Auger Recombination in Polar InGa/GaN Quantum Wells

Authors

DOI:

https://doi.org/10.15407/ujpe70.9.620

Keywords:

InGaN quantum wells, Auger recombination, polarization

Abstract

Auger recombination rate in polar InxGa1−xN/GaN quantum wells has been calculated in the framework of the full-band model. The key components of the model are the band structures of bulk binary nitrides (GaN and InN) obtained by the empirical pseudopotential method and the band structures of InxGa1−xN/GaN quantum wells (with various alloy compositions x) obtained by the linear combination of bulk bands. The dependence of the Auger recombination coefficients on the band gap, quantum well thickness, and carrier concentration has been calculated. The results obtained show that the band-gap dependences of the Auger coefficients for quantum wells are much weaker than in the case of bulk InxGa1−xN alloys. The dependence of the Auger coefficients on the quantum well width has a strong oscillatory character. At high carrier concentrations, a significant decrease in the Auger coefficients is observed, which we attribute to the influence of the Fermi statistics on the carrier population distribution over the quantum states.

References

1. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).

https://doi.org/10.1103/PhysRevLett.110.177406

2. M. Binder, B. Galler, M. Furitsch, J. Off, J. Wagner, R. Zeisel, S. Katz. Investigations on correlation between I-V characteristic and internal quantum efficiency of blue (AlGaIn)N light-emitting diodes. Appl. Phys. Lett. 103, 221110 (2013).

https://doi.org/10.1063/1.4833895

3. D.J. Myers, A.C. Espenlaub, K. Gelzinyte, E.C. Young, L. Martinelli, J. Peretti, C. Weisbuch, J.S. Speck. Evidence for trap-assisted Auger recombination in MBE grown InGaN quantum wells by electron emission spectroscopy. Appl. Phys. Lett. 116, 091102 (2020).

https://doi.org/10.1063/1.5125605

4. A. David, M.J. Grundmann. Droop in InGaN lightemitting diodes: A differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010).

https://doi.org/10.1063/1.3330870

5. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, J. Wagner. Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates. Appl. Phys. Lett. 101, 131111 (2012).

https://doi.org/10.1063/1.4754688

6. A. David, N.G. Young, Ch.A. Hurni, M.D. Craven. Alloptical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation. Appl. Phys. Lett. 110, 253504 (2017).

https://doi.org/10.1063/1.4986908

7. F. Nippert, S.Yu. Karpov, G. Callsen, B. Galler, Th. Kure, C. Nenstiel, M.R. Wagner, M. Strasburg, H.-J. Lugauer, A. Hoffmann. Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap. Appl. Phys. Lett. 109, 161103 (2016).

https://doi.org/10.1063/1.4965298

8. J. Piprek, F. Romer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light emitting diode efficiency droop measurements. Appl. Phys. Lett. 106, 101101 (2015).

https://doi.org/10.1063/1.4914833

9. K.T. Delaney, P. Rinke, C.G. Van de Walle. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 94, 191109 (2009).

https://doi.org/10.1063/1.3133359

10. F. Bertazzi, M. Goano, E. Bellotti. A numerical study of Auger recombination in bulk InGaN. Appl. Phys. Lett. 97, 231118, (2010).

https://doi.org/10.1063/1.3525605

11. F. Bertazzi, M. Goano, E. Bellotti. Numerical analysis of indirect Auger transitions in InGaN. Appl. Phys. Lett. 101, 011111 (2012).

https://doi.org/10.1063/1.4733353

12. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011).

https://doi.org/10.1063/1.3570656

13. E. Kioupakis, D. Steiauf, P. Rinke, K.T. Delaney, C.G. Van de Walle. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B 92, 035207 (2015).

https://doi.org/10.1103/PhysRevB.92.035207

14. A.V. Zinovchuk, A.M. Gryschuk. Alloy-assisted Auger recombination in InGaN. Opt. Quant. Electron. 50, 455 (2018).

https://doi.org/10.1007/s11082-018-1704-9

15. F. Bernardini, V. Fiorentini. Spontaneous versus piezoelectric polarization in III-V nitrides: Conceptual aspects and practical consequences. Phys. Stat. Sol. B 216, 391 (1999).

https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<391::AID-PSSB391>3.0.CO;2-K

16. J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 87, 201112 (2005).

17. R. Vaxenburg, A. Rodina, E. Lifshitz, A.L. Efros. The role of polarization fields in Auger-induced efficiency droop in nitride-based light-emitting diodes. Appl. Phys. Lett. 103, 221111 (2013).

https://doi.org/10.1063/1.4833915

18. R. Vaxenburg, E. Lifshitz, and A.L. Efros. Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes. Appl. Phys. Lett. 102, 031120 (2013).

https://doi.org/10.1063/1.4789364

19. F. Bertazzi, X. Zhou, M. Goano, G. Ghione, E. Bellotti. Auger recombination in InGaN/GaN quantum wells: A full-Brillouin-zone study. Appl. Phys. Lett. 103, 081106 (2013).

https://doi.org/10.1063/1.4819129

20. J.M. McMahon, E. Kioupakis, S. Schulz. Atomistic analysis of Auger recombination in c-plain (In,Ga)N/GaN quantum wells: Temperature-dependent competition between radiative and nonradiative recombination. Phys. Rev. B 105, 195307 (2022).

https://doi.org/10.1103/PhysRevB.105.195307

21. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M.A. Najmi, K. Ohkawa. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 116, 162101 (2020).

https://doi.org/10.1063/1.5142538

22. D. Esseni, P. Palestri. Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices. Phys. Rev. B 72, 165342 (2005).

https://doi.org/10.1103/PhysRevB.72.165342

23. D. Vasileska, S.M. Goodnick, G. Klimeck. Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation (CRC Press, 2010).

24. Z.H. Mahmood, A.P. Shah, A. Kadir, M.R. Gokhale, S. Ghosh, A. Bhattacharya, B.M. Arora. Determination of InNпїЅGaN heterostructure band offsets from internal photoemission measurements.Appl. Phys. Lett. 91, 152108 (2007).

https://doi.org/10.1063/1.2794788

25. P.Y Prodhomme, A. Beya-Wakata, G. Bester. Nonlinear piezoelectricity in wurtzite semiconductors. Phys. Rev. B 88, 121304(R) (2013).

https://doi.org/10.1103/PhysRevB.88.121304

26. K .Adachi, H. Ogi, A. Nagakubo, N. Nakamura, M. Hirao, M. Imade, M. Yoshimura, Y. Mori. Elastic constants of GaN between 10 and 305 K. J. Appl. Phys. 119, 245111 (2016).

https://doi.org/10.1063/1.4955046

27. J. Serrano, A. Bosak, M. Krisch, F.J. Manjon, A.H. Romero, N. Garro, X. Wang, A. Yoshikawa, M. Kuball. InN thin film lattice dynamics by grazing incidence inelastic X-ray scattering. Phys. Rev. Lett. 106, 205501 (2011).

https://doi.org/10.1103/PhysRevLett.106.205501

28. O. Bonno, J.L. Thobel, F. Dessenne. Modeling of electronelectron scattering in Monte Carlo simulation of quantum cascade lasers. J. Appl. Phys. 97, 043702 (2005).

https://doi.org/10.1063/1.1840100

29. H. Haug S.W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Co. Pte. Ltd., 2004).

https://doi.org/10.1142/5394

30. A. David, N.G. Young, C. Lund, M.D. Craven. Reduction of efficiency droop in c-plane InGaN/GaN light-emitting diodes using a thick single quantum well with doped barriers. Appl. Phys. Lett. 115, 193502 (2019).

31. D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, F. Scholz. Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Phys. Status Solidi B 250, 283 (2013).

https://doi.org/10.1002/pssb.201248286

32. T.H. Ngo, B. Gil, B. Damilano, K. Lekhal, P. De Mierry. Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlatt. Microstruct. 2103, 245 (2017).

https://doi.org/10.1016/j.spmi.2017.01.026

33. C. Smith, R.A. Abram, M.G. Burt. Theory of Auger recombination in a quantum well heterostructure. Superlatt. Microstruct. 1, 119 (1985).

https://doi.org/10.1016/0749-6036(85)90105-3

34. R.I. Taylor, R.A. Abramz, M.G. Burt, C. Smith. A detailed study of Auger recombination in 1.3μm InGaAsP/InP quantum wells and quantum well wires. Semicond. Sci. Technol. 5, 90 (1990).

https://doi.org/10.1088/0268-1242/5/1/013

35. G.E. Cragg, A.L. Efros. Suppression of Auger processes in confined structures. Nano Lett. 10, 313 (2010).

https://doi.org/10.1021/nl903592h

Published

2025-09-12

How to Cite

Zinovchuk, A., & Slipokurov, V. (2025). Auger Recombination in Polar InGa/GaN Quantum Wells. Ukrainian Journal of Physics, 70(9), 620. https://doi.org/10.15407/ujpe70.9.620

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.