Нетепловий вплив міліметрового випромінювання на флуоресценцію водного розчину барвника родамін 6G

Автор(и)

  • A.V. Yakunov Taras Shevchenko National University of Kyiv
  • D.T. Ilchuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.12.913

Ключові слова:

мiлiметровi хвилi, нетепловий ефект, флуоресценцiя, родамiн 6G

Анотація

За допомогою флуоресцентної спектроскопiї дослiджено вплив мiлiметрового випромiнювання на воднi розчини органiчного барвника родамiн 6G. Шляхом оптимiзацiї концентрацiї барвника вдалося мiнiмiзувати тепловi ефекти I видiлити внесок нетеплових механiзмiв. Отриманi результати свiдчать про те, що мiлiметрове випромiнювання iндукує структурнi змiни у водному середовищi, що, своєю чергою, призводить до змiни флуоресцентних властивостей барвника.

Посилання

A. Yakunov, A. Nizhelska, L. Marinchenko, V. Marinchenko, V. Makara. Influence of processing of yeast Saccharomyces cerevisiae with millimeter waves on fermentation indices in technology of bioethanol production. Surf. Eng. Appl. Electrochem. 51, 156 (2015).

https://doi.org/10.3103/S1068375515020143

M.T. Kubo, E.S. Siguemoto, E.S. Funcia, P.E. Augusto, S. Curet, L. Boillereaux, S.K. Sastry, J.A. Gut. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Curr. Opin. Food Sci. 35, 36 (2020).

https://doi.org/10.1016/j.cofs.2020.01.004

A.G. Markelz, D.M. Mittleman. Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics 9, 1117 (2022).

https://doi.org/10.1021/acsphotonics.2c00228

R. Habash. BioElectroMagnetics: Human Safety and Biomedical Applications (CRC Press, 2020).

https://doi.org/10.1201/9780429184093

J.-C. Chiao, C. Li, J. Lin, R.H. Caverly, J.C. Hwang, H. Rosen, A. Rosen. Applications of microwaves in medicine. IEEE J. Microwav. 3, 134 (2022).

https://doi.org/10.1109/JMW.2022.3223301

H. Wang, L. Lu, P. Liu, J. Zhang, S. Liu, Y. Xie, T. Huo, H. Zhou, M. Xue, Y. Fang. Millimeter waves in medical applications: Status and prospects. Intell. Med. 4, 16 (2024).

https://doi.org/10.1016/j.imed.2023.07.002

O.P. Gandhi. Electromagnetic fields: Human safety issues. Annu. Rev. Biomed. Eng. 4, 211 (2002).

https://doi.org/10.1146/annurev.bioeng.4.020702.153447

M. Shbanah, T.A. Kovacs. The effects of electromagnetic waves on human health. In: Security-Related Advanced Technologies in Critical Infrastructure Protection (Springer, 2022), p. 161.

https://doi.org/10.1007/978-94-024-2174-3_14

J. Moskowitz. 5G wireless technology: millimeter wave health effects. Electromagn. Rad. Safety 3, 3 (2017).

A. Wood, R. Mate, K. Karipidis. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J. Expos. Sci. Env. Epidem. 31, 606 (2021).

https://doi.org/10.1038/s41370-021-00307-7

I. Calvente, M.I. Nunez. Is the sustainability of exposure to non-ionizing electromagnetic radiation possible? Med. Clinic. (English Edition). 162, 387 (2024).

https://doi.org/10.1016/j.medcle.2023.11.016

B. Yemets. On mechanism of influence of low intense millimeter waves on air content in water. Int. J. Infrared Millimeter Wav. 22, 639 (2001).

https://doi.org/10.1023/A:1010681306768

Y. Asakuma, T. Maeda, T. Takai, A. Hyde, C. Phan, S. Ito, S. Taue. Microwaves reduce water refractive index. Sci. Rep. 12, 11562 (2022).

https://doi.org/10.1038/s41598-022-15853-9

G. Han, F. Liu, T. Zhang, W. Xu, Y. Zhang, N. Wu, S. Ouyang. Study of microwave non-thermal effects on hydrogen bonding in water by Raman spectroscopy. Spectrochim. Acta A 285, 121877 (2023).

https://doi.org/10.1016/j.saa.2022.121877

N. Wang, W. Zou, X. Li, Y. Liang, P. Wang. Study and application status of the nonthermal effects of microwaves in chemistry and materials science-a brief review. RSC Adv. 12, 17158 (2022).

https://doi.org/10.1039/D2RA00381C

J. Liu, G. Jia. Non-thermal effects of microwave in sodium chloride aqueous solution: Insights from molecular dynamics simulations. J. Mol. Liq. 227, 31 (2017).

https://doi.org/10.1016/j.molliq.2016.11.126

D. Gou, K. Huang, Y. Liu, H. Shi. Influence of weak microwaves on spatial collision and energy distribution of water molecules. Chem. Phys. 540, 110977 (2021).

https://doi.org/10.1016/j.chemphys.2020.110977

Y. Tao, B. Yan, N. Zhang, M. Wang, J. Zhao, H. Zhang, D. Fan. Do non-thermal effects exist in microwave heating of glucose aqueous solutions? Evidence from molecular dynamics simulations. Food Chem. 375, 131677 (2022).

https://doi.org/10.1016/j.foodchem.2021.131677

Y. Tao, B. Yan, N. Zhang, J. Zhao, H. Zhang, W. Chen, D. Fan. Decoupling thermal effects and possible nonthermal effects of microwaves in vacuum evaporation of glucose solutions. J. Food Eng. 338, 11257 (2023).

https://doi.org/10.1016/j.jfoodeng.2022.111257

D. Babich, N. Kuzkova, O. Popenko, A. Yakunov. Temperature measurement in microwave-irradiated systems using a temperature dependent fluorescent dye. Visn. Kyiv. Nats. Univ. Radiofiz. Elektron. 2, 13 (2014).

N. Kuzkova, O. Popenko, A. Yakunov. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments. J. Biomed. Imag. 2014, 12 (2014).

https://doi.org/10.1155/2014/243564

D. Babich, A. Kylsky, V. Pobiedina, A. Yakunov. Application of fluorescent dyes for some problems of bioelectromagnetics. SPIE Proc. 9887, 988735(2016).

https://doi.org/10.1117/12.2227373

M. Redkin, N. Gaiduk, A. Yakunov. Fluorescence-based technique to study the specific effects of microwaves. In: Frontiers in Optics/Laser Science. Edited by B. Lee, C. Mazzali, K. Corwin, R. Jason Jones. OSA Technical Digest (Optica Publishing Group, 2020), paper FM5C.4.

https://doi.org/10.1364/FIO.2020.FM5C.4

L. Bulavin, N. Gaiduk, M. Redkin, A. Yakunov. Specific effect of microwaves on the aqueous solution of rhodamine 6g according to fluorescence analysis. Ukr. J. Phys. 66, 256 (2021).

https://doi.org/10.15407/ujpe66.3.265

S. Viznyuk, P. Pashinin, A. Prokhorov, S. Rastopov, A. Sukhodolskii. Temperature-induced luminescence rise in aqueous solutions of rhodamine 6G. JETP Lett. 47, 230 (1988).

A. Geiger, F. Stillinger, A. Rahman. Aspects of the percolation process for hydrogen-bond networks in water. J. Chem. Phys. 70, 4185 (1979).

https://doi.org/10.1063/1.438042

A.V. Yakunov, M.M. Biliy, A.P. Naumenko. Long-term structural modification of water under microwave irradiation: low-frequency raman spectroscopic measurements. Adv. Opt. Technol. 2017, 1 (2017).

https://doi.org/10.1155/2017/5260912

Опубліковано

2024-12-14

Як цитувати

Yakunov, A., & Ilchuk, D. (2024). Нетепловий вплив міліметрового випромінювання на флуоресценцію водного розчину барвника родамін 6G. Український фізичний журнал, 69(12), 913. https://doi.org/10.15407/ujpe69.12.913

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика