Фазові діаграми ізотопологів води та інертних речовин

Автор(и)

  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Department of Molecular Physics, Faculty of Physics
  • Ye.G. Rudnikov Taras Shevchenko National University of Kyiv, Department of Molecular Physics, Faculty of Physics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Department of Biomedical Cybernetics, Faculty of Biomedical Engineering
  • Олександрович Poltava State Medical University, Department of Physics

DOI:

https://doi.org/10.15407/ujpe69.3.179

Ключові слова:

iзотопологи води, надважка вода, iнертнi речовини, радон, хiмiчний потенцiал, фазовi дiаграми, рiвняння Кiрхгофа, функцiї Масьє, потрiйна точка

Анотація

У роботi наведено фазовi дiаграми, якi розраховано за лiтературними даними для iзотопологiв води та iнертних речовин. Проведено перевiрку принципу вiдповiдних станiв при використаннi калоричних змiнних. Показано, що у приведених координатах температури, тиску та хiмiчного потенцiалу iзотопологи води складають одну групу речовин i мають подiбнi фазовi дiаграми. Разом з тим, iнертнi речовини, починаючи з аргону, в зазначених координатах утворюють iншу групу речовин з подiбними фазовими дiаграмами. В той самий час, гелiй та неон, для яких квантовий параметр де Бура за величиною є значним, мають фазовi дiаграми, вiдмiннi вiд дiаграм для iнших iнертних речовин. Спрогнозовано фазовi дiаграми тритiйованої води T2O та радону Rn.

Посилання

A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008).

https://doi.org/10.1016/j.cplett.2007.11.036

I.V. Zhyganiuk, M.P. Malomuzh. Physical nature of hydrogen bond. Ukr. J. Phys. 60, 960 (2015).

https://doi.org/10.15407/ujpe60.09.0960

L.A. Bulavin, V.Ya. Gotsulskyi, N.P. Malomuzh, A.I. Fisenko. Crucial role of water in the formation of basic properties of living matter. Ukr. J. Phys. 65, 794 (2020).

https://doi.org/10.15407/ujpe65.9.794

L.A. Bulavin, Ye.G. Rudnikov. Temperature and pressure effect on the thermodynamics coefficient (dV/dT)P of water. Ukr. J. Phys. 68, 122 (2023).

https://doi.org/10.15407/ujpe68.6.390

L.A. Bulavin, Ye. G.Rudnikov. The influence of the temperature and chemical potential on the thermodynamic coefficient −(dV/dT)T of water. Ukr. J. Phys. 68, 390 (2023).

https://doi.org/10.15407/ujpe68.6.390

L.A. Bulavin, Ye.G. Rudnikov, A.V. Chalyi. Thermodynamic anomalies of water near its singular temperature of 42∘C. J. Mol. Liq. 389, 122849 (2023).

https://doi.org/10.1016/j.molliq.2023.122849

G.M. Kontogeorgis, A. Holster, N. Kottaki, E. Tsochantaris, F. Topsøe, J. Poulsen, M. Bache, X. Liang, N.S. Blom, J. Kronholm. Water structure, properties and some applications. A review. Chem. Thermodyn. Thermal Anal. 6, 100053 (2022).

https://doi.org/10.1016/j.ctta.2022.100053

H. Tanaka. Roles of liquid structural ordering in glass transition, crystallization, and water's anomalies. J. NonCryst. Solids X 13, 100076 (2022).

https://doi.org/10.1016/j.nocx.2021.100076

M.F. Chaplin. Structure and properties of water in its various states. In: Encyclopedia of Water: Science, Technology, and Society. Edited by P.A. Maurice (Wiley, 2019).

https://doi.org/10.1002/9781119300762.wsts0002

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko, L.G.M. Pettersson. From clusters to condensed phase - FT IR studies of water. J. Mol. Liq. 235, 7 (2017).

https://doi.org/10.1016/j.molliq.2016.12.037

G. Pitsevich, I. Doroshenko, A. Malevich, E. Shalamberidze, V. Sapeshko, V. Pogorelov, L.G.M. Pettersson. Temperature dependence of the intensity of the vibrationrotational absorption band v2 of H2O trapped in an argon matrix. Spectrochim. Acta A 172, 83 (2017).

https://doi.org/10.1016/j.saa.2016.04.028

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, O.I. Ivankov, A.Y. Vul', A.T. Dideikin, M.V. Avdeev. Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Crystallogr. 47, 642 (2014).

https://doi.org/10.1107/S1600576714001216

E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Almasy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, P. Bl'aha, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Investig. X-ray Synchr. Neutr. Techn. 9, 1 (2015).

https://doi.org/10.1134/S1027451015010127

V.I. Petrenko, O.P. Artykulnyi, L.A. Bulavin, L. Alm'asy, V.M. Garamus, O.I. Ivankov, N.A. Grigoryeva, L. Vekas, P. Kopcansky, M.V. Avdeev. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloid. Surface. A 541, 222 (2018).

https://doi.org/10.1016/j.colsurfa.2017.03.054

J.H.S. Lee, K. Ramamurthi. Fundamentals of Thermodynamics (CRC Press, 2022).

V.V. Sychev. The Differential Equations Of Thermodynamics (CRC Press, 1991).

C. Yaws. Thermophysical Properties of Chemicals and Hydrocarbons. 2nd edition (Gulf Professional Publishing, 2014).

M.Z. Southard, D.W. Green. Perry's Chemical Engineers' Handbook (Mcgraw-Hill Education, 2019).

M.F. Chaplin. Water Structure and Science; https:// water.lsbu.ac.uk/water/water_structure_science.html.

Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, SRD 69 ; https://webbook.nist.gov/ chemistry/fluid.

MiniRefprop Database, NIST; https://trc.nist.gov/ refprop/MINIREF/MINIREF.HTM.

I.H. Bell, S. Wronski, V. Quoilin. Lemort pure and pseudopure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53, 2498 (2014).

https://doi.org/10.1021/ie4033999

Refprop Database, NIST ; https://www.nist.gov/programs-projects/reference-fluidthermodynamic-and-transport-properties-database-refprop.

ThermodataEngine Database, NIST ; https://trc.nist.gov/tde.html.

WTT Database, NIST; https://wtt-pro.nist.gov/wtt-pro/.

MOL-Instincts Database, ChemEssen; https://www.molinstincts.com/.

ChemRTP Database, ChemEssen; http://www.chemrtp.com/.

Phase Diagrams: Understanding the Basics. Edited by F.C. Campbell (ASM International, 2012).

B. Cantor. The Equations of Materials (Oxford University Press, 2020).

https://doi.org/10.1093/oso/9780198851875.001.0001

M.A. Anisimov. Critical Phenomena in Liquids and Liquid Crystals (CRC Press, 1991).

A. Oleinikova, L. Bulavin, V. Pipich. The viscosity anomaly near the lower critical consolute point. Int. J. Thermophys. 20, 889 (1999).

https://doi.org/10.1023/A:1022639304064

JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data 11, 695 (1982).

https://doi.org/10.1063/1.555666

LV. Gurvich, I.V. Veits, C.B. Alcock. Thermodynamics Properties of Individual Substances. 4th edition (RAS, 1989) [ISBN: 0-8493-9926-2].

W. Wagner, T. Riethmann, R. Feistel, A.H. Harvey. New equations for the sublimation pressure and melting pressure of H2O Ice Ih. J. Phys. Chem. Ref. Data 40, 043103, (2011).

https://doi.org/10.1063/1.3657937

S. Herrig, M. Thol, A.H. Harvey, E.W. Lemmon. A reference equation of state for heavy water. J. Phys. Chem. Ref. Data 47, 043102 (2018).

https://doi.org/10.1063/1.5053993

F.A. Deeney, J.P. O'Leary. Zero point energy and the origin of the density maximum in water. Phys. Lett. A 372, 1551 (2007).

https://doi.org/10.1016/j.physleta.2007.10.031

G. Boato, G. Casanova. A self-consistent set of molecular parameters for neon, argon, krypton and xenon. Physica 27, 571 (1961).

https://doi.org/10.1016/0031-8914(61)90072-6

D. Santamaria-Perez, G.D. Mukherjee, B. Schwager, R. Boehler. High-pressure melting curve of helium and neon: Deviations from corresponding states theory. Phys. Rev. B 81, 214101 (2010).

https://doi.org/10.1103/PhysRevB.81.214101

W.E. Keller. Helium-3 and Helium-4 (Springer Science + Business Media, 1969).

https://doi.org/10.1007/978-1-4899-6485-4

The McGraw-Hill Dictionary of Scientific and Technical Terms. 7th edition (McGraw-Hill, 2016).

J. Wisniak. Historical development of the vapor pressure equation from Dalton to Antoine. J. Phase Equil. 22, 622 (2001).

https://doi.org/10.1007/s11669-001-0026-x

A.M.A. Dias, J.C. Pamies, L.F. Vega, J.A.P. Coutinho, I.M. Marrucho. Modelling the solubility of gases in saturated and substituted perfluoroalkanes. Polish J. Chem. 80, 143 (2006).

N. Matsunaga, A. Nagashima. Prediction of the critical constants and the saturation vapor pressure of tritium oxide. Ind. Eng. Chem. Fund. 25, 115 (1986).

https://doi.org/10.1021/i100021a017

H.W. Xiang. Vapor pressure and critical point of tritium oxide. J. Phys. Chem. Ref. Data 32, 1707 (2003).

https://doi.org/10.1063/1.1565352

N.H. Fletcher. The Chemical Physics of Ice (Cambridge University Press, 1970).

https://doi.org/10.1017/CBO9780511735639

P.W. Bridgman. Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 439 (1912).

https://doi.org/10.2307/20022754

W. Wagner, A. Pruss. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387 (2002).

https://doi.org/10.1063/1.1461829

G.S. Kell. Effect of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water. J. Phys. Chem. Ref. Data 6, 1109 (1977).

https://doi.org/10.1063/1.555561

J. Horita, D.R. Cole. Stable isotope partitioning in aqueous and hydrothermal systems to elevated temperatures. In: Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions. Edited by D.A. Palmer, R. Fern'andez-Prini, A.H. Harvey (Elsevier, 2004).

https://doi.org/10.1016/B978-012544461-3/50010-7

D.R. White, W.L. Tew. Improved estimates of the isotopic correction constants for the triple point of water. Int. J. Thermophys. 31, 1644 (2010).

https://doi.org/10.1007/s10765-010-0819-4

F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H.E. Stanley. Thermodynamic properties of bulk and confined water. J. Chem. Phys. 141, 18C504 (2014).

https://doi.org/10.1063/1.4895548

A. Khan, M. Rezwan Khan, M. Ferdouse Khan, F. Khanam. A liquid water model: Explaining the anomalous density variation of liquid D2O and shifting of density maximum under pressure. J. Mol. Struct. (Theochem) 679, 165 (2004).

https://doi.org/10.1016/j.theochem.2004.04.017

P. Gallo, K. Amann-Winkel, Ch.A. Angell, M.A. Anisimov, F. Caupin, Ch. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson. Water: A tale of two liquids. Chem. Rev. 116, 7463 (2016).

https://doi.org/10.1021/acs.chemrev.5b00750

J. Russo, H. Tanaka. Understanding water's anomalies with locally favoured structures. Nat. Commun. 5, 3556 (2014).

https://doi.org/10.1038/ncomms4556

A. Nilsson, L.G.M. Pettersson. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

https://doi.org/10.1038/ncomms9998

R. Shi, H. Tanaka. Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. J. Am. Chem. Soc. 142, 2868 (2020).

https://doi.org/10.1021/jacs.9b11211

A. Kholmanskiy, N. Zaytseva. Physically adequate approximations for abnormal temperature dependences of water characteristics. J. Mol. Liq. 275, 741 (2019).

https://doi.org/10.1016/j.molliq.2018.11.059

A. Kholmanskiy. Hydrogen bonds and dynamics of liquid water and alcohols, J. Mol. Liq. 325, 115237 (2021).

https://doi.org/10.1016/j.molliq.2020.115237

A. Stepanov. Thermodynamics of substances with negative thermal expansion and negative compressibility. J. NonCryst. Solids 356, 1168 (2010).

https://doi.org/10.1016/j.jnoncrysol.2010.03.013

O. Khorolskyi, N.P. Malomuzh. pH and H-bonding energy for pure water. Chem. Phys. Lett. 828, 140713 (2023).

https://doi.org/10.1016/j.cplett.2023.140713

O. Khorolskyi, A. Kryvoruchko. Non-trivial behavior of the acid-base balance of pure water near the temperature of its dynamic phase transition. Ukr. J. Phys. 66, 972 (2021).

https://doi.org/10.15407/ujpe66.11.972

A.I. Fisenko, O.V. Khorolskyi, N.P. Malomuzh, A.A. Guslisty. Relationship between the major parameters of warmblooded organisms' life activity and the properties of aqueous salt solutions. AIMS Biophysics 10, 372 (2023).

https://doi.org/10.3934/biophy.2023022

M.M. Lazarenko, O.M. Alekseev, S.G. Nedilko, A.O. Sobchuk, V.I. Kovalchuk, S.V. Gryn, V.P. Scherbatskyi, S.Yu. Tkachev, D.A. Andrusenko, E.G. Rudnikov, A.V. Brytan, K.S. Yablochkova, E.A. Lysenkov, R.V. Dinzhos, S. Thomas, T.R. Abraham. Impact of the alkali metals ions on the dielectric relaxation and phase transitions in water solutions of the hydroxypropylcellulose. In: Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2022 (Springer, 2022).

https://doi.org/10.1007/978-3-031-42708-4_3

C. Andreani, C. Corsaro, D. Mallamace, G. Romanell, R. Senesi, F. Mallamace. The onset of the tetrabonded structure in liquid water. Sci. China Phys. Mech. Astron. 62, 107008 (2019).

https://doi.org/10.1007/s11433-018-9408-2

A.G. Lyapin, O.V. Stal'gorova, E.L. Gromnitskaya, V.V. Brazhkin. Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression. J. Exper. Theor. Phys. 94, 283 (2002).

https://doi.org/10.1134/1.1458477

G.S. Kell. Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66 (1967).

https://doi.org/10.1021/je60032a018

P.G. Hill, R.D.Ch. MacMillan, V. Lee. A fundamental equation of state for heavy water. J. Phys. Chem. Ref. Data 11, 1 (1982).

https://doi.org/10.1063/1.555661

M. Goldblatt, The density of liquid T2O. J. Phys. Chem. 68, 147 (1964).

https://doi.org/10.1021/j100783a024

F. Franks. Water. A Matrix of Life. 2nd edition (Royal Society of Chemistry, 2000).

Опубліковано

2024-04-17

Як цитувати

Bulavin, L., Rudnikov, Y., & Samoilenko, S. (2024). Фазові діаграми ізотопологів води та інертних речовин. Український фізичний журнал, 69(3), 179. https://doi.org/10.15407/ujpe69.3.179

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають

1 2 3 4 5 > >>