Низькоенергетичне n–p та n–d розсіювання з потенціалом Денг–Фана

Автор(и)

  • B. Khirali Department of Physics, National Institute of Technology
  • B Swain Department of Physics, National Institute of Technology
  • S. Laha Department of Physics, National Institute of Technology
  • U. Laha Department of Physics, National Institute of Technology

DOI:

https://doi.org/10.15407/ujpe69.4.247

Ключові слова:

потенцiал Денг–Фана, метод фазових функцiй, параметри фази розсiяння, перерiз, поляризацiйна асиметрiя, n–p i n–d системи

Анотація

Потенцiал Денг-Фана, який використовується в молекулярнiй динамiцi, застосовано для опису n–p та n–d розсiювання в рамках методу фазових функцiй. Знайдено перерiзи I параметри фази розсiяння в узгодженнi з iншими теоретичними роботами i експериментальними даними.

Посилання

R.G. Newton. Scattering Theory of Waves and Particles (Springer, 2014) [ISBN: 978-3-642-88130-5].

Z.H. Deng, Y.P. Fan. A potential function of diatomic molecules. J. Shandong Univ. (Natural Sci.) 7, 162 (1957).

A. Del Sol Mesa, C. Quesne, Y.F. Smirnov. Generalized Morse potential: Symmetry and satellite potentials. J. Phys. A: Math. Gen. 31, 321 (1998).

https://doi.org/10.1088/0305-4470/31/1/028

H. Hassanabadi, B. H. Yazarloo, S. Zarrinkamar, H. Rahimov. Deng-Fan potential for relativistic spinless particles - an ansatz solution. Commun. Theor. Phys. 57, 339 (2012).

https://doi.org/10.1088/0253-6102/57/3/02

S.H. Dong. Relativistic treatment of spinless particles subject to a rotating deng-fan oscillator. Commun. Theor. Phys. 55, 969 (2011).

https://doi.org/10.1088/0253-6102/55/6/05

O.J. Oluwadare, K.J. Oyewumi, O.A. Babalola. Exact s-wave solution of the Klein-Gordon equation with the Deng-Fan molecular potential using the Nikiforov-Uvarov (NU) method. African Rev. Phys. 7, 16 (2012).

B.H. Yazarloo, L. Lu, G. Liu, S. Zarrinkamar, H. Hassanabadi. The nonrelativistic scattering states of the Deng-Fan potential. Adv. High Energy Phys. 2013, 317605 (2013).

https://doi.org/10.1155/2013/317605

S.H. Dong, X.Y. Gu. Arbitrary l state solutions of the Schr¨odinger equation with the Deng-Fan molecular potential. J. Phys. Conf. Ser. 96, 012109 (2008).

https://doi.org/10.1088/1742-6596/96/1/012109

Z. Rong, H.G. Kjaergaard, M.L. Sage. Comparison of the Morse and Deng-Fan potentials for X-H bonds in small molecules. Mol. Phys. 101, 2285 (2003).

https://doi.org/10.1080/0026897031000137706

L.H. Zhang, X.-P. Li, C.S. Jia. Approximate analytical solutions of the Dirac equation with the generalized Morse potential model in the presence of the spin symmetry and pseudo-spin symmetry. Phys. Scr. 80, 035003 (2009).

https://doi.org/10.1088/0031-8949/80/03/035003

S.M. Ikhdair. An approximate к state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry. J. Math. Phys. 52, 052303 (2011).

https://doi.org/10.1063/1.3583553

S.H. Dong, J. Garc'ıa-Ravelo. Exact solutions of the swave Schr¨odinger equation with Manning-Rosen potential. Phys. Scr. 75, 307 (2007).

https://doi.org/10.1088/0031-8949/75/3/013

A. Diaf, A. Chouchaoui, R.J. Lombard. Feynman integral treatment of the Bargmann potential. Ann. Phys. (N.Y.) 317, 354 (2005).

https://doi.org/10.1016/j.aop.2004.11.010

W.C. Qiang, K. Li, W.L. Chen. New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term. J. Phys. A Math. Theor. 42, 205306 (2009).

https://doi.org/10.1088/1751-8113/42/20/205306

X.Y. Gu, S.H. Dong. Energy spectrum of the ManningRosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 49, 2053 (2011).

https://doi.org/10.1007/s10910-011-9877-5

M.F. Manning, N. Rosen. A potential function for the vibrations of the diatomic molecules. Phys. Rev. 44, 953 (1933).

L. Hulth'en. On the characteristic solutions of the Schr¨odinger deuteron equation. Ark. Mat. Astron. Fys. A 29B, 1 (1942).

J. Bhoi, U. Laha. Supersymmetry-inspired low-energy α-p elastic scattering phases. Theor. Math. Physics (Russian Fed.) 190, 69 (2017).

https://doi.org/10.1134/S0040577917010056

U. Laha, off-shell jost solution for the Hulth'en potential. Few-Body Syst. 59, 68 (2018).

https://doi.org/10.1007/s00601-018-1380-0

J. Bhoi, U. Laha. Hulth'en potential models for α-α and α-He3 elastic scattering. Pramana - J. Phys. 88, 42 (2017).

https://doi.org/10.1007/s12043-016-1352-1

J. Bhoi, A.K. Behera, U. Laha. Off-shell Jost function for the Hulth'en potential in all partial waves. J. Math. Phys. 60, 083502 (2019).

https://doi.org/10.1063/1.5093115

B. Khirali, A.K. Behera, J. Bhoi, U. Laha. Regular and Jost states for the S-wave Manning-Rosen potential. J. Phys. G Nucl. Part. Phys. 46, 115104 (2019).

https://doi.org/10.1088/1361-6471/ab4118

B. Khirali, A.K. Behera, J. Bhoi, U. Laha. Scattering with Manning-Rosen potential in all partial waves. Ann. Phys. (N.Y.) 412, 168044 (2020).

https://doi.org/10.1016/j.aop.2019.168044

B. Khirali, U. Laha, P. Sahoo. Off-shell solutions and Halfshell T-matrix for the Manning-Rosen potential. Few-Body Syst. 62, 20 (2021).

https://doi.org/10.1007/s00601-021-01603-6

B. Khirali, U. Laha, P. Sahoo. Analytic transition matrix for the Manning-Rosen potential in all partial waves. Chin. J. Phys. 77 (23), 2355 (2022).

https://doi.org/10.1016/j.cjph.2022.04.021

F. Calogero. Variable Phase Approach to Potential Scattering (Academic Press, 1967).

U. Laha, J. Bhoi. Higher partial-wave potentials from supersymmetry-inspired factorization and nucleon-nucleus elastic scattering. Phys. Rev. C - Nucl. Phys. 91, 034614 (2015).

https://doi.org/10.1103/PhysRevC.91.034614

J. Bhoi, R. Upadhyay, U. Laha. Parameterization of nuclear hulth'en potential for nucleus-nucleus elastic scattering. Commun. Theor. Phys. 69, 203 (2018).

https://doi.org/10.1088/0253-6102/69/2/203

U. Laha, J. Bhoi. Parameterization of the nuclear Hulth'en potentials. Phys. At. Nucl. 79, 62 (2016).

https://doi.org/10.1134/S1063778816010129

A.K. Behera, U. Laha, M. Majumder, J. Bhoi. Energymomentum dependent potentials and np scattering. Research and Reviews: J. Phys. 8, 2265 (2019).

A.K. Behera, J. Bhoi, U. Laha, B. Khirali. Study of nucleon-nucleon and alpha-nucleon elastic scattering by the Manning-Rosen potential. Commun. Theor. Phys. 72, 075301 (2020).

https://doi.org/10.1088/1572-9494/ab8a1a

P. Sahoo, A.K. Behera, B. Khirali, U. Laha. Nuclear Hulth'en potentials for F and G partial waves. Research & Reviews: J. Phys. 10, 31 (2021).

A.K. Behera, U. Laha, M. Majumder, J. Bhoi. Applicability of phase- equivalent energy-dependent potential. Case Studies. Phys. At. Nucl. 85, 124 (2020).

https://doi.org/10.1134/S1063778822010057

B. Talukdar, D. Chattarji, P. Banerjee. A generalized approach to the phase-amplitude method. J. Phys. G Nucl. Phys. 3, 813 (1977).

https://doi.org/10.1088/0305-4616/3/6/012

G.C. Sett, L. Laha, B. Talukdar. Phase-function method for Coulomb-distorted nuclear scattering. J. Phys. A: Math. Gen. 21, 3643 (1988).

https://doi.org/10.1088/0305-4470/21/18/017

G.N. Watson. A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1922) [ISBN-13:9781330302774].

R. Navarro P'erez, J.E. Amaro, E. Ruiz Arriola. The lowenergy structure of the nucleon-nucleon interaction: Statistical versus systematic uncertainties. J. Phys. G: Nucl. Part. Phys. 43, 114001 (2016).

https://doi.org/10.1088/0954-3899/43/11/114001

D. H¨uber, J. Golak, H. Witala, W. Gl¨ockle, H. Kamada. Phase shifts and mixing parameters for elastic neutrondeuteron scattering above breakup threshold. Few-Body Syst. 19, 175 (1995).

https://doi.org/10.1007/s006010050025

C.L. Bailey, W.E. Bennett, T. Bergstralth, R.G. Nuckolls, H.T. Richards, J.H. Williams. The neutron-proton and neutron-carbon scattering cross sections for fast neutrons. Phys. Rev. 70, 583 (1946).

https://doi.org/10.1103/PhysRev.70.583

A.L. Latter, R. Latter. A phase shift analysis of neutrondeuteron scattering. Phys. Rev. 86, 727 (1952).

https://doi.org/10.1103/PhysRev.86.727

F.F. Chen, C.P. Leavitt, A.M. Shapiro. Total p-p and p-n cross sections at cosmotron energies. Phys. Rev. 103, 211 (1956).

https://doi.org/10.1103/PhysRev.103.211

R.O. Lane, A.J. Elwyn, A. Langsdorf. Polarization and differential cross section for neutron scattering from silicon. Phys. Rev. 126, 1105 (1962).

https://doi.org/10.1103/PhysRev.126.1105

J.M. Clement, P. Stoler, C.A. Goulding, R.W. Fairchild. Hydrogen and deuterium total neutron cross sections in the MeV region. Nucl. Physics, Sect. A 183, 51 (1972).

https://doi.org/10.1016/0375-9474(72)90930-X

R.A. Arndt, W.J. Briscoe, A.B. Laptev, I.I. Strakovsky, R.L. Workman. Absolute total np and pp cross-section determinations. Nucl. Sci. Eng. 162, 312 (2009).

https://doi.org/10.13182/NSE162-312

P. Schwarz, H.O. Klages, P. Doll, B. Haesner, J. Wilczynski, Z. Zeitnitz, J. Kecskemeti. Elastic neutron-deuteron scattering in the energy range from 2.5 MeV to 30 MeV. Nucl. Phys. A 398, 1 (1983).

https://doi.org/10.1016/0375-9474(83)90645-0

J.E. McAninch, W. Haeberli, H. Wita la, W. Gl¨ockle, J. Golak. Analyzing power in nd elastic scattering at Elab = 3 MeV. Measurement and calculation. Phys. Lett. B 307, 13 (1993).

https://doi.org/10.1016/0370-2693(93)90185-K

J.L. Friar, G.L. Payne, W. Gl¨ockle, D. H¨uber, H. Wita la. Benchmark solutions for n-d breakup amplitudes. Phys. Rev. C 51, 2356 (1995).

https://doi.org/10.1103/PhysRevC.51.2356

A. Kievsky, M. Viviani, S. Rosati. Cross section, polarization observables, and phase-shift parameters in p-d and n-d elastic scattering. Phys. Rev. C 52, 1 (1995).

https://doi.org/10.1103/PhysRevC.52.R15

A. Kievsky, M. Viviani, S. Rosati. n-d scattering above the deuteron breakup threshold. Phys. Rev. C 56, 2987 (1997).

https://doi.org/10.1103/PhysRevC.56.2987

B.H. Daub, V. Henzl, M.A. Kovash. Measurements of the neutron-proton and neutron-carbon total cross section from 150 to 800 keV. Phys. Rev. C - Nucl. Phys. 87, 014005 (2013).

https://doi.org/10.1103/PhysRevC.87.014005

M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Cˆot'e, P. Pir'es, R. de Tourreil. Parametrization of the Paris N-N potential. Phys. Rev. C 21, 861 (1980).

https://doi.org/10.1103/PhysRevC.21.861

R.A. Arndt, L.D. Roper, R.A. Brayan, R.B. Clark, B.J. VerWest, P. Signell. Nucleon-nucleon partial-wave analysis to 1 GeV. Phys. Rev. D 28, 97 (1983).

https://doi.org/10.1103/PhysRevD.28.97

W. Schwinger, W. Plessas, L.P. Kok, H. Van Haeringen. Separable representation of the nuclear proton proton interaction. Phys. Rev. C 27, 515 (1983).

https://doi.org/10.1103/PhysRevC.27.515

R. Machleidt, K. Holinde, Ch. Elster. The bonn mesonexchange model for the nucleon-nucleon interaction. Phys. Rep. 149, 1 (1987).

https://doi.org/10.1016/S0370-1573(87)80002-9

J. Bystrick'y, C. Lechanoine-LeLuc, F. Lehar. Direct reconstruction of pp elastic scattering amplitudes and phase shift analyses at fixed energies from 1.80 to 2.70 GeV. Eur. Phys. J. C 4, 607 (1987).

https://doi.org/10.1007/s100529800946

V. Mau R, C. Semay, B. Loiseau, M. Lacombe. Nuclear forces and quark degrees of freedom. Phys. Rev. Lett. 67, 1392 (1991).

https://doi.org/10.1103/PhysRevLett.67.1392

F. Gross, J.W. Van Orden, K. Holinde. Relativistic oneboson-exchange model for the nucleon-nucleon interaction. Phys. Rev. C 45, 2094 (1992).

https://doi.org/10.1103/PhysRevC.45.2094

V.G.J. Stoks, R.A.M. Klomp, C. Terheggen, J.J. de Swart. Construction of high-quality NN potential models. Phys. Rev. C 49, 2950 (1994).

https://doi.org/10.1103/PhysRevC.49.2950

R.B. Wiringa, V.G.J. Stoks, R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995).

https://doi.org/10.1103/PhysRevC.51.38

R. Machleidt. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 63, 024001 (2001).

https://doi.org/10.1103/PhysRevC.63.024001

F. Gross, A. Stadler. Covariant spectator theory of np scattering: Phase shifts obtained from precision fits to data below 350 MeV. Phys. Rev. C 78, 014005 (2008).

https://doi.org/10.1103/PhysRevC.78.014005

U. Laha, J. Bhoi. Two-nucleon Hulthen-type interactions for few higher partial waves. Pramana-J. Phys. 84, 555 (2015).

https://doi.org/10.1007/s12043-014-0845-z

J.P, Scanlon, G.H. Stafford, J.J. Thresher, A. Langsford. Angular distributions for n-p scattering in the energy range 22.5 to 110 MeV. Nucl. Phys. 41, 401 (1963).

https://doi.org/10.1016/0029-5582(63)90519-4

E.D. Cooper, C.J. Horowitz. Vector analyzing power in elastic electron-nucleus scattering. Phys. Rev. C 72, 034602 (2005).

https://doi.org/10.1103/PhysRevC.72.034602

Wilczynski, J. Hansmeyer, F.P. Brady, P. Doll, W. Heeringa, J.C. Hiebert, H.O. Klages, P. Plischke. Measurements of the neutron-proton analyzing power in the energy range from 17 to 50 MeV. Nucl. Phys. A 425, 458 (1984).

https://doi.org/10.1016/0375-9474(84)90019-8

W. Tornow, C.R. Howell, M. Alohali, Z.P. Chen, P.D. Felsher, J.M. Hanly, R.L. Walter, G. Weisel. The low-energy neutron-deuteron analyzing power and the 3P0,1,2 interactions of nucleon-nucleon potentials. Phys. Letts. B 257, 273 (1991).

https://doi.org/10.1016/0370-2693(91)91892-Y

Downloads

Опубліковано

2024-05-30

Як цитувати

Khirali, B., Swain, B., Laha, S., & Laha, U. (2024). Низькоенергетичне n–p та n–d розсіювання з потенціалом Денг–Фана. Український фізичний журнал, 69(4), 247. https://doi.org/10.15407/ujpe69.4.247

Номер

Розділ

Поля та елементарні частинки