Ромбічноподібний ланцюжок Ізінга–Габбарда у спеціальній границі нескінченного одноцентрового відштовхування

Автор(и)

  • B.M. Lisnyi Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.10.732

Ключові слова:

ромбiчний ланцюжок Iзiнга–Габбарда, основний стан, точний розв’язок, термодинамiчнi характеристики, геометрична фрустрацiя

Анотація

Точний розв’язок для дисторсного ромбiчного ланцюжка Iзiнга–Габбарда аналiзується в спецiальнiй границi нескiнченного одноцентрового електрон-електронного вiдштовхування, де двоелектронний димер Габбарда стає еквiвалентним антиферомагнiтному iзотропному димеру Гайзенберґа. Аналiтично розраховано спецiальну границю нескiнченного вiдштовхування для матрицi комiркового гамiльтонiана цiєї моделi i показано, що точний розв’язок для дисторсного ромбiчного ланцюжка Iзiнга–Габбарда в цiй границi збiгається з точним розв’язком спiну-1/2 дисторсного ромбiчного ланцюжка Iзiнга–Гайзенберґа з антиферомагнiтною iзотропною взаємодiєю Гайзенберґа. Чисельний розрахунок спецiальної границi нескiнченного вiдштовхування для фазової дiаграми основного стану i термодинамiчних характеристик дисторсного ромбiчного ланцюжка Iзiнга–Габбарда виконано таким чином, щоб забезпечити дуже швидку збiжнiсть до граничних результатiв для цих характеристик.

Посилання

L. ˇCanov'a, J. Streˇcka, M. Jaˇsˇcur. Geometric frustration in the class of exactly solvable Ising-Heisenberg diamond chains. J. Phys.: Condens. Matter 18, 4967 (2006).

https://doi.org/10.1088/0953-8984/18/20/020

B.M. Lisnii. Spin-1/2 asymmetric diamond Ising-Heisenberg chain. Ukr. J. Phys. 56, 1237 (2011).

N.S. Ananikian, L.N. Ananikyan, L.A. Chakhmakhchyan, O. Rojas. Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain. J. Phys.: Condens. Matter 24, 256001 (2012).

https://doi.org/10.1088/0953-8984/24/25/256001

O. Rojas, M. Rojas, N.S. Ananikian, S.M. de Souza. Thermal entanglement in an exactly solvable Ising-XXZ diamond chain structure. Phys. Rev. A 86, 042330 (2012).

https://doi.org/10.1103/PhysRevA.86.042330

N. Ananikian, V. Hovhannisyan. Magnetic properties, Lyapunov exponent and superstability of the spin-1/2 Ising-Heisenberg model on a diamond chain. Physica A 392, 2375 (2013).

https://doi.org/10.1016/j.physa.2013.01.040

L. G'alisov'a. Magnetic properties of the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Phys. Status Solidi B 250, 187 (2013).

https://doi.org/10.1002/pssb.201248260

S. Bellucci, V. Ohanyan. Correlation functions in onedimensional spin lattices with Ising and Heisenberg bonds. Eur. Phys. J. B 86, 446 (2013).

https://doi.org/10.1140/epjb/e2013-40336-4

J. Torrico, M. Rojas, S.M. de Souza, O. Rojas, N.S. Ananikian. Pairwise thermal entanglement in the Ising-XYZ diamond chain structure in an external magnetic field. EPL 108, 50007 (2014).

https://doi.org/10.1209/0295-5075/108/50007

L. G'alisov'a. Magnetocaloric effect in the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Condens. Matter Phys. 17, 13001 (2014).

https://doi.org/10.5488/CMP.17.13001

N.S. Ananikian, V.V. Hovhannisyan, R. Kenna. Partition function zeros of the antiferromagnetic spin-1/2 Ising-Heisenberg model on a diamond chain. Physica A 396, 51 (2014).

https://doi.org/10.1016/j.physa.2013.11.017

B. Lisnyi, J. Streˇcka. Exact results for a generalized spin-1/2 Ising-Heisenberg diamond chain with the secondneighbor interaction between nodal spins. Phys. Status Solidi B 251, 1083 (2014).

https://doi.org/10.1002/pssb.201350393

V. Ohanyan, O. Rojas, J. Streˇcka, S. Bellucci. Absence of actual plateaus in zero-temperature magnetization curves of quantum spin clusters and chains. Phys. Rev. B 92, 214423 (2015).

https://doi.org/10.1103/PhysRevB.92.214423

J. Torrico, M. Rojas, S.M. de Souza, O. Rojas. Zero temperature non-plateau magnetization and magnetocaloric effect in Ising-XYZ diamond chain structure. Phys. Lett. A 380, 3655 (2016).

https://doi.org/10.1016/j.physleta.2016.08.007

S.M. de Souza, O. Rojas. Quasi-phases and pseudotransitions in one-dimensional models with nearest neighbor interactions. Solid State Commun. 269, 131 (2017).

https://doi.org/10.1016/j.ssc.2017.10.006

I.M. Carvalho, J. Torrico, S.M. de Souza, O. Rojas, O. Derzhko. Correlation functions for a spin-1/2 Ising-XYZ diamond chain: Further evidence for quasi-phases and pseudotransitions. Ann. Physics 402, 45 (2019).

https://doi.org/10.1016/j.aop.2019.01.001

T. Krokhmalskii, T. Hutak, O. Rojas, S.M. de Souza, O. Derzhko. Towards low-temperature peculiarities of thermodynamic quantities for decorated spin chains. Physica A 573, 125986 (2021).

https://doi.org/10.1016/j.physa.2021.125986

M.S.S. Pereira, F.A.B.F. de Moura, M.L. Lyra. Magnetization plateau in diamond chains with delocalized interstitial spins. Phys. Rev. B 77, 024402 (2008).

https://doi.org/10.1103/PhysRevB.77.024402

M.S.S. Pereira, F.A.B.F. de Moura, M.L. Lyra. Magnetocaloric effect in kinetically frustrated diamond chains. Phys. Rev. B 79, 054427 (2009).

https://doi.org/10.1103/PhysRevB.79.054427

B.M. Lisnii. Distorted diamond Ising-Hubbard chain. Low Temp. Phys. 37, 296 (2011).

https://doi.org/10.1063/1.3592221

B.M. Lisnyi. Asymmetric diamond Ising-Hubbard chain with attraction. Ukr. J. Phys. 58, 195 (2013).

https://doi.org/10.15407/ujpe58.02.0195

M. Nalbandyan, H. Lazaryan, O. Rojas, S.M. de Souza, N. Ananikian. Magnetic, thermal, and entanglement properties of a distorted Ising-Hubbard diamond chain. J. Phys. Soc. Jpn. 83, 074001 (2014).

https://doi.org/10.7566/JPSJ.83.074001

J. Torrico, M. Rojas, M.S.S. Pereira, J. Streˇcka, M.L. Lyra. Spin frustration and fermionic entanglement in an exactly solved hybrid diamond chain with localized Ising spins and mobile electrons. Phys. Rev. B 93, 014428 (2016).

https://doi.org/10.1103/PhysRevB.93.014428

H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Kuwai. Experimental evidence of the one-third magnetization plateau in the diamond chain compound Cu3(CO3)2(OH)2. J. Magn. Magn. Mater. 272-276, 900 (2004).

https://doi.org/10.1016/j.jmmm.2003.12.619

H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, H. Ohta. Experimental observation of the 1/3 magnetization plateau in the diamond-chain compound Cu3(CO3)2(OH)2. Phys. Rev. Lett. 94, 227201 (2005).

https://doi.org/10.1016/j.jmmm.2003.12.619

H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, K. Kindo, A. Matsuo, W. Higemoto, K. Nishiyama, M. Horvati'c, C. Bertheir. Magnetic properties of the diamond chain compound Cu3(CO3)2(OH)2. Prog. Theor. Phys. Suppl. 159, 1 (2005).

https://doi.org/10.1143/PTPS.159.1

K.C. Rule, A.U.B. Wolter, S. S¨ullow, D.A. Tennant, A. Br¨uhl, S. K¨ohler, B. Wolf, M. Lang, J. Schreuer. Nature of the spin dynamics and 1/3 magnetization plateau in azurite. Phys. Rev. Lett. 100, 117202 (2008).

https://doi.org/10.1103/PhysRevLett.100.117202

H. Jeschke, I. Opahle, H. Kandpal, R. Valenti, H. Das, T. Saha-Dasgupta, O. Janson, H. Rosner, A. Br¨uhl, B. Wolf, M. Lang, J. Richter, S. Hu, X. Wang, R. Peters et al. Multistep approach to microscopic models for frustrated quantum magnets: the case of the natural mineral azurite. Phys. Rev. Lett. 106, 217201 (2011).

https://doi.org/10.1103/PhysRevLett.106.217201

A. Honecker, S. Hu, R. Peters, J. Richter. Dynamic and thermodynamic properties of the generalized diamond chain model for azurite. J. Phys.: Condens. Matter 23, 164211 (2011).

https://doi.org/10.1088/0953-8984/23/16/164211

O. Derzhko, O. Krupnitska, B. Lisnyi, J. Streˇcka. Effective low-energy description of almost Ising-Heisenberg diamond chain. EPL 112, 37002 (2015).

https://doi.org/10.1209/0295-5075/112/37002

T. Verkholyak, J. Streˇcka. Modified strong-coupling treatment of a spin-1/2 Heisenberg trimerized chain developed from the exactly solved Ising-Heisenberg diamond chain. Phys. Rev. B 103, 184415 (2021).

https://doi.org/10.1103/PhysRevB.103.184415

M. Takahashi. Half-filed Hubbard model at low temperature. J. Phys. C 10, 1289 (1977).

https://doi.org/10.1088/0022-3719/10/8/031

A.H. MacDonald, S.M. Girvin, D. Yoshioka. t/U expansion for the Hubbard model. Phys. Rev. B 37, 9753 (1988).

https://doi.org/10.1103/PhysRevB.37.9753

Опубліковано

2024-10-29

Як цитувати

Lisnyi, B. (2024). Ромбічноподібний ланцюжок Ізінга–Габбарда у спеціальній границі нескінченного одноцентрового відштовхування. Український фізичний журнал, 69(10), 732. https://doi.org/10.15407/ujpe69.10.732

Номер

Розділ

Загальна фізика