Передбачення щодо альфа-розпаду надважких ядер із Z = 127–138 на основі CYE моделі

Автор(и)

  • G.M. Carmel Vigila Bai Department of Physics, Government Arts and Science College
  • V.S. Department of Physics, Rani Anna Government College for Women, Affiliated to Manonmaniam Sundaranar University, Abhishekapatti

DOI:

https://doi.org/10.15407/ujpe69.3.158

Ключові слова:

CYE модель, альфа-розпад, надважкi ядра, кластер, спонтанний подiл, перiод напiврозпаду

Анотація

На основi моделi CYE дослiджено альфа-розпад, розпад на кластери i спонтанний подiл важких i надважких ядер. В данiй роботi отримано перiоди напiврозпаду на кластери для ядер в iнтервалi Z = 127–138, а також перiоди спонтанного подiлу цих ядер з використанням наближення двох сфер. Результати порiвняно з iншими теоретичними моделями i напiвемпiричною формулою Ксу та iн.

Посилання

E. Rutherford, H. Geiger. The charge and nature of the α-particle. Proc. R. Soc. London Ser. A 81, 162 (1908).

https://doi.org/10.1098/rspa.1908.0066

G.Z. Gamow. Zur quantentheorie des atomkernes. Phys. 51, 204 (1928).

https://doi.org/10.1007/BF01343196

D.N. Basu. Role of effective interaction in nuclear disintegration processes. Phys. Lett. B 90, 566 (2003).

https://doi.org/10.1016/S0370-2693(03)00801-3

Z. Ren, C. Xu, Z. Wang. New perspective on complex cluster radioactivity of heavy nuclei. Phys. Rev. C 70, 034304 (2004).

https://doi.org/10.1103/PhysRevC.70.034304

G. Royer, R. Moustabchir. Light nucleus emission within a generalized liquid-drop model and quasimolecular shapes. Nucl. Phys. A 683, 182 (2001).

https://doi.org/10.1016/S0375-9474(00)00454-1

G.L. Zhang, H.B. Zheng, W.W. Qu. Study of the univarsal function of nuclear proximity potential between α and nuclei from density-dependent nucleon-nucleon interaction. Eur. Phys. J. A 49, 10 (2013).

https://doi.org/10.1140/epja/i2013-13010-3

Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian. Comparative studies for different proximity potentials applied to α decay. Eur. Phys. J. A 51, 122 (2015).

https://doi.org/10.1140/epja/i2015-15122-0

K. Varga, R.G. Lovas, R.J. Liotta. Absolute alpha decay width of 212Po in a combined shell and cluster model. Phys. Rev. Lett. 69, 37 (1992).

https://doi.org/10.1103/PhysRevLett.69.37

B. Buck, A.C. Merchant, S.M. Perez. Systematics of alphacluster states above double shell closures. Phys. Rev. C 51, 559 (1995).

https://doi.org/10.1103/PhysRevC.51.559

G. Royer. Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).

https://doi.org/10.1088/0954-3899/26/8/305

Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu. Systematic study of α-decay energies and half lifetimes of superheavy nuclei. Phys. Rev. C 92, 064301 (2015).

https://doi.org/10.1103/PhysRevC.92.064301

P. Mohr. α-nucleus potentials, α-decay half-lives, and shell closures for superheavy nuclei. Phys. Rev. C 73, 031301 (2006).

https://doi.org/10.1103/PhysRevC.73.031301

S. Gales, E. Hourani, M. Hussonnois, J.P. Schapira, L. Stab, M. Vergnes. Exotic nuclear decay of 23Ra by emission of 14C nuclei. Phys. Rev. Lett. 53, 759 (1984).

https://doi.org/10.1103/PhysRevLett.53.759

P.B. Price, J.D. Stevenson, S.W. Barwick, H.L. Ravn. Discovery of radioactive decay of 222Ra and 224Ra by 14C emission. Phys. Rev. Lett. 54, 297 (1985).

https://doi.org/10.1103/PhysRevLett.54.297

G.M. Carmel Vigila Bai, J. Umai Parvathiy. Alpha decay properties of heavy and superheavy elements. Pramana, J. Phys. 84 (1), 113 (2015).

https://doi.org/10.1007/s12043-014-0833-3

J. Umai Parvathy. Properties of Superheavy Elements in Trans-Actinide Region. Ph.D. thesis (Manonmanium sundaranar university, 2016).

G.M. Carmel Vigila Bai, R. Revathi. Competition between alpha decay, cluster decay and spontaneous fission in the Superheavy nuclei, Z = 126. Math. Sci. Int. Res. J. 7, (2018).

G.M. Carmel Vigila Bai, V.S. Ajithra. Alpha decay chains of superheavy nuclei, Z = 128-138. In: Proceedings of the International Conference on Advanced Research Trends in Material Science and Nanomaterials IVCARTMSN-2022 organised by Department of Physics Selvam Arts and Science college (Autonomous), Nammakal, May 24-5 (2022).

G.M. Carmel Vigila Bai, V.S. Ajithra. Alpha decay chains of superheavy nuclei, Z = 140-144. In: Proceedings of the National seminar on Functional Materials and its Application NSFMA2022, organized by Department of Physics Muslim Arts College, Tiruvithancode, October 14-9 (2022), p. 55-58 [ISBN: 978-93-84737-37-5].

K.P. Santhosh, C. Nithya. Decay properties of 256−339Ds superheavy nuclei. Europ. Phys. J. A 53, 189 (2017).

https://doi.org/10.1140/epja/i2017-12379-1

K.P.Santhosh, B.Priyanka. predictions on the feasible alpha and cluster decays from 298−336 126 superheavy nuclei. In: Nuclear Particle Correlations and Cluster Physics (2017), p. 383-400.

https://doi.org/10.1142/9789813209350_0014

Y. Gambhir, A. Bhagwat, M. Gupta. the superheavy elements: Overview. Indian J. Phys. 83, 661 (2009).

https://doi.org/10.1007/s12648-009-0081-4

M. Bhuyan, S. Patra. Magic nuclei in superheavy valley. Modern Phys. Lett. A 27, 1250173 (2012).

https://doi.org/10.1142/S0217732312501738

G.M. Carmel Vigila Bai. A Systematic Study of Cluster Radioactivity in Transtin Region. Ph.D. thesis (Manonmanium sundaranar university, 1997).

G. Naveya, S. Santhosh Kumar, A. Stephen. A systematic study on α decay chains of superheavy nuclei, Z = 126 and 138. Intern. J. Mod. Phys. E 29 (6), 2050034 (2020).

https://doi.org/10.1142/S0218301320500342

G. Naveya, S. Santhosh Kumar, S.I.A Philominraj A. Stephen. Study on particle and cluster decay of super heavy nuclei Z = 130-144 using Cubic plus Proximity potential with improved transfer matrix method. Intern. J. Modern Phys. E 28 (7), 1950051 (2019).

https://doi.org/10.1142/S0218301319500514

C. Qi, F.R. Xu, R.J. Liotta, R. Wyss. Universal decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103, 072501 (2009).

https://doi.org/10.1103/PhysRevLett.103.072501

C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, M.Y. Zhang, C. Asawatangtrakuldee, D. Hu. Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law. Phys. Rev. C 80, 044326 (2009).

https://doi.org/10.1103/PhysRevC.80.044326

V.E. Viola Jr., G.T. Seaborg, J. Inorg. Nuclear systematics of the heavy elements - II. Lifetimes for alpha, beta and spontaneous fission decay. Nucl. Chem. 28, 741 (1966).

https://doi.org/10.1016/0022-1902(66)80412-8

K.P. Santhosh, C. Nithya. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135. Atomic Data and Nuclear Data Tables 121-122, 216 (2018).

https://doi.org/10.1016/j.adt.2017.12.001

D.N. Poenaru, R.A. Gherghescu, W. Greiner. Single universal curve for cluster radioactivities and α decay. Phys. Rev. C 83, 014601 (2011).

https://doi.org/10.1103/PhysRevC.83.014601

D.N. Poenaru, R.A. Gherghescu, W. Greiner. Cluster decay of superheavy nuclei. Phys. Rev. C 85, 034615 (2012).

https://doi.org/10.1103/PhysRevC.85.034615

K.P. Santhosh, A. Joseph. Cluster radioactivity in xenon isotopes. Pramana 62, 957 (2004).

https://doi.org/10.1007/BF02706143

K.P. Santhosh, C. Nithya. Theoretical studies on the modes of decay of superheavy nuclei. Phys. Rev. C 94, 054621 (2016).

https://doi.org/10.1103/PhysRevC.94.054621

Ning Wang, Min Liu, Xizhen Wu, Jie Meng. Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215 (2014). ar Xiv:1405.2616.

https://doi.org/10.1016/j.physletb.2014.05.049

Downloads

Опубліковано

2024-04-17

Як цитувати

Carmel Vigila Bai, G., & V.S. (2024). Передбачення щодо альфа-розпаду надважких ядер із Z = 127–138 на основі CYE моделі. Український фізичний журнал, 69(3), 158. https://doi.org/10.15407/ujpe69.3.158

Номер

Розділ

Оптика, атоми і молекули