Аксіонне гало навколо подвійної системи карликових зірок

Автор(и)

  • A. Patkós Institute of Physics, E¨otv¨os University

DOI:

https://doi.org/10.15407/ujpe69.7.472

Ключові слова:

надлегкi аксiоноподiбнi частинки, аксiонне гало, карликова зiрка

Анотація

Розраховано ґравiтацiйне поле згустку надлегких аксiоноподiбних частинок (ALP) з обертовою подвiйною системою карликових зiрок у його ядрi. Встановлено, що iндукований квадрупольний момент маси згустку визначається параметром вiдношення мас Ma/M згустку аксiонiв i бiнарного ядра.

Посилання

D.J. Kaup. Klein-Gordon geon. Phys. Rev. 172, 1331 (1968).

https://doi.org/10.1103/PhysRev.172.1331

R. Ruffini, S. Bonnazola. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767 (1969).

https://doi.org/10.1103/PhysRev.187.1767

I.I. Tkachev. Coherent scalar-field oscillations forming compact astrophysical object. Sov. Astron. Lett. 12, 305 (1986).

I.I. Tkachev. On the possibility of Bose-star formation. Phys. Lett. B 261, 281 (1991).

https://doi.org/10.1016/0370-2693(91)90330-S

E.W. Kolb, I.I. Tkachev. Axion miniclusters and bose stars. Phys. Rev. Lett. 71, 3051 (1993).

https://doi.org/10.1103/PhysRevLett.71.3051

E.W. Kolb, I.I. Tkachev. Nonlinear axion dynamics and formation of cosmological pseudosolitons. Phys. Rev. D 94, 5040 (1994).

https://doi.org/10.1103/PhysRevD.49.5040

J. Eby, P. Suranyi, C. Vaz, L. Wijewardhana. Axion stars in the infrared limit. J. High Energy Phys. 03, 080 (2015).

https://doi.org/10.1007/JHEP03(2015)080

E. Braaten, A. Mohapatra, H. Zhang. Dense axion stars. Phys. Rev. Lett. 117, 121801 (2016).

https://doi.org/10.1103/PhysRevLett.117.121801

A.H. Guth, M.P. Hertzberg, C. Prescod-Weinstein. Do dark matter axion form a condensate with long range correlation? Phys. Rev. D 94, 103513 (2015).

https://doi.org/10.1103/PhysRevD.92.103513

D.G. Levkov, A.G. Panin, I.I. Tkachev. Gravitational Bose-Einstein condensation in the kinetic regime. Phys. Rev. Lett. 121, 151301 (2018).

https://doi.org/10.1103/PhysRevLett.121.151301

L.M. Widrow, N. Kaiser. Using the Schr¨odinger equation to simulate collisionless matter. Astrophys. J. 416, L71 (1993).

https://doi.org/10.1086/187073

H.-Y. Schive, T. Chiueh, T. Broadhurst. Cosmic structure as the quantum interference of a coherent dark wave. Nature Phys. 10, 496 (2014).

https://doi.org/10.1038/nphys2996

S.-C. Lin, H.-Y. Schive, S.-K. Wong, T. Chiueh. Selfconsistent construction of virialized wave dark matter. Phys. Rev. D 97, 103523 (2018).

https://doi.org/10.1103/PhysRevD.97.103523

T.D. Yavetz, X. Li, L. Hui. Construction of wave dark matter halos: Numerical algorithm and analytical constraints. Phys. Rev. D 105, 023512 (2022).

https://doi.org/10.1103/PhysRevD.105.023512

T. Zimmermann, J. Alvey, D.J.E. Marsh, M. Fairbairn, J.I. Read. Dwarf galaxies imply dark matter is heavier than 2.2 × 10^−21 eV. arXiv:2405.20374.

M. Raidal, C. Spethmann, V. Vaskonen, H. Verm¨ae. Formation and evolution of primodial black hole binaries in the early universe. J. Cosmol. Astropart. Phys. 02, 018 (2019).

https://doi.org/10.1088/1475-7516/2019/02/018

M.P. Hertzberg, E.D. Schiapparasse, T.T. Yanagida. Axion star condensation in dark minihalos around primordial black holes. Phys. Rev. D 102, 023013 (2020).

https://doi.org/10.1103/PhysRevD.102.023013

D. Baumann, H.S. Chia, R.A. Porto, J. Stout. Gravitational collider physics. Phys. Rev. D 101, 083019 (2020).

https://doi.org/10.1103/PhysRevD.101.083019

T. Takahashi, H. Omiya, T. Tanaka. Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation. Progress Theor. Exper. Phys. 2022, 043E01 (2022).

https://doi.org/10.1093/ptep/ptac044

C. Fontanive et al. Constraining the multiplicity statistics of the coolest brown dwarfs: binary fraction continues to decrease with spectral type. Mon. Not. Royal Astron. Soc. 479, 2702 (2018).

https://doi.org/10.1093/mnras/sty1682

P. Calissendorff et al. JWST/NIRCam discovery of the first Y + Y brown dwarf binary: WISE J033605.05-014350.4. Astrophys. J. Lett. 947, L30 (2023).

https://doi.org/10.3847/2041-8213/acc86d

J.B. Hartle. Gravity, an Introduction to Einstein's General Relativity (Addison Wesley, 2003), Ch. 23.6, Eq. (23.56).

K. El-Badry, K.B. Burdge, J.v. Roestel, A.C. Rodriguez. A transiting brwon dwarf in a 2 hour orbit. Open J. Astrophys. 6, 33 (2023).

https://doi.org/10.21105/astro.2307.15729

A. Patk'os. Radiation backreaction in axon electrodynamics. Symmetry 14, 1113 (2022).

https://doi.org/10.3390/sym14061113

A. Patk'os. Elecromagnetic energy loss of axion stars. Phys. Rev. D 107, 055017 (2023).

https://doi.org/10.1103/PhysRevD.107.055017

C.-M. Yoo, A. Naruko, Y.Sakurai. K. Takahashi, Y. Takaori, D. Yamauchi. Axion cloud decay due to the axionphoton conversion with background magnetic fields. Publ. Astron. Soc. Japan 74, 64 (2022).

https://doi.org/10.1093/pasj/psab110

Y. Sakurai, C.-M. Yoo, A. Naruko, D. Yamauchi. Axion cloud decay due to the axion-photon conversion with multipole background magnetic fields. arXiv:2312.07058.

Опубліковано

2024-08-27

Як цитувати

Patkós, A. (2024). Аксіонне гало навколо подвійної системи карликових зірок. Український фізичний журнал, 69(7), 472. https://doi.org/10.15407/ujpe69.7.472

Номер

Розділ

Неевклідова геометрія в сучасній фізиці та математиці