Неперервні в часі випадкові блукання з ресетингом в обмеженому ланцюжку

Автор(и)

  • L.N. Christophorov Bogolyubov Institute for Theoretical Physics, Natl. Acad. Sci. Ukraine

DOI:

https://doi.org/10.15407/ujpe69.8.591

Ключові слова:

випадкове блукання, низьковимiрнi ґратки, стохастичний ресетинг, доцiльнiсть ресетингу, квантовi блукання

Анотація

Детально проаналiзовано модель класичних випадкових блукань з пуассонiвським ресетингом в одновимiрнiй ґратцi в її загальному варiантi. Акцент зроблено на ефектах ресе-тингу, якi виникають внаслiдок рiзноманiтностi довiльних початкових i граничних умов. Також обговорюється квантовий аналог моделi.

Посилання

M.R. Evans, S.N. Majumdar. Diffusion with stochastic resetting. Phys. Rev. Lett. 106, 160601 (2011).

https://doi.org/10.1103/PhysRevLett.106.160601

M.R. Evans, S.N. Majumdar, G. Schehr. Stochastic resetting and applications. J. Phys. A: Math. Theor. 53, 193001 (2020).

https://doi.org/10.1088/1751-8121/ab7cfe

A. Nagar, S. Gupta. Stochastic resetting in interacting particle systems: A review. J. Phys. A: Math. Theor. 56, 283001 (2023).

https://doi.org/10.1088/1751-8121/acda6c

A. Pal, V. Stojkoski, T. Sandev. Random resetting in search problems. arXiv:2310.12057v2 (2023).

S. Gupta, A. Jayannavar. Stochastic resetting: A (very) brief review. Front. Phys. 10, 789097 (2022).

https://doi.org/10.3389/fphy.2022.789097

O.L. Bonomo, A. Pal. First passage under restart for discrete space and time: application to one-dimensional confined lattice random walks. Phys. Rev. E 103, 052129 (2021).

https://doi.org/10.1103/PhysRevE.103.052129

L.N. Christophorov. Random walk with resetting in a 1D chain. Rep. Natl. Acad. Sci. Ukraine (Dopovidi) 8, 43 (2020).

https://doi.org/10.15407/dopovidi2020.08.043

L.N. Christophorov. Peculiarities of random walks with resetting in a one-dimensional chain. J. Phys. A: Math. Theor. 54, 015001 (2021).

https://doi.org/10.1088/1751-8121/abc765

L.N. Christophorov. Resetting random walks in onedimensional lattices with sinks. J. Phys. A: Math. Theor. 55, 155006 (2022).

https://doi.org/10.1088/1751-8121/ac5a21

S. Reuveni. Optimal stochastic restart renders fluctuations in first passage times universal. Phys. Rev. Lett. 116, 170601 (2016).

https://doi.org/10.1103/PhysRevLett.116.170601

A. Pal, V.V. Prasad. Landau-like expansion for phase transitions in stochastic resetting. Phys. Rev. Res. 1, 032001 (2019).

https://doi.org/10.1103/PhysRevResearch.1.032001

L.N. Christophorov, A.G. Zagorodny. Peculiarities of migration and capture of a quantum particle in a chain with traps. Chem. Phys. Lett. 682, 77 (2017).

https://doi.org/10.1016/j.cplett.2017.06.010

L.N. Christophorov, V.N. Kharkyanen. Theory of interimpurity transitions in condensed medium. Phys. stat. sol (b) 116, 415 (1983).

https://doi.org/10.1002/pssb.2221160203

A. Pal, V.V. Prasad. First passage under stochastic resetting in an interval. Phys. Rev. E 99, 032123, (2019).

https://doi.org/10.1103/PhysRevE.99.032123

D. Das, S. Dattagupta, S. Gupta. Quantum unitary evolution interspersed with repeated non-unitary interactions at random times: The method of stochastic Liouville equation, and two examples of interactions in the context of a tight-binding chain. J. Stat. Mech.: Theory Exp. 053101 (2022).

https://doi.org/10.1088/1742-5468/ac6256

H. Bateman. Tables of Integral Transforms (McGrow-Hill, 1954), Vol. 1.

R. Yin, E. Barkai. Restart expedites quantum walk hitting times. Phys. Rev. Lett. 130, 050802 (2023).

https://doi.org/10.1103/PhysRevLett.130.050802

M. Kulkarni, S.N. Majumdar. First detection probability in quantum resetting via random projective measurements. J. Phys. A: Math. Theor. 56, 385003 (2023).

https://doi.org/10.1088/1751-8121/acf103

J. Klinger, R. Voituriez, O. B'enichou. Distribution of the span of one-dimensional confined random processes before hitting a target. Phys. Rev. E 103, 032107 (2021).

https://doi.org/10.1103/PhysRevE.103.032107

G.R. Calvert, M.R. Evans. Searching for clusters of targets under stochastic resetting. Eur. Phys. J. B 94, 228 (2021).

https://doi.org/10.1140/epjb/s10051-021-00238-0

L.N. Christophorov. Influence of substrate unbinding on kinetics of enzymatic catalysis. Rep. Natl. Acad. Sci. Ukraine (Dopovidi), 1, 40 (2019).

https://doi.org/10.15407/dopovidi2019.01.040

B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, S. Ciliberto. Optimal mean first-passage time for a Brownian searcher subjected to resetting: Experimental and theoretical results. Phys. Rev. Res. 2, 032029 (2020).

https://doi.org/10.1103/PhysRevResearch.2.032029

O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, Y. Roichman. Experimental realization of diffusion with stochastic resetting. J. Phys. Chem. Lett. 11, 7350 (2020).

https://doi.org/10.1021/acs.jpclett.0c02122

Опубліковано

2024-09-18

Як цитувати

Christophorov, L. (2024). Неперервні в часі випадкові блукання з ресетингом в обмеженому ланцюжку. Український фізичний журнал, 69(8), 591. https://doi.org/10.15407/ujpe69.8.591

Номер

Розділ

Загальна фізика