамiку електронних збуджень (якi описуються
рiвнянням Дiрака) у графенi в полi Ааронова–Бома. Власнi
функцiї i спектр гамiльтонiана системи використовуються для
побудови електронної функцiї Грiна. Показано, що вона може
бути представлена в iнтегральнiй формi. Обговорено можливе
застосування отриманих результатiв для чисельних розрахун-
кiв електронних властивостей графена.
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