За межами загальної теорії відносності Ейнштейна: гібридна ґравітація із метрикою Палатіні

Автор(и)

  • F.S.N. Lobo Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Universidade de Lisboa, and Departamento de F´ısica, Faculdade de Ciˆencias da Universidade de Lisboa

DOI:

https://doi.org/10.15407/ujpe69.7.439

Ключові слова:

загальна теорiя вiдносностi, модифiкована ґравiтацiя, гiбридна ґравiтацiя iз метрикою Палатiнi

Анотація

Встановлено, що як метричнi, так i варiанти Палатiнi ґравiтацiї f (R), мають цiкавi особливостi i, водночас, також виявляють декiлька недолiкiв. Гiбридна комбiнацiя теорiй, що мiстить елементи обох формалiзмiв, виявляється дуже успiшною у поясненнi спостережуваної феноменологiї i здатна уникнути деяких недолiкiв первiсних пiдходiв. В цiй статтi дослiджується формулювання цього гiбридного пiдходу iз метрикою Палатiнi у динамiчно еквiвалентнiй скалярно-тензорнiй формi. Ми наводимо кiлька основних досягнень цього пiдходу, таких як перевiрка спостережуваних даних для Сонячної системи, навiть якщо скалярне поле є дуже легким або безмасовим, i окреслюємо кiлька застосувань до астрофiзичних i космологiчних сценарiїв. Крiм того, ми також дослiджуємо життєздатнiсть узагальнених гiбридних теорiй ґравiтацiї iз метрикою Палатiнi.

Посилання

S. Capozziello. Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002).

https://doi.org/10.1142/S0218271802002025

S. Capozziello, M. De Laurentis. Extended theories of gravity. Phys. Rept. 509, 167 (2011).

https://doi.org/10.1016/j.physrep.2011.09.003

S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner. Is cosmic speed - up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004).

https://doi.org/10.1103/PhysRevD.70.043528

E.J. Copeland, M. Sami, S. Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006).

https://doi.org/10.1142/S021827180600942X

A. De Felice, S. Tsujikawa. f (R) theories. Living Rev. Rel. 13, 3 (2010).

https://doi.org/10.12942/lrr-2010-3

F.S.N. Lobo. The Dark side of gravity: Modified theories of gravity. [arXiv:0807.1640 [gr-qc]].

S. Nojiri, S.D. Odintsov. Unified cosmic history in modified gravity: From f (R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011).

https://doi.org/10.1016/j.physrep.2011.04.001

P. Avelino, T. Barreiro, C.S. Carvalho, A. da Silva, F.S.N. Lobo, P. Martin-Moruno, J.P. Mimoso, N.J. Nunes, D. Rubiera-Garcia, D. Saez-Gomez et al. Unveiling the Dynamics of the Universe. Symmetry 8 (8), 70 (2016).

https://doi.org/10.3390/sym8080070

E.N. Saridakis et al. [CANTATA]. Modified Gravity and Cosmology: An Update by the CANTATA Network (Springer, 2021) [ISBN: 978-3-030-83714-3, 978-3-030-83717-4, 978-3-030-83715-0]. [arXiv:2105.12582 [gr-qc]].

G.J. Olmo. Palatini approach to modified gravity: f (R) theories and beyond. Int. J. Mod. Phys. D 20, 413 (2011).

https://doi.org/10.1142/S0218271811018925

A. Joyce, B. Jain, J. Khoury, M. Trodden. Beyond the cosmological standard model. Phys. Rept. 568, 1 (2015).

https://doi.org/10.1016/j.physrep.2014.12.002

P. Brax. Screened modified gravity. Acta Phys. Polon. B 43, 2307 (2012).

https://doi.org/10.5506/APhysPolB.43.2307

T.S. Koivisto, D.F. Mota, M. Zumalacarregui. Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett. 109, 241102 (2012).

https://doi.org/10.1103/PhysRevLett.109.241102

P. Brax, A.C. Davis, B. Li, H.A. Winther. A unified description of screened modified gravity. Phys. Rev. D 86, 044015 (2012).

https://doi.org/10.1103/PhysRevD.86.044015

T. Koivisto. The matter power spectrum in f (R) gravity. Phys. Rev. D 73, 083517 (2006).

https://doi.org/10.1103/PhysRevD.73.083517

T. Koivisto, H. Kurki-Suonio. Cosmological perturbations in the palatini formulation of modified gravity. Class. Quant. Grav. 23, 2355 (2006).

https://doi.org/10.1088/0264-9381/23/7/009

G.J. Olmo. Violation of the equivalence principle in modified theories of gravity. Phys. Rev. Lett. 98, 061101 (2007).

https://doi.org/10.1103/PhysRevLett.98.061101

G.J. Olmo. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D 77, 084021 (2008).

https://doi.org/10.1103/PhysRevD.77.084021

S. Capozziello, T. Harko, F.S.N. Lobo, G.J. Olmo. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 22, 1342006 (2013).

https://doi.org/10.1142/S0218271813420066

T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. MetricPalatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 85, 084016 (2012).

https://doi.org/10.1103/PhysRevD.85.084016

T. Harko, F.S.N. Lobo. Beyond Einstein's general relativity: Hybrid metric-Palatini gravity and curvature-matter couplings. Int. J. Mod. Phys. D 29 (13), 2030008 (2020).

https://doi.org/10.1142/S0218271820300086

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Hybrid metric-Palatini gravity. Universe 1 (2), 199 (2015).

https://doi.org/10.3390/universe1020199

T. Harko, F.S.N. Lobo. Extensions of f (R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory (Cambridge University Press, 2018) [ISBN: 978-1-108-42874-3, 978-1-108-58457-9].

https://doi.org/10.1017/9781108645683

T. Koivisto. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav. 23, 4289 (2006).

https://doi.org/10.1088/0264-9381/23/12/N01

G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 72, 063505 (2005).

https://doi.org/10.1103/PhysRevD.72.063505

O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo. Extra force in f (R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007).

https://doi.org/10.1103/PhysRevD.75.104016

O. Bertolami, J. Paramos, T. Harko, F.S.N. Lobo. Nonminimal curvature-matter couplings in modified gravity. [arXiv:0811.2876 [gr-qc]].

O. Bertolami, F.S.N. Lobo, J. Paramos. Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D 78, 064036 (2008).

https://doi.org/10.1103/PhysRevD.78.064036

O. Bertolami, J. Paramos. Do f (R) theories matter? Phys. Rev. D 77, 084018 (2008).

https://doi.org/10.1103/PhysRevD.77.084018

T. Harko, T.S. Koivisto, F.S.N. Lobo. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A 26, 1467 (2011).

https://doi.org/10.1142/S0217732311035869

T. Harko, F.S.N. Lobo. f (R, Lm) gravity. Eur. Phys. J. C 70, 373 (2010).

https://doi.org/10.1140/epjc/s10052-010-1467-3

G.J. Olmo, D. Rubiera-Garcia. Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B 740, 73 (2015).

https://doi.org/10.1016/j.physletb.2014.11.034

Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi. Further matters in space-time geometry: f (R, T, Rμν Tμν) gravity. Phys. Rev. D 88 (4), 044023 (2013).

https://doi.org/10.1103/PhysRevD.88.044024

T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov. f (R, T) gravity. Phys. Rev. D 84, 024020 (2011).

https://doi.org/10.1103/PhysRevD.84.024020

S.D. Odintsov, D. S'aez-G'omez. f (R, T, Rμν, Tμν) gravity phenomenology and ΛCDM universe. Phys. Lett. B 725, 437 (2013).

https://doi.org/10.1016/j.physletb.2013.07.026

T. Harko, F.S.N. Lobo. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D 86, 124034 (2012).

https://doi.org/10.1103/PhysRevD.86.124034

I. Ayuso, J. Beltran Jimenez, 'A. de la Cruz-Dombriz. Consistency of universally nonminimally coupled f (R, T, Rμν, Tμν) theories. Phys. Rev. D 91 (10), 104003 (2015).

N. Tamanini, T.S. Koivisto. Consistency of nonminimally coupled f (R) gravity. Phys. Rev. D 88 (6), 064052 (2013).

https://doi.org/10.1103/PhysRevD.88.064019

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Cosmology of hybrid metric-Palatini f (X)-gravity. JCAP 04, 011 (2013).

https://doi.org/10.1088/1475-7516/2013/04/011

G.J. Olmo. The Gravity Lagrangian according to solar system experiments. Phys. Rev. Lett. 95, 261102 (2005).

https://doi.org/10.1103/PhysRevLett.95.261102

G.J. Olmo. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 72, 083505 (2005).

https://doi.org/10.1103/PhysRevD.72.083505

T.S. Koivisto. Cosmology of modified (but second order) gravity. AIP Conf. Proc. 1206, 79 (2010).

https://doi.org/10.1063/1.3292516

T.S. Koivisto. The post-Newtonian limit in C-theories of gravitation. Phys. Rev. D 84, 121502 (2011).

https://doi.org/10.1103/PhysRevD.84.121502

L. Iorio. Gravitational anomalies in the solar system? Int. J. Mod. Phys. D 24 (6), 1530015 (2015).

https://doi.org/10.1142/S0218271815300153

R.P. Woodard. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 720, 403 (2007).

https://doi.org/10.1007/978-3-540-71013-4_14

T.S. Koivisto, N. Tamanini. Ghosts in pure and hybrid formalisms of gravity theories: A unified analysis. Phys. Rev. D 87 (10), 104030 (2013).

https://doi.org/10.1103/PhysRevD.87.104030

T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012).

https://doi.org/10.1103/PhysRevLett.108.031101

T. Biswas, T. Koivisto, A. Mazumdar. Nonlocal theories of gravity: The flat space propagator. [arXiv:1302.0532 [gr-qc]].

N. Tamanini, C.G. Boehmer. Generalized hybrid metricPalatini gravity. Phys. Rev. D 87 (8), 084031 (2013).

https://doi.org/10.1103/PhysRevD.87.084031

E.E. Flanagan. Higher order gravity theories and scalar tensor theories. Class. Quant. Grav. 21, 417 (2003).

https://doi.org/10.1088/0264-9381/21/2/006

J.L. Rosa, S. Carloni, J.P.d. Lemos, F.S.N. Lobo. Cosmological solutions in generalized hybrid metric-Palatini gravity. Phys. Rev. D 95 (12), 124035 (2017).

https://doi.org/10.1103/PhysRevD.95.124035

N.A. Lima. Dynamics of linear perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D 89 (8), 083527 (2014).

https://doi.org/10.1103/PhysRevD.89.083527

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. JCAP 07, 024 (2013).

https://doi.org/10.1088/1475-7516/2013/07/024

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys. 50-52, 65 (2013).

https://doi.org/10.1016/j.astropartphys.2013.09.005

P. M. S'a. Unified description of dark energy and dark matter within the generalized hybrid metric-Palatini theory of gravity. Universe 6 (6), 78 (2020).

https://doi.org/10.3390/universe6060078

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 86, 127504 (2012).

https://doi.org/10.1103/PhysRevD.86.127504

J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo. Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 98 (6), 064054 (2018).

https://doi.org/10.1103/PhysRevD.98.064054

M. Kord Zangeneh, F.S.N. Lobo. Dynamic wormhole geometries in hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (4), 285 (2021).

https://doi.org/10.1140/epjc/s10052-021-09059-y

J.L. Rosa. Double gravitational layer traversable wormholes in hybrid metric-Palatini gravity. Phys. Rev. D 104 (6), 064002 (2021).

https://doi.org/10.1103/PhysRevD.104.064002

B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Hybrid metric-Palatini stars. Phys. Rev. D 95 (4), 044031 (2017).

https://doi.org/10.1103/PhysRevD.95.044031

K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova. Spherically symmetric space-times in generalized hybrid metricPalatini gravity. Grav. Cosmol. 27 (4), 358 (2021).

https://doi.org/10.1134/S0202289321040046

T. Harko, F.S.N. Lobo, H.M.R. da Silva. Cosmic stringlike objects in hybrid metric-Palatini gravity. Phys. Rev. D 101 (12), 124050 (2020).

https://doi.org/10.1103/PhysRevD.101.124050

H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. Cosmic strings in generalized hybrid metric-Palatini gravity. Phys. Rev. D 104 (12), 124056 (2021).

https://doi.org/10.1103/PhysRevD.104.124056

H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. U(1) local strings in generalized hybrid metric-Palatini gravity. [arXiv:2112.05272 [gr-qc]].

T. Harko, F.S.N. Lobo, H.M.R. d. Silva. U(1) local strings in hybrid metric-Palatini gravity. [arXiv:2112.04496 [gr-qc]].

J.L. Rosa, D.A. Ferreira, D. Bazeia, F.S.N. Lobo. Thick brane structures in generalized hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (1), 20 (2021).

https://doi.org/10.1140/epjc/s10052-021-08840-3

B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Spherically symmetric static vacuum solutions in hybrid metric-Palatini gravity. Phys. Rev. D 99 (6), 064028 (2019).

https://doi.org/10.1103/PhysRevD.99.064028

N. Avdeev, P. Dyadina, S. Labazova. Test of hybrid metric-Palatini f (R)-gravity in binary pulsars. J. Exp. Theor. Phys. 131 (4), 537 (2020).

https://doi.org/10.1134/S1063776120100039

Опубліковано

2024-08-27

Як цитувати

Lobo, F. (2024). За межами загальної теорії відносності Ейнштейна: гібридна ґравітація із метрикою Палатіні. Український фізичний журнал, 69(7), 439. https://doi.org/10.15407/ujpe69.7.439

Номер

Розділ

Неевклідова геометрія в сучасній фізиці та математиці