Механізми електропровідності напівпровідника Tm1 – xVxNiSb

Автор(и)

  • V.V. Romaka Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
  • V.A. Romaka Lviv Polytechnic National University
  • Yu.V. Stadnyk Ivan Franko National University of Lviv
  • L.P. Romaka Ivan Franko National University of Lviv
  • A.M. Horyn Ivan Franko National University of Lviv
  • P.Yu. Demchenko Ivan Franko National University of Lviv
  • V.Z. Pashkevych Lviv Polytechnic National University

DOI:

https://doi.org/10.15407/ujpe69.12.936

Ключові слова:

напiвгойслерiвськi фази, рiвень Фермi, електронна структура, електроопiр, коефiцiєнт термоелектрорушiйної сили

Анотація

Дослiджено структурнi, термодинамiчнi, кiнетичнi та енергетичнi властивостi напiвпровiдникiв Tm1−xVxNiSb з 0 ≤ x ≤ 0,10 в iнтервалi температур T = 80–400 K. Проведене дослiдження показує, що кристалiчна структура TmNiSb (x = 0) є невпорядкованою i мiстить до 2% вакансiй у кристалографiчнiй позицiї 4a атомiв Tm, якi з ростом x до x = 0,03 поступово заповнюються атомами V; подальше збiльшення x супроводжується замiщенням атомiв Tm атомами V. Експериментально встановлено механiзм формування двох сортiв акцепторних станiв з рiзною глибиною залягання: мiлких акцепторiв, породжених вакансiями у структурi p-TmNiSb, та глибоких акцепторiв, утворених вакансiями у кристалографiчнiй позицiї 4c атомiв Ni, якi вiдповiдають областi гомогенностi сполуки TmxNi1−xSb, типовiй для iнших фаз RNiSb. Результати моделювання в рамках теорiї функцiонала густини, включно iз енергiєю основного стану, розподiлом густини електронних станiв I зонною структурою Tm1−xVxNiSb, узгоджуються з результатами експериментальних дослiджень.

Посилання

V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn. The Latest Heat-Sensitive Materials and Temperature Transducers (Lviv Polytechnic Publishing House, 2020).

J. Bos, R. Downie. Half-Heusler thermoelectrics: A complex class of materials. Phys.: Condens. Matter. 26, 433201 (2014).

https://doi.org/10.1088/0953-8984/26/43/433201

L. Huang, Q. Zhang, Bo Yuan, X. Lai, X. Yan, Z. Ren. Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 76, 107 (2016).

https://doi.org/10.1016/j.materresbull.2015.11.032

K. Xia, C. Hu, C. Fu, X. Zhao, T. Zhu. Half-Heusler thermoelectric materials. Appl. Phys. Lett. 118, 140503 (2021).

https://doi.org/10.1063/5.0043552

K. Hartjes, W. Jeitschko. Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln=La-Nd, Sm, Gd-Tm, Lu). J. Alloys Compd. 226, 81 (1995).

https://doi.org/10.1016/0925-8388(95)01573-6

I. Karla, J. Pierre, R.V. Skolozdra. Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd. 265, 42 (1998).

https://doi.org/10.1016/S0925-8388(97)00419-2

R.V. Skolozdra, A. Guzik, A.M. Goryn, J. Pierre. Magnetic and transport properties of RNiSb compounds. Acta Phys. Polonica A. 92,343 (1997).

https://doi.org/10.12693/APhysPolA.92.343

V.V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem. 239, 145 (2016).

https://doi.org/10.1016/j.jssc.2016.04.029

V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk. Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb systems. J. Alloys Compd. 855, 157334 (2021).

https://doi.org/10.1016/j.jallcom.2020.157334

V.V. Romaka, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, Y.O. Plevachuk, V.Z. Pashkevich, P.I. Haraniuk, A.M. Horyn. Features of the generation of the energy states in the semiconductor Lu1−xVxNiSb. Ukr. J. Phys. 68(4), 274 (2023).

https://doi.org/10.15407/ujpe68.4.274

V.A. Romaka, Yu. Stadnyk, L. Romaka, A. Horyn, V. Pashkevich, H. Nychyporuk, P. Garanyuk. Investigation of thermoelectric material based on Lu1−xZrxNiSb solid solution. I. Experimental results. J. Phys. and Chem. Sol. State. 23, 235-241 (2022).

https://doi.org/10.15330/pcss.23.2.235-241

V.A. Romaka, Yu. Stadnyk, L. Romaka, V.V. Romaka, P. Demchenko, V. Pashkevich, A. Horyn. Investigation of thermoelectric material based on Lu1−xZrxNiSb solid solution. II. Modeling of characteristics. J. Phys. and Chem. Sol. State. 23, 4974 (2022).

https://doi.org/10.15330/pcss.23.3.497-504

V.A. Romaka, Yu. Stadnyk, L. Romaka, V. Krayovskyy, A. Horyn, P. Klyzub, V. Pashkevych. Study of the structural, electrokinetic and magnetic characteristics of the Er1−xZrxNiSb semiconductor. J. Phys. and Chem. Sol. State. 21, 689 (2020).

https://doi.org/10.15330/pcss.21.4.689-694

V.V. Romaka, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, P.Y. Demchenko, V.Z. Pashkevych, A.M. Horyn. Featutes of mechanisms of electrical conductivity in semiconductive solid solution Lu1−xScxNiSb. Ukr. J. Phys. 67, 370 (2022).

https://doi.org/10.15407/ujpe67.5.370

Yu. Stadnyk, V.A. Romaka, A. Horyn, V.V. Romaka, L. Romaka, P. Klyzub, V. Pashkevich, A. Gorpenyuk. Modeling of structural and energetic parameters of pEr1−xScxNiSb semiconductor. J. Phys. and Chem. Sol. State. 22, 509 (2021).

https://doi.org/10.15330/pcss.22.3.509-515

I. Wolanska, K. Synoradzki, K. Ciesielski, K. Zaleski, P. Skokowski, D. Kaczorowski. Enhanced thermoelectric power factor of half-Heusler solid solution Sc1−xTmxNiSb prepared by high-pressure high-temperature sintering method. Mater. Chem. Phys. 227, 29 (2019).

https://doi.org/10.1016/j.matchemphys.2019.01.056

T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7. 378-381, 118 (2001).

https://doi.org/10.4028/www.scientific.net/MSF.378-381.118

G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

https://doi.org/10.1103/PhysRevB.47.558

G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

https://doi.org/10.1103/PhysRevB.59.1758

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18), 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

H.J. Monkhorst, J.K. Pack. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188 (1976).

https://doi.org/10.1103/PhysRevB.13.5188

K. Okhotnikov, T. Charpentier, S. Cadars. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8 (17), 1 (2016).

https://doi.org/10.1186/s13321-016-0129-3

P. Vinet, J.H. Rose, J.S. Jr Ferrante. Universal features of the equation of state of solids. J. Phys.: Codens. Matter. 1, 1941 (1989).

https://doi.org/10.1088/0953-8984/1/11/002

H. Akai. Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J. Phys.: Condens. Matter. 1, 8045 (1989).

https://doi.org/10.1088/0953-8984/1/43/006

V.L. Moruzzi, J.F. Janak, A.R. Williams. Calculated Electronic Properties of Metals (Pergamon Press, 1978).

V.V. Romaka, G. Rogl, A. Grytsiv, P. Rogl. Determination of structural disorder in Heusler-type phases. Comput. Mater. Sci. 172, 109307 (2020).

https://doi.org/10.1016/j.commatsci.2019.109307

B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer Verlag, 1984).

https://doi.org/10.1007/978-3-662-02403-4

N.F. Mott, E.A. Davis. Electron Processes in NonCrystalline Materials (Clarendon Press, 1979).

V.A. Romaka, E.K. Hlil, Ya.V. Skolozdra, P. Rogl, Yu.V. Stadnyk, L.P. Romaka, A.M. Goryn. Features of the mechanisms of generation and "Healing" of structural defects in the heavily doped intermetallic semiconductor n-ZrNiSn. Semiconductors. 43, 1115 (2009).

https://doi.org/10.1134/S1063782609090024

Опубліковано

2024-12-14

Як цитувати

Romaka, V., Romaka, V., Stadnyk, Y., Romaka, L., Horyn, A., Demchenko, P., & Pashkevych, V. (2024). Механізми електропровідності напівпровідника Tm1 – xVxNiSb. Український фізичний журнал, 69(12), 936. https://doi.org/10.15407/ujpe69.12.936

Номер

Розділ

Напівпровідники і діелектрики