Технецій-99м: новий погляд з точки зору наноматеріалів

Автор(и)

  • V. Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • I. Karnaukhov National Science Center “Kharkov Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
  • A. Zelinsky National Science Center “Kharkov Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
  • B. Borts National Science Center “Kharkov Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
  • I. Ushakov National Science Center “Kharkov Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
  • L. Sidenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • G. Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University

DOI:

https://doi.org/10.15407/ujpe69.9.642

Ключові слова:

наноматерiали, терагностика, технецiй, наномедицина, радiомаркування

Анотація

Радiомаркування наноматерiалiв за допомогою технецiю-99м (99mTc) виокремилося як перспективна стратегiя, що iнтегрує переваги нанотехнологiй та ядерної медицини для дiагностичних та терапевтичних застосувань. Дана робота має на метi надати всебiчний огляд сучасного стану у сферi радiомаркування наноматерiалiв за допомогою 99mTc. Дослiдження охоплює методи синтезу, механiзми маркування, бiологiчнi застосування, фiзико-хiмiчнi характеристики та клiнiчнi застосування наноматерiалiв, мiчених 99mTc.

Посилання

M. Djekidel. The changing landscape of nuclear medicine and a new era: the "NEW (Nu) CLEAR Medicine": A framework for the future. Front. Nucl. Med. 3, 1213714 (2023).

https://doi.org/10.3389/fnume.2023.1213714

H. Duan, A. Iagaru, C. Aparici. Radiotheranostics - precision medicine in nuclear medicine and molecular imaging. Nanotheranostics 6, 103 (2022).

https://doi.org/10.7150/ntno.64141

J. Czernin, I. Sonni, A. Razmaria, J. Calais. The future of nuclear medicine as an independent specialty. J. Nucl. Med. 60, 3S (2019).

https://doi.org/10.2967/jnumed.118.220558

A. Zwanenburg. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging. 46, 2638 (2019).

https://doi.org/10.1007/s00259-019-04391-8

K. Vermeulen, M. Vandamme, G. Bormans, F. Cleeren. Design and challenges of radiopharmaceuticals. Seminars Nucl. Med. 49, 339 (2019).

https://doi.org/10.1053/j.semnuclmed.2019.07.001

Z. Morris, A. Wang, S. Knox. The radiobiology of radiopharmaceuticals. Seminars Rad. Oncol. 31, 20 (2021).

https://doi.org/10.1016/j.semradonc.2020.07.002

I. Roy, S. Krishnan, A. Kabashin, I. Zavestovskaya, P. Prasad. Transforming nuclear medicine with nanoradiopharmaceuticals. ACS Nano. 16, 5036 (2000).

https://doi.org/10.1021/acsnano.1c10550

J. Ge, Q. Zhang, J. Zeng, Z. Gu, M. Gao. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 228, 119553 (2020).

https://doi.org/10.1016/j.biomaterials.2019.119553

A. Singh, M. Amiji. Application of nanotechnology in medical diagnosis and imaging. Curr. Opin. Biotechnol. 74, 241 (2022).

https://doi.org/10.1016/j.copbio.2021.12.011

J. Pellico, P. Gawne, R. de Rosales. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 50, 3355 (2021).

https://doi.org/10.1039/D0CS00384K

L. Farzin, S. Sheibani, M. Moassesi, M. Shamsipur. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J. Biomed. Mater. Res. Part A 107, 251 (2019).

https://doi.org/10.1002/jbm.a.36550

C. Ferreira, D. Ni, Z. Rosenkrans, W. Cai. Radionuclideactivated nanomaterials and their biomedical applications. Angew. Chem. 58, 13232 (2019).

https://doi.org/10.1002/anie.201900594

A. Ruggiero, C. Villa, J. Holland, S. Sprinkle, C. May, J. Lewis, D. Scheinberg, M. McDevitt. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomedicine. 5, 783 (2010).

https://doi.org/10.2147/IJN.S13300

N. Tang, Y. Wei, Q. Yang, Y. Yang, M. Sailor, H.-B. Pang. Rapid chelator-free radiolabeling of quantum dots for in vivo imaging. Nanoscale. 11, 22248 (2019).

https://doi.org/10.1039/C9NR08508D

F. Ai, C. Ferreira, F. Chen, W. Cai. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 619 (2016).

https://doi.org/10.1002/wnan.1386

N. Daems, C. Michiels, S. Lucas, S. Baatout, A. Aerts. Gold nanoparticles meet medical radionuclides. Nucl. Med. Biol. 100, 61 (2021).

https://doi.org/10.1016/j.nucmedbio.2021.06.001

J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 31, 3016 (2010).

https://doi.org/10.1016/j.biomaterials.2010.01.010

A. Amraee, Z. Alamzadeh, R. Irajirad, A. Sarikhani, H. Ghaznavi, H. Harvani, S. Mahdavi, S. Shirvalilou, S. Khoei. Theranostic RGD@Fe3O4-Au/Gd NPs for the targeted radiotherapy and MR imaging of breast cancer. Cancer Nano 14, 61 (2023).

https://doi.org/10.1186/s12645-023-00214-6

D. Psimadas, P. Bouziotis, P. Georgoulias, V. Valotassiou, T. Tsotakos, G. Loudos. Radiolabeling approaches of nanoparticles with 99mTc. Contrast Media Mol. Imaging. 8, 333 (2013).

https://doi.org/10.1002/cmmi.1530

S. Mushtaq, A. Bibi, J. Park, J. Jeon. Recent progress in technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel). 11, 3022 (2021).

https://doi.org/10.3390/nano11113022

R. Santos-Oliveira, L. Antunes. Radiopharmaceutical research and production in Brazil: A 30-year history of participation in the nuclear medicine scenario. J. Nucl. Med. Technol. 39, 237 (2011).

https://doi.org/10.2967/jnmt.111.088450

M. Billinghurst, S. Rempel, B. Westendorf. Radiation decomposition of technetium-99m radiopharmaceuticals. Phys. Rad. Biol. 20, 138 (1979).

K. Bannister, S. Penglis, J. Bellen, R. Baker, B. Chatterton. Kit preparation of technetium-99m-mercaptoacetyltriglycine: Analysis, biodistribution and comparison with technetium-99m-DTPA in patients with impaired renal function. J. Nucl. Med. 31, 1568 (1990).

C. Perrier, E. Segr'e. Some chemical properties of element 43. J. Chem. Phys. 5, 712 (1937).

https://doi.org/10.1063/1.1750105

E. Segr'e, G. Seaborg. Nuclear isomerism in element 43. Phys. Rev. 55, 808 (1939).

https://doi.org/10.1103/PhysRev.55.808

J. Weaver, C. Soderquist, N. Washton, A. Lipton, P. Gassman, W. Lukens, A. Kruger, N. Wall, J. McCloy. Chemical trends in solid alkali pertechnetates. Inorg. Chem. 56, 2533 (2017).

https://doi.org/10.1021/acs.inorgchem.6b02694

A. Davison, A. Jones. The chemistry of technetium (V). Int. J. Appl. Radiat. Isot. 33, 875 (1982).

https://doi.org/10.1016/0020-708X(82)90131-4

S. Liu, D. Edwards, J. Barrett. 99mTc labeling of highly potent small peptides. Bioconjug. Chem. 8, 621 (1997).

https://doi.org/10.1021/bc970058b

S. Rathmann, Z. Ahmad, S. Slikboer, H. Bilton, D. Snider, J. Valliant. The radiopharmaceutical chemistry of Technetium-99m. In: Radiopharmaceutical Chemistry. Edited by J. Lewis, A. Windhorst, B. Zeglis (Springer, 2019), pp. 311.

https://doi.org/10.1007/978-3-319-98947-1_18

R. Alberto. The particular role of radiopharmacy within bioorganometallic chemistry. J. Organomet. Chem. 192, 1179 (2007).

https://doi.org/10.1016/j.jorganchem.2006.11.019

A. Boschi, L. Uccelli, P. Martini. A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging. Appl. Sci. 9, 2526 (2019).

https://doi.org/10.3390/app9122526

G. Mariani, L. Bruselli, T. Kuwert, E. Kim, A. Flotats, O. Israel, M. Dondi, N. Watanabe. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging. 37, 1959 (2010).

https://doi.org/10.1007/s00259-010-1390-8

O. Israel, O. Pellet, L. Biassoni, D. De Palma, E. EstradaLobato, G. Gnanasegaran, T. Kuwert, C. la Foug'ere, G. Mariani, S. Massalha, D. Paez, F. Giammarile. Two decades of SPECT/CT - the coming of age of a technology: An updated review of literature evidence. Eur. J. Nucl. Med. Mol. Imaging. 46, 1990 (2019).

https://doi.org/10.1007/s00259-019-04404-6

T. Saleh. Technetium-99m radiopharmaceuticals. In: Basic Sciences of Nuclear Medicine. Edited by M. Khalil (Springer, 2010).

https://doi.org/10.1007/978-3-540-85962-8_3

B. Mandalapu, M. Amato, H. Stratmann. Technetium Tc99m sestamibi myocardial perfusion imaging: current role for evaluation of prognosis. Chest. 115, 1684 (1999).

https://doi.org/10.1378/chest.115.6.1684

H. Ziessman, J. O'Malley, J. Thrall. Nuclear Medicine: The Requisites. 4th ed. (Elsevier Health Sciences, 2013) [ISBN: 978-0-323-08299-0].

T. Hussain, Q. Nguyen. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev. 66, 90 (2014).

https://doi.org/10.1016/j.addr.2013.09.007

W. Pardridge. Blood-brain barrier delivery. Drug Discov. Today. 12, 54 (2007).

https://doi.org/10.1016/j.drudis.2006.10.013

N. Joudeh, D. Linke. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 20, 262 (2022).

https://doi.org/10.1186/s12951-022-01477-8

S. Abbina, L. Takeuchi, P. Anilkumar, K. Yu, J. Rogalski, R. Shenoi, I. Constantinescu, J. Kizhakkedathu. Blood circulation of soft nanomaterials is governed by dynamic remodeling of protein opsonins at nano-biointerface. Nat. Commun. 11, 3048 (2020).

https://doi.org/10.1038/s41467-020-16772-x

B. Mekuye, B. Abera. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select. 4, 486 (2023).

https://doi.org/10.1002/nano.202300038

B. Alshammari, M. Lashinb, M. Mahmood, F. Al-Mubaddelde, N. Ilyasf, N. Rahman, M. Sohail, A. Khan, S. Abdullaev, R. Khan. Organic and inorganic nanomaterials: Fabrication, properties and applications. RCS Adv. 13, 13735 (2023).

https://doi.org/10.1039/D3RA01421E

K. Khalid, X. Tan, H. Zaid, Y. Tao, C. Chew, D. Chu, M. Lam, Y. Ho, J. Lim, L. Wei. Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered. 11, 328 (2020).

https://doi.org/10.1080/21655979.2020.1736240

D. Lombardo, P. Calandra, L. Pasqua, S. Magaz'u. Selfassembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials 13, 1048 (2020).

https://doi.org/10.3390/ma13051048

G. Speranza. Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials. 11, 967 (2021).

https://doi.org/10.3390/nano11040967

D. Holmannova, P. Borsky, T. Svadlakova, L. Borska, Z. Fiala. Carbon nanoparticles and their biomedical applications. Appl. Sci. 12, 7865 (2022).

https://doi.org/10.3390/app12157865

L. Porto, D. Silva, A. de Oliveira, A. Pereira, K. Borges. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev. Anal. Chem. 38, 20190017 (2019).

https://doi.org/10.1515/revac-2019-0017

R. Onyancha, K. Ukhurebor, U. Aigbe, O. Osibote, H. Kusuma, H. Darmokoesoemo. A methodical review on carbon-based nanomaterials in energy-related applications. Ads. Sci. Technol. 2022, 4438286 (2022).

https://doi.org/10.1155/2022/4438286

P. Martini, M. Pasquali, A. Boschi, L. Uccelli, M. Giganti, A. Duatti. Technetium complexes and radiopharmaceuticals with scorpionate ligands. Molecules. 23, 2039 (2018).

https://doi.org/10.3390/molecules23082039

U. Abram, R. Alberto. Technetium and rhenium - coordination chemistry and nuclear medical applications. J. Braz. Chem. Soc. 17, 1486 (2006).

https://doi.org/10.1590/S0103-50532006000800004

K. Thipyapong, T. Uehara, Y. Tooyama, H. Braband, R. Alberto, Y. Arano. Insight into technetium amidoxime complex: Oxo technetium (V) complex of N-substituted benzamidoxime as new basic structure for molecular imaging. Inorg. Chem. 50, 992 (2011).

https://doi.org/10.1021/ic101714q

C. Bolzati, A. Dolmella. Nitrido technetium-99m core in radiopharmaceutical applications: Four decades of research. Inorganics 8, 3 (2020).

https://doi.org/10.3390/inorganics8010003

M. Pasquali, E. Janevik-Ivanovska, A. Duatti. Technetium nitrido-peroxo complexes: an unexplored class of coordination compounds. Inorganics 7, 142 (2019).

https://doi.org/10.3390/inorganics7120142

J. Baldas. Chemistry of technitium nitrido complexes. Pure Appl. Chem. 62, 1079-80 (1990).

https://doi.org/10.1351/pac199062061079

C. Decristoforo, S. Mather. 99m-Technetium-labelled peptide-HYNIC conjugates: Effects of lipophilicity and stability on biodistribution. Nucl. Med. Biol. 26, 389 (1999).

https://doi.org/10.1016/S0969-8051(98)00118-8

M. Surfraz, R. King, S. Mather, S. Biagini, P. Blower. Technetium-binding in labelled HYNIC-peptide conjugates: role of coordinating amino acids. J. Inorg. Biochem. 103, 971 (2009).

https://doi.org/10.1016/j.jinorgbio.2009.04.007

L. Meszaros, A. Dose, S. Biagini, P. Blower. Hydrazinonicotinic acid (HYNIC) - coordination chemistry and applications in radiopharmaceutical chemistry. Inorg. Chim. Acta. 363, 1059 (2010).

https://doi.org/10.1016/j.ica.2010.01.009

B. Li, S. Hildebrandt, A. Hagenbach, U. Abram. Tricarbonylrhenium(I) and -technetium(I) complexes with tris(1,2,3-triazolyl)phosphine oxides. Z. Anorg. Allg. Chem. 647, 1070 (2021).

https://doi.org/10.1002/zaac.202100010

S. Mather, D. Ellison. Reduction-mediated technetium-99m labeling of monoclonal antibodies. J. Nucl. Med. 31, 692 (1990).

E. Joiris, B. Bastin, J. Thornback. A new method for labelling of monoclonal antibodies and their fragments with technetium-99m. Int. J. Rad. Appl. Instrum. B 18, 353 (1991).

https://doi.org/10.1016/0883-2897(91)90131-4

R. Mease, C. Lambert. Newer methods of labeling diagnostic agents with Tc-99m. Seminars Nucl. Med. 31, 278 (2001).

https://doi.org/10.1053/snuc.2001.26182

A. Bao, B. Goins, R. Klipper, G. Negrete, W. Phillips. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J. Pharmacol. Exp. Ther. 308, 419 (2004).

https://doi.org/10.1124/jpet.103.059535

M. Pijeira, H. Viltres, J. Kozempel, M. Sakm'ar, M. Vlk, D. ˙Ilem-¨Ozdemir, M. Ekinci, S. Srinivasan, A. Rajabzadeh, E. Ricci-Junior, L. Alencar, M. Qahtani, R. Santos-Oliveira. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm. Chem. 7, 8 (2022).

https://doi.org/10.1186/s41181-022-00161-4

M. Mariscal, J. Olmos-Asar, C. Gutierrez-Wing, A. Mayoral, M. Yacaman. On the atomic structure of thiolprotected gold nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 12, 11785 (2010).

https://doi.org/10.1039/c004229c

D. Bonvin, J. Bastiaansen, M. Stuber, H. Hofmann, M. Ebersold. Chelating agents as coating molecules for iron oxide nanoparticles. RSC Adv. 7, 55598 (2017).

https://doi.org/10.1039/C7RA08217G

H. Yamaguchi, M. Tsuchimochi, K. Hayama, T. Kawase, N. Tsubokawa. Dual-labeled near-infrared/(99m)Tc imagingp using PAMAM-coated silica nanoparticles for the Imaging of HER2-expressing cancer cells. Int. J. Mol. Sci. 17, 1086 (2016).

https://doi.org/10.3390/ijms17071086

E. Vitorge, S. Szenknect, J. Martins, V. Barth'es, A. Auger, O. Renard, J. Gaudet. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations. Environm. Poll. 184, 605 (2014).

https://doi.org/10.1016/j.envpol.2013.07.031

P. Biehl, F. Schacher. Surface functionalization of magnetic nanoparticles using a thiol-based grafting-through approach. Surfaces. 3, 116 (2020).

https://doi.org/10.3390/surfaces3010011

Z. Salehi, H. Ghahfarokhi, A. Kodadadi, R. Rahimnia. Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. J. Industr. Engineer. Chem. 35, 224 (2016).

https://doi.org/10.1016/j.jiec.2015.12.038

L. Aranda-Lara, K. Isaac-Oliv'e, B. Ocampo-Garc'ıa, G. Ferro-Flores, C. Gonz'alez-Romero, A. Mercado-L'opez, R. Garc'ıa-Mar'ın, C. Santos-Cuevas, J. Estrada, E. Morales-Avila. Engineered rHDL nanoparticles as a suitable platform for theranostic applications. Molecules. 27, 7046 (2022).

https://doi.org/10.3390/molecules27207046

L. Aranda-Lara, E. Morales-Avila, M. Luna-Guti'errez, E. Oliv'e-Alvarez, K. Isaac-Oliv'e. Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem. Phys. Lipids. 230, 104934 (2020).

https://doi.org/10.1016/j.chemphyslip.2020.104934

P. Laverman, E. Dams, W. Oyen, G. Storm, E. Koenders, R. Prevost, J. van der Meer, F. Corstens, O. Boerman. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J. Nucl. Med. 40, 192 (1999).

P. Laverman, L. Bloois, O. Boerman, W. Oyen, F. Corstens, G. Storm. Lyophilization of TC-99m-Hynic labeled PEG-liposomes. J. Liposome Res. 10, 117 (2000).

https://doi.org/10.3109/08982100009029382

V. Pandey, T. Haider, A. Chandak, A. Chakraborty, S. Banerjee, V. Soni. Technetium labeled doxorubicin loaded silk fibroin nanoparticles: optimization, characterization and in vitro evaluation. J. Drug Deliv. Sci. Technol. 56, 101539 (2020).

https://doi.org/10.1016/j.jddst.2020.101539

R. Sharma. Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles. Int. J. Pharm. 289, 189 (2005).

https://doi.org/10.1016/j.ijpharm.2004.09.022

S. Wu, E. Helal-Neto, A. dos Santos Matos, A. Jafari, J. Kozempel, Y. de Albuquerque Silva, C. Serrano-Larrea, S. Junior, E. Ricci-Junior, F. Alexis, R. Santos-Oliveira. Radioactive polymeric nanoparticles for biomedical application. Drug Delivery 27, 1544 (2020).

https://doi.org/10.1080/10717544.2020.1837296

V. Trubetskoy. Polymeric micelles as carriers of diagnostic agents. Adv. Drug Deliv. Rev. 37, 81 (1999).

https://doi.org/10.1016/S0169-409X(98)00100-8

M. Roeinfard, M. Zahedifar, M. Darroudi, K. Sadri, A. Zak. Preparation of technetium labeled-graphene quantum dots and investigation of their bio distribution. J. Cluster Sci. 33, 965 (2022). 79. N. Bayoumi, A. Emam. 99mTc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution. Int. J. Radiat. Biol. 97, 977 (2021).

https://doi.org/10.1007/s10876-021-02033-4

L. Kovacs, M. Tassano, M. Cabrera, M. Fern'andez, W. Porcal, R. Anjos, P. Cabral. Labeling polyamidoamine (PAMAM) dendrimers with technetium-99m via hydrazinonicotinamide (HYNIC). Curr. Radiopharm. 7, 115 (2014).

https://doi.org/10.2174/1874471007666140825121615

S. Ghoreishi, A. Khalaj, O. Sabzevari, L. Badrzadeh, P. Mohammadzadeh, S. Mousavi Motlagh, A. BitarafanRajabi, M. Shafiee Ardestani. Technetium-99m chelatorfree radiolabeling of specific glutamine tumor imaging nanoprobe: In vitro and in vivo evaluations. Int. J. Nanomedicine 13, 4671 (2018).

https://doi.org/10.2147/IJN.S157426

M. Podolska, A. Barras, C. Alexiou, B. Frey, U. Gaipl, R. Boukherroub, S. Szunerits, C. Janko, L. Mu˜noz. Graphene oxide nanosheets for localized hyperthermia - physicochemical characterization, biocompatibility, and induction of tumor cell death. Cells 9, 776 (2020).

https://doi.org/10.3390/cells9030776

S. Challan, A. Massoud. Radiolabeling of graphene oxide by Technetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 314, 2189 (2017).

https://doi.org/10.1007/s10967-017-5561-y

R. Rajagopalan, S. Jain, A. Kaul, P. Trivedi. Biodistribution and pharmacokinetic studies on topicallydelivered technetium-99m-labeled 5-FU nanogel formulation for management of pre-cancerous skin lesions. Tropical J. Pharmaceut. Res. 18, 1977 (2019).

https://doi.org/10.4314/tjpr.v18i9.28

M. Kubeil, Y. Suzuki, M. Casulli, R. Kamal, T. Hashimoto, M. Bachmann, T. Hayashita, H. Stephan. Exploring the potential of nanogels: from drug carriers to radiopharmaceutical agents. Adv. Healthc. Mater. 2023, 2301404 (2023).

https://doi.org/10.1002/adhm.202301404

O. Estudiante-Mariquez, A. Rodr'ıguez-Galv'an, D. Ram'ırez-Hern'andez, F. Contreras-Torres, L. Medina. Technetium-radiolabeled mannose-functionalized gold nanoparticles as nanoprobes for sentinel lymph node detection. Molecules 25, 1982 (2020).

https://doi.org/10.3390/molecules25081982

A. Walsh. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine. J. Nanopart. Res. 19, 152 (2017).

https://doi.org/10.1007/s11051-017-3840-8

Q. Ng, C. Olariu, M. Yaffee, V. Taelman, N. Marincek, T. Krause, L. Meier, M. Walter. Indium-111 labeled gold nanoparticles for in-vivo molecular targeting. Biomaterials 35, 7050 (2014).

https://doi.org/10.1016/j.biomaterials.2014.04.098

E. Morales-Avila, G. Ferro-Flores, E. Ocampo-Garc'ıa, L. De Leon-Rodr'ıguez, C. Santos-Cuevas, R. Garc'ıaBecerra, L. Medina, L. Gomez-Olivan. Multimeric System of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjug. Chem. 22, 913 (2011).

https://doi.org/10.1021/bc100551s

Y. Xing, J. Zhu, L. Zhao, Z. Xiong, Y. Li, S. Wu, G. Chand, X. Shi, J. Zhao. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc labeled dendrimer-entrapped gold nanoparticles. Drug Deliv. 25, 1384 (2018).

https://doi.org/10.1080/10717544.2018.1474968

Y. Luo, L. Zhao, X. Li, J. Yang, L. Guo, G. Zhang, M. Shen, J. Zhao, X. Shi. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J. Mater. Chem. B 4, 7220 (2016).

https://doi.org/10.1039/C6TB02190E

B. Murphy, A. Woodwick, K. Murphy, K. Chandler, G. Johnson, C. Hunt, P. Peller, J. Jakub, A. Homb. 99mTc-tilmanocept versus 99mTc-sulfur colloid in lymphoscintigraphy: sentinel lymph node identification and patient-reported pain. J. Nucl. Med. Technol. 47, 300 (2019).

https://doi.org/10.2967/jnmt.118.225342

C. Santos, F. Filho, F. Campos, C. de Aguiar Ferreira, A. de Barros, D. Soares. Ag2WO4 nanoparticles radiolabeled with technetium-99m: a potential new tool for tumor identification and uptake. J. Radioanal. Nucl. Chem. 323, 51 (2020).

https://doi.org/10.1007/s10967-019-06955-2

D. El-Safoury, A. Ibrahim, D. El-Setouhy, O. Khowessah, M. Motaleb, T. Sakr. Gold nanoparticles for 99mTcdoxorubicin delivery: Formulation, in vitro characterization, comparative studies in vivo stability and biodistribution. J. Radioanal. Nucl. Chem. 328, 325 (2021).

https://doi.org/10.1007/s10967-021-07633-y

D. El-Safoury, A. Ibrahim, D. El-Setouhy, O. Khowessah, M. Motaleb, T. Sakr. Amelioration of tumor targeting and in vivo biodistribution of 99mTc-methotrexate-gold nanoparticles (99mTc-Mex-AuNPs). J. Pharmaceut. Sci. 110, 2955 (2021).

https://doi.org/10.1016/j.xphs.2021.03.021

A. Ashraf, R. Sharif, M. Ahmad, M. Masood, A. Shahid, D. Anjum, M. Rafique, S. Ghani. In vivo evaluation of the biodistribution of intravenously administered naked and functionalized silver nanoparticles in rabbit. IET Nanobiotechnol. 9, 368 (2015).

https://doi.org/10.1049/iet-nbt.2014.0075

P. Nallathamby, N. Mortensen, H. Palko, M. Malfatti, C. Smith, J. Sonnett, M. Doktycz, B. Gu, R. Roeder, W. Wang, S. Retterer. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale 7, 6545 (2015).

https://doi.org/10.1039/C4NR06441K

M. Nadeem, M. Ahmad, M. Saeed, A. Shaari, S. Riaz, S. Naseem, K. Rashid. Uptake and clearance analysis of Technetium99m labelled iron oxide nanoparticles in a rabbit brain. IET Nanobiotechnol. 9, 136 (2015).

https://doi.org/10.1049/iet-nbt.2014.0012

R. de Rosales, R. Tavar'e, A. Glaria, G. Varma, A. Protti, P. Blower. 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug. Chem. 22, 455 (2011).

https://doi.org/10.1021/bc100483k

I. Sandiford, A. Phinikaridou, A. Protti, L. Meszaros, X. Cui, Y. Yan, G. Frodsham, P. Williamson, N. Gaddum, R. Botnar, P. Blower, M. Green, R. de Rosales. Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7, 500 (2013).

https://doi.org/10.1021/nn3046055

M. Motiei, T. Dreifuss, T. Sadan, N. Omer, T. Blumenfeld-Katzir, E. Fragogeorgi, G. Loudos, R. Popovtzer, N. Ben-Eliezer. Trimodal nanoparticle contrast agent for CT, MRI and SPECT imaging: Synthesis and characterization of radiolabeled core/shell iron oxide@gold nanoparticles. Chem. Lett. 48, 291 (2019).

https://doi.org/10.1246/cl.180780

M. Mirkovi'c, M. Radovi'c, D. Stankovi'c, Z. Milanovi'c, D. Jankovi'c, M. Matovi'c, M. Jeremi'c, B. Anti'c, S. Vranjeˇs-Duri'c. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 124 (2019).

https://doi.org/10.1016/j.msec.2019.04.034

F. Akhter, A. Rao, M. Abbasi, S. Wahocho, M. Mallah, H. Anees-ur-Rehman, Z. Chandio. A comprehensive review of synthesis, applications and future prospects for silica nanoparticles (SNPs). Silicon 14, 8295 (2020).

https://doi.org/10.1007/s12633-021-01611-5

F. Portilho, E. Helal-Neto, S. Cabezas, S. Pinto, S. Dos Santos, L. Pozzo, F. Sancen'on, R. Mart'ınez-M'a˜nez, R. Santos-Oliveira. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif. Cells Nanomed. Biotechnol. 46 (sup1), 1080 (2018).

https://doi.org/10.1080/21691401.2018.1443941

A. de Barros, K. de Oliveira Ferraz, T. Dantas, G. Andrade, V. Cardoso, E. Sousa. Synthesis, characterization, and biodistribution studies of (99m)Tc-labeled SBA-16 mesoporous silica nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 56, 181 (2015).

https://doi.org/10.1016/j.msec.2015.06.030

L. Pascual, F. Sancen'on, R. Mart'ınez-M'a˜nez, T. BarjaFidalgo, S. da Silva, A. de Jesus Sousa-Batista, C. Cerqueira-Coutinho, R. Santos-Oliveira. Mesoporous silica as multiple nanoparticles systems for inflammation imaging as nano-radiopharmaceuticals. Micropor. Mesopor. Mater. 239, 426 (2017).

https://doi.org/10.1016/j.micromeso.2016.10.041

H. Gao, X. Liu, W. Tang, D. Niu, B. Zhou, H. Zhang, W. Liu, B. Gu, X. Zhou, Y. Zheng, Y. Sun, X. Jia, L. Zhou. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale 8, 19573 (2016).

https://doi.org/10.1039/C6NR07062K

M. Tsuchimochi, K. Hayama, M. Toyama, L. Sasagawa, N. Tsubokawa. Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: An animal study. EJNMMI Res. 3, 33 (2013).

https://doi.org/10.1186/2191-219X-3-33

A. Brouwers, D. De Jong, E. Dams, W. Oyen, O. Boerman, P. Laverman, T. Naber, G. Storm, F. Corstens. Tc-99m-PEG-liposomes for the evaluation of colitis in crohn's disease. J. Drug Target 8, 225 (2000).

https://doi.org/10.3109/10611860008997901

B. Goins, A. Bao, W. Phillips. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into pre-formed liposomes for diagnostic imaging and radionuclide therapy. In: Liposomes. Methods in Molecular BiologyTM. Edited by V. Weissig (2010), Vol. 606.

https://doi.org/10.1007/978-1-60761-447-0_32

P. Laverman, E. Dams, W. Oyen, G. Storm, E. Koenders, R. Prevost, J. van der Meer, F. Corstens, O. Boerman. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J. Nucl. Med. 40, 192 (1999).

B. Lasa-Sarac'ıbar, S. El Moukhtari, T. Tsotakos, S. Xanthopoulos, G. Loudos, P. Bouziotis, M. Blanco-Prieto. In vivo biodistribution of edelfosine-loaded lipid nanoparticles radiolabeled with Technetium-99m: Comparison of administration routes in mice. Eur. J. Pharm. Biopharm. 175, 1 (2022).

https://doi.org/10.1016/j.ejpb.2022.04.007

A. Ayan, A. Yenilmez, H. Eroglu. Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy. Mater. Sci. Eng. C Mater. Biol. Appl. 75, 663 (2017).

https://doi.org/10.1016/j.msec.2017.02.114

V. Carmo, M. de Oliveira, L. Mota, L. Freire, R. Ferreira, V. Cardoso. Technetium-99m-labeled stealth pH-sensitive liposomes: a new strategy to identify infection in experimental model. Braz. Arch. Biol. Technol. 50, 199 (2007).

https://doi.org/10.1590/S1516-89132007000600025

M. Straub, M. Leresche, C. Pilloud, F. Devynck, N. Stritt, R. Hesselmann. A new two-strip TLC method for the quality control of technetium-99m mercaptoacetyl-triglycine (99mTc-MAG3). EJNMMI Radiopharm. Chem. 3, 5 (2018).

https://doi.org/10.1186/s41181-018-0040-5

P. Dubey, D. Singodia, R. Verma, S. Vyas. RGD Modified albumin nanospheres for tumour vasculature targeting. J. Pharm. Pharmacol. 63, 33 (2011).

https://doi.org/10.1111/j.2042-7158.2010.01180.x

M. Marenco, L. Canziani, G. De Matteis, G. Cavenaghi, C. Aprile, L. Lodola. Chemical and physical characterisation of human serum albumin nanocolloids: Kinetics, strength and specificity of bonds with 99mTc and 68Ga. Nanomaterials 11, 1776 (2021).

https://doi.org/10.3390/nano11071776

F. Blankenberg, J. Vanderheyden, H. Strauss, J. Tait. Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nat. Protoc. 1, 108 (2006).

https://doi.org/10.1038/nprot.2006.17

Y. Yang, T. Neef, C. Mittelholzer, E. Garcia Garayoa, P. Bl¨auenstein, R. Schibli, U. Aebi, P. Burkhard. The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms. J. Nanobiotechnol. 11, 36 (2013).

https://doi.org/10.1186/1477-3155-11-36

M. Liang, H. Tan, J. Zhou, T. Wang, D. Duan, K. Fan, J. He, D. Cheng, H. Shi, H. Choi, X. Yan. Bioengineered H-Ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12, 9300 (2018).

https://doi.org/10.1021/acsnano.8b04158

C. Aprile, L. Lodola. A narrative review of 99mTc-aprotinin in the diagnosis of cardiac amyloidosis and a new life for an unfairly abandoned drug. Biomedicines 10, 1377 (2022).

https://doi.org/10.3390/biomedicines10061377

V. Pandeya, T. Haidera, A. Chandak, A. Chakraborty, S. Banerjee, V. Sonia. Technetium labeled doxorubicin loaded silk fibroin nanoparticles: Optimization, characterization and in vitro evaluation. J. Drug Deliv. Sci. Technol. 56, 101539 (2020).

https://doi.org/10.1016/j.jddst.2020.101539

L. Kovacs, M. Tassano, M. Cabrera, M. Fern'andez, W. Porcal, R. Anjos, P. Cabral. Labeling polyamidoamine (PAMAM) dendrimers with technetium-99m via hydrazinonicotinamide (HYNIC). Curr. Radiopharm. 7, 115 (2014).

https://doi.org/10.2174/1874471007666140825121615

H. Agashe, A. Babbar, S. Jain, R. Sharma, A. Mishra, A. Asthana, M. Garg, T. Dutta, N. Jain. Investigations on biodistribution of technetium-99m-labeled carbohydratecoated poly(propylene imine) dendrimers. Nanomedicine: Nanotechnol. Biol. Med. 3, 120 (2007).

https://doi.org/10.1016/j.nano.2007.02.002

A. Ebrahimi, M. Pirali Hamedani, P. Mohammadzadeh, M. Safari, S. Esmaeil Sadat Ebrahimi, M. Seyed Hamzeh, M. Shafiee Ardestani, S. Masoumeh Ghoreishi. 99mTcanionic dendrimer targeted vascular endothelial growth factor as a novel nano-radiotracer for in-vivo breast cancer imaging. Bioorg. Chem. 128, 106085 (2022).

https://doi.org/10.1016/j.bioorg.2022.106085

N. Mohtavinejad, M. Amanlou, A. Bitarafan-Rajabi, A. Khalaj, A. Pormohammad, M. Ardestani. Technetium-99m-PEGylated dendrimer-G2-(Dabcyle-Lys6,Phe7)-pHBSP: A novel nano-radiotracer for molecular and early detecting of cardiac ischemic region. Bioorg. Chem. 98, 103731 (2020).

https://doi.org/10.1016/j.bioorg.2020.103731

L. Porto, D. Silva, A. de Oliveira, A. Pereira, K. Borges. Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev. Anal. Chem. 38, 20190017 (2019).

https://doi.org/10.1515/revac-2019-0017

C. Zhao, J. Kang, Y. Li, Y. Wang, X. Tang, Z. Jiang. Carbon-based stimuli-responsive nanomaterials: classification and application. Cyborg Bionic Syst. 4, 0022 (2023).

https://doi.org/10.34133/cbsystems.0022

K. Soumya, N. More, M. Choppadandi, D. Aishwarya, G. Singh, G. Kapusetti. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. Biomed. Technol. 4, 11 (2023).

https://doi.org/10.1016/j.bmt.2023.01.005

K. Naik, S. Chaudhary, L. Ye, A. Parmar. A strategic review on carbon quantum dots for cancer-diagnostics and treatment. Front. Bioeng. Biotechnol. 10, 882100 (2022).

https://doi.org/10.3389/fbioe.2022.882100

E. Castro, A. Hernandez Garcia, G. Zavala, L. Echegoyen. Fullerenes in biology and medicine. J. Mater. Chem B 5, 6523 (2017).

https://doi.org/10.1039/C7TB00855D

N. Bayoumi, A. Emam. 99mTc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution. Int. J. Radiat. Biol. 97, 977 (2021).

https://doi.org/10.1080/09553002.2021.1919781

E. Gharepapagh, A. Fakhari, T. Firuzyar, A. Shomalid, F. Azimie. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. New J. Chem. 45, 3909 (2021).

https://doi.org/10.1039/D0NJ04762G

S. Ghoreishi, A. Najdian, S. Yadegari, M. Seyedhamzeh, M. Etemadzade, M. Mirzaei, S. Hadadian, Z. Alikhani, M. Ardestani. The use of carbon quantum dot as alternative of stannous chloride application in radiopharmaceutical kits. Contrast Media Mol. Imaging. 2020, 4742158 (2020).

https://doi.org/10.1155/2020/4742158

M. Roeinfard, M. Zahedifar, M. Darroudi, K. Sadri, A. Zak. Preparation of technetium labeled-graphene quantum dots and investigation of their bio distribution. J. Cluster Sci. 33, 1 (2022).

https://doi.org/10.1007/s10876-021-02033-4

M. Bastos, M. Pijeira, J. de Souza Sobrinho, A. Dos Santos Matos, E. Ricci-Junior, P. de Almeida Fechine, L. Alencar, S. Gemini-Piperni, F. Alexis, M. Attia, R. Santos-Oliveira. Radiopharmacokinetics of graphene quantum dots nanoparticles in vivo: Comparing the pharmacokinetics parameters in long and short periods. Curr. Top Med. Chem. 22, 2527 (2022).

https://doi.org/10.2174/1568026622666220512150625

F. de Menezes, S. Dos Reis, S. Pinto, F. Portilho, F. do Vale Chaves, E. Mello, E. Helal-Neto, A. da Silva de Barros, L. Alencar, A. de Menezes, C. Dos Santos, A. Saraiva-Souza, J. Perini, D. Machado, I. Felzenswalb, C. Araujo-Lima, A. Sukhanova, I. Nabiev, R. Santos-Oliveira. Graphene quantum dots unraveling: green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 405 (2019).

https://doi.org/10.1016/j.msec.2019.04.058

L. Ruili, D. Qianqian, S. Xiaoguang, C. Shaoliang, L. Wenxin. Biodistribution of fullerene derivative C60(OH)x(O)y. Chin. Sci. Bull. 46, 615 (2001).

L. Qingnuan, X. yan, Z. Xiaodong, L. Ruili, D. Qieqie, S. Xiaoguang, C. Shaoliang, L. Wenxin. Preparation of (99m)Tc-C(60)(OH)(x) and its biodistribution studies. Nucl. Med. Biol. 29, 707 (2002).

https://doi.org/10.1016/S0969-8051(02)00313-X

D. Cagle, S. Kennel, S. Mirzadeh, J. Alford, L. Wilson. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA 96, 5182 (1999).

https://doi.org/10.1073/pnas.96.9.5182

L. Karam, M. Mitch, B. Coursey. Encapsulation of 99mTc within fullerenes: a novel radionuclidic carrier. Appl. Rad. Isotopes. 48, 771(1997).

https://doi.org/10.1016/S0969-8043(96)00315-6

W. Burch, P. Sullivan, C. McLaren. Technegas - a new ventilation agent for lung scanning. Nucl. Med. Commun. 7, 865 (1986).

https://doi.org/10.1097/00006231-198612000-00003

D. Mackey, W. Burch, I. Dance, K. Fisher, G. Willett. The observation of fullerenes in a Technegas lung ventilation unit. Nucl. Med. Commun. 15, 430 (1994).

https://doi.org/10.1097/00006231-199406000-00006

P. Le Roux, W. Schafer, F. Blanc-Beguin, M. Tulchinsky. Ventilation scintigraphy with radiolabeled carbon nanoparticulate aerosol (Technegas): state-of-the-art review and diagnostic applications to pulmonary embolism during COVID-19 pandemic. Clin. Nucl. Med. 48, 8 (2023).

https://doi.org/10.1097/RLU.0000000000004426

P. Jackson, R. Baker, D. McCulloch, D. Mackey, H. van der Wall, G. Willett. A study of Technegas employing X-ray photoelectron spectroscopy, scanning transmission electron microscopy and wet-chemical methods. Nucl. Med. Commun. 17, 504 (1996).

https://doi.org/10.1097/00006231-199606000-00009

T. Senden, K. Moock, J. Gerald, W. Burch, R. Browitt, C. Ling, G. Heath. The physical and chemical nature of technegas. J. Nucl. Med. 38, 1327 (1997).

C. Liao, Y. Li, S. Tjong. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 19, 3564 (2018).

https://doi.org/10.3390/ijms19113564

W. Jeong, H. Choi, K. Kim. Graphene-based nanomaterials as drug delivery carriers. Adv. Exp. Med. Biol. 1351, 109 (2022).

https://doi.org/10.1007/978-981-16-4923-3_6

S. Challan, A. Massoud. Radiolabeling of graphene oxide by Technetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 314, 2189 (2017).

https://doi.org/10.1007/s10967-017-5561-y

J. Da-wei, P. Cheng, S. Yan-Hong, J. Li-Na, L. Jian-Bo, Z. Lan. Study on technetium-99m labeling of graphene oxide nanosheets through click chemistry-Tc-99m labeling of graphene oxide nanosheets. Nucl. Sci. Tech. 26, 1001 (2015).

A. Sasidharan, S. Swaroop, C. Koduri, C. Girish, P. Chandran, L. Panchakarla, V. Somasundaram, G. Gowd, S. Nair, M. Koyakutty. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: A three month study. Carbon 95, 511 (2015).

https://doi.org/10.1016/j.carbon.2015.08.074

Y.-J. Lu, C. Lin, H. Yang, K.-J. Lin, S.-P. Wey, C.-L. Sun, K.-C. Wei, T.-C. Yen, C. Lin, C. Ma, J.-P. Chen. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon 74, 83 (2014).

https://doi.org/10.1016/j.carbon.2014.03.007

F. Yurt, O. Ers¨oz, E. Harputlu, K. Ocakoglu. Preparation and evaluation of effect on Escherichia coli and Staphylococcus aureus of radiolabeled ampicillin-loaded graphene oxide nanoflakes. Chem. Biol. Drug Des. 91, 1094 (2019).

https://doi.org/10.1111/cbdd.13171

S. Rathinavel, K. Priyadharshini, D. Panda. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Engineer. B 268, 115095 (2021).

https://doi.org/10.1016/j.mseb.2021.115095

R. Reilly. Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med. 48, 1039 (2007).

https://doi.org/10.2967/jnumed.107.041723

S. Datir, M. Das, R. Singh, S. Jain. Hyaluronate tethered, "smart" multiwalled carbon nanotubes for tumortargeted delivery of doxorubicin. Bioconjug. Chem. 23, 2201 (2012).

https://doi.org/10.1021/bc300248t

J. Wang, L. Cabana, M. Bourgognon, H. Kafa, A. Protti, K. Venner, A. Shah, J. Sosabowski, S. Mather, A. Roig, X. Ke, G. Tendeloo, R. de Rosales, G. Tobias, K. AlJamal. Magnetically decorated multi-walled carbon nanotubes as dual MRI and SPECT contrast agents. Adv. Funct. Mater. 24, 1880 (2014).

https://doi.org/10.1002/adfm.201302892

J. de Alcantara Lemos, D. Soares, N. Pereira, L. Gomides, J. de Oliveira Silva, G. Bruch, G. Cassali, L. Alisaraie, R. Alves, A. Santos, A. de Barros. Preclinical evaluation of PEG-Multiwalled carbon nanotubes: Radiolabeling, biodistribution and toxicity in mice. J. Drug Deliv. Sci. Technol. 86, 104607 (2023).

https://doi.org/10.1016/j.jddst.2023.104607

Y. Du, Z. Chen, M. Hussain, P. Yan, C. Zhang, Y. Fan, L. Kang, R. Wang, J. Zhang, X. Ren, C. Ge. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 16, 895 (2002).

https://doi.org/10.1080/17435390.2023.2170836

Q. Wei, L. Zhan, B. Juanjuan, W. Jing, W. Jianjun, S. Taoli, G. Yi'an, W. Wangsuo. Biodistribution of coexposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res Lett. 7, 473 (2012).

https://doi.org/10.1186/1556-276X-7-473

R. Fernandesa, J. Lemos, A. de Barros, V. Geraldo, E. da Silva, L. Alisaraie, D. Soares. Carboxylated versus bisphosphonate SWCNT: functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice. J. Drug Deliv. Sci. Technol. 50, 266 (2019).

https://doi.org/10.1016/j.jddst.2019.01.036

Опубліковано

2024-10-16

Як цитувати

Trusova, V., Karnaukhov, I., Zelinsky, A., Borts, B., Ushakov, I., Sidenko, L., & Gorbenko, G. (2024). Технецій-99м: новий погляд з точки зору наноматеріалів. Український фізичний журнал, 69(9), 642. https://doi.org/10.15407/ujpe69.9.642

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають