Феромагнетизм напівметалевих нанолистів GaN, легованих ванадієм, та його застосування у спінтронних пристроях

Автор(и)

  • N.A. Ismayilova Institute of Physics, Ministry of Science and Education, Western Caspian University
  • S.H. Jabarov Institute of Physics, Ministry of Science and Education
  • J.A. Guliyev Institute of Physics, Ministry of Science and Education

DOI:

https://doi.org/10.15407/ujpe69.10.754

Ключові слова:

теорiя функцiонала густини, апроксимацiя, магнiтний момент, нанострiчка

Анотація

Проведено розрахунки в рамках теорiї функцiонала густини та з використанням узагальненого градiєнтного наближення для вивчення електронних структур, густини станiв i магнiтних властивостей GaN нанолистiв, легованих атомами ванадiю (V-GaN-НЛ), з рiзними концентрацiями легуючих домiшок (2,08% i 4,16%). Всi розрахунки проводилися за допомогою програмного пакету Atomistix ToolKit. Виявлено покращення електронних властивостей V-GaN-НЛ при значеннi параметра Хаббарда U = 4 еВ. V-GaN-НЛ демонструють наявнiсть стабiльних феромагнiтних станiв вiдносно вiдповiдних антиферомагнiтних станiв. Виявлено, що розраховане значення температури Кюрi для VGaN-НЛ перевищує кiмнатну температуру. Результати розрахункiв показують, що V-GaN-НЛ можуть бути гарними кандидатами для спiнтронiки внаслiдок їх хорошого напiв-металевого феромагнетизму.

Посилання

H. Ohno. Making nonmagnetic semiconductors ferromagnetic. Sci. 281, 951 (1998).

https://doi.org/10.1126/science.281.5379.951

Z. Igor, F. Jaroslav, S. D. Sarma. Spintronics: Fundamentals and applications. ReV. Mod. Phys. 76, 323 (2004).

https://doi.org/10.1103/RevModPhys.76.323

N. Ismayilova. Electronic and magnetic properties of Mndoped CdSe nanoribbon: First-principles calculations. Eur. Phys. J. Plus. 139, 321 (2024).

https://doi.org/10.1140/epjp/s13360-024-05122-1

N. Ismayilova, Z. Jahangirli, S. Jabarov. Mn impurity in InN nanoribbon: An Ab initio investigation. J. Supercond. Nov. Magn. 36, 1983 (2023).

https://doi.org/10.1007/s10948-023-06641-1

S. Nakamura, T. Mukai, M. Senoh. Candela-class highbrightness InGaN/AlGaN double-heterostructure bluelight-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).

https://doi.org/10.1063/1.111832

S. Nakamura. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Sci. 281, 961 (1998).

https://doi.org/10.1126/science.281.5379.956

K. Sato, P.H. Dederics, H. Katayama-Yoshida. Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 3, 403 (2003).

https://doi.org/10.1209/epl/i2003-00191-8

G. Xiang Chen, D. Dou Wang, J. Qing Wen, A. Ping Yang, J. Min Zhang. Structural, electronic, and magnetic properties of 3d transition metal doped GaN nanosheet: A firstprinciples study. Quantum Chem. 116, 1000 (2016).

https://doi.org/10.1002/qua.25118

G. Yanhua, C. Mingxing, G. Zhaohui, Y. Xiaohong. Firstprinciples calculations for magnetic properties of Mndoped GaN nanotubes. Phys. Lett. 372, 2688 (2008).

https://doi.org/10.1016/j.physleta.2007.12.040

N.S. Orcid, D. Bayerl, G. Shi, K.A. Mengle, E. Kioupakis. Electronic and optical properties of two-dimensional GaN from first-principles. Nano Lett. 17, 7345 (2017).

https://doi.org/10.1021/acs.nanolett.7b03003

M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.K. Ritums, M.J. Reed, C.A. Parker, J.C. Roberts, S.M. Bedair. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 79, 3473 (2001).

https://doi.org/10.1063/1.1419231

H.X. Liu, S.Y. Wu, R.K. Singh, L. Gu, D.J. Smith, N. Newman, N. Dilley, L. Montes, M. Simmonds. Observation of ferromagnetism above 900K in Cr-GaN and Cr-AlN. Appl. Phys. Lett. 85, 4076 (2003).

https://doi.org/10.1063/1.1812581

H. Seong, J. Kim, S. Lee, S. Kim, U. Kim, T. Park, H. Choi. Room-temperature ferromagnetism in Cu doped GaN nanowires. Nano Lett. 7, 3366 (2007).

https://doi.org/10.1021/nl0716552

D. Han, J. Parka, K.Rhie, S. Kim, J. Chang. Ferromagnetic mn-doped GaN nanowires. Appl.Phys. Lett. 86, 032506 (2005).

https://doi.org/10.1063/1.1852725

V. Sharma, S. Srivastava. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers. Mater. Res. Express. 5, 045001 (2018).

https://doi.org/10.1088/2053-1591/aab7d0

G. Yao, G. Fan, S. Zheng. First-principles analysis on Vdoped GaN. Opt. Mater. 34, 1593 (2012).

https://doi.org/10.1016/j.optmat.2012.04.001

M. Xiao, T. Yao, Z. Ao, P. Wei, D. Wang, H. Song. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness. Phys. Chem. Chem. Phys. 17, 8692 (2015).

https://doi.org/10.1039/C4CP05788K

A. Husam, A. Amir, A. Makram, A. Abdulkhale. Review of GaN optical device characteristics, applications, and optical analysis technology. Mater. Today. 42, 2815 (2021).

https://doi.org/10.1016/j.matpr.2020.12.727

Y.C. Yeo, T.C. Chong, M.F. Li. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J. Appl. Phys. 83, 1429 (1998).

https://doi.org/10.1063/1.366847

Q. Chen, H. Hu, X.J. Chen, J.L. Wang. Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations. Appl. Phys. Lett. 98, 053102 (2011).

https://doi.org/10.1063/1.3549299

N. Ismayilova, S. Asadullayeva. First principle calculation of magnetic properties of doped Mn : ZnGa2S4. J. Supercond. Nov. Magn. 35, 1107 (2022).

https://doi.org/10.1007/s10948-022-06147-2

S.G. Asadullayeva, N.A. Ismayilova, T.G. Naghiyev. Infrared photoluminescence and dynamic properties of ZnGa2Se4. Mod. Phys. Lett. B 37 (34), 2350166 (2023).

https://doi.org/10.1142/S021798492350166X

S. Asadullayeva, N. Ismayilova, Q. Eyyubov. Optical and electronic properties of defect chalcopyrite ZnGa2Se4: Experimental and theoretical investigations. Solid State Commun. 356, 114950 (2022).

https://doi.org/10.1016/j.ssc.2022.114950

S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, D.A. Mammadov. Optical and Dynamic Properties of ZnGa2S4. Physica status solidi (B) 258 (8), 2100101 (2021).

https://doi.org/10.1002/pssb.202100101

N. Ismayilova, S. Jabarov. First principles calculations of the magnetic properties of PbTi1−xMnxO3. Can. J. Phys. 100, 398 (2022).

https://doi.org/10.1139/cjp-2022-0008

Q. Tang, Y. Cui, Y. Li, Z. Zhou, Z. Chen. How do surface and edge effects alter the electronic properties of GaN nanoribbons? J. Phys. Chem. C 115, 1724 (2011).

https://doi.org/10.1021/jp109829c

H. Li, J. Dai, J. Li, S. Zhang, J. Zhou, L. Zhang, W. Chu, D. Chen, H. Zhao, J. Yang, Z. Wu. Electronic structures and magnetic properties of GaN sheets and nanoribbons. J. Phys. Chem. C 114, 11390 (2010).

https://doi.org/10.1021/jp1024558

M. Junaid, J. Liu, S. Hussain, M. Usmani, M. Ismail, A. Khalid. First principle study of optical properties of Cu doped zincblende GaN for novel optoelectronic applications. Optik. 208, 164529 (2020).

https://doi.org/10.1016/j.ijleo.2020.164529

M. Sheraz, M. Ikram, Li-Jie Shi, B. Zou, H. Ullah, M. Yar Khan. Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN. J. Solid State Chem. 304, 122606 (2021).

https://doi.org/10.1016/j.jssc.2021.122606

R. Gonzalez, W. Lopez, J.A. Rodriguez. First-principles calculations of structural properties of GaN: V. Solid State Commun. 144, 109 (2007).

https://doi.org/10.1016/j.ssc.2007.08.024

Опубліковано

2024-10-29

Як цитувати

Ismayilova, N., Jabarov, S., & Guliyev, J. (2024). Феромагнетизм напівметалевих нанолистів GaN, легованих ванадієм, та його застосування у спінтронних пристроях. Український фізичний журнал, 69(10), 754. https://doi.org/10.15407/ujpe69.10.754

Номер

Розділ

Напівпровідники і діелектрики