Дослідження на базі теорії функціонала густини, властивостей ценобамату і його нових ізомерів як ефективних ліків при епілепсії

Автор(и)

  • Faeq A. AL-Temimei Department of Physics, College of Sciences, University of Kufa
  • Shaymaa Awad Kadhim Department of Physics, College of Sciences, University of Kufa
  • Naeema Hadi Ali Department of Physics, College of Sciences, University of Kufa

DOI:

https://doi.org/10.15407/ujpe69.5.314

Ключові слова:

теорiя функцiоналу густини, B3LYP, ценобамат, iзомери, активнiсть

Анотація

Вивчаються електроннi, квантовохiмiчнi i фотолiтичнi властивостi ценобамату, який блокує натрiєвi канали, та його нових iзомерiв. Знайдено, що центрами з найбiльшою реакцiйною здатнiстю є три атоми вуглецю в ценобаматi, хлорид фенiльного кiльця, а також кисень карбонiльної групи i атом азоту в амiднiй групi.

Посилання

R. Roberti, C. De Caro, L.F. Iannone et al. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug-drug interactions and tolerability. CNS Drugs 35, 609 (2021).

https://doi.org/10.1007/s40263-021-00819-8

N. Das, M. Dhanawat, S.K. Shrivastava. An overview on antiepileptic drugs. Drug Discov Ther. 6, 178-93 (2012).

https://doi.org/10.5582/ddt.2012.v6.4.178

S.S. Chung, J.A. French, J. Kowalski et al. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 94, e2311 (2020).

https://doi.org/10.1212/WNL.0000000000009530

J.A. French. Cenobamate for focal seizures - a game changer? Nat. Rev. Neurol 16, 4 (2020).

https://doi.org/10.1038/s41582-019-0309-7

F.A. Mohammed, H.I. Abbood. Electronic structure of vanadium tetrachloride di-hydroxyl metal complex. J. Engin. Appl. Sci. 13, 9823 (2018).

K. Bamba, O.W. Patrice, N. Ziao. NBO Population analysis and electronic calculation of four azopyridine ruthenium complexes by DFT method. Comput. Chem. 5, 51 (2017).

https://doi.org/10.4236/cc.2017.51005

A.A. Muhmood, F.A. AL-Temimei. New ruthenium metal complexes for their activity with DNA and cells of cncer/DFT-B3LYP calculations. Indian J. Public Health 10, 1241 (2019).

https://doi.org/10.5958/0976-5506.2019.01463.3

A.F. LeRoy. Interactions of platinum metals and their complexes in biological systems. Environmental Health Perspectives 10, 73 (1975).

https://doi.org/10.2307/3428411

A.S. Abu-Surrah, M. Kettunen. Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin. Current Med. Chem. 13, 1337 (2006).

https://doi.org/10.2174/092986706776872970

K. Zheng, J. Wang, Y. Shen et al. Studies on 4,7-di-substitution effects of one ligand in [Ru(Phen)3]2 with DFT method. J. Comput. Chem. 23, 436 (2002).

https://doi.org/10.1002/jcc.10038

J. Foresman, E. Frish. Exploring chemistry. (Gaussian Inc., 1996).

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, b864 (1964).

https://doi.org/10.1103/PhysRev.136.B864

M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. GAUSSIAN 09, Revision A.02. (Gaussian, Inc., CT, 2009).

P.J. Hay, W.R. Wadt. Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985).

https://doi.org/10.1063/1.448799

F.A. AL-Temimei, H.A. Mraity. DFT/TD-DFT investigation of novel D- -A configuration dyes for improving solar cell efficiency. Struct Chem. 33, 859 (2022).

https://doi.org/10.1007/s11224-022-01901-7

J.B. Collins, P.V. Schleyer, J.S. Binkley et al. Selfconsistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 64, 5142 (1976).

https://doi.org/10.1063/1.432189

F.A. AL-Temimei. Design high-efficiency organic dyes based on fluorescein toward dye-sensitized solar cells: A DFT/TD-DFT study. Opt Quant Electron 54, 600 (2022).

https://doi.org/10.1007/s11082-022-03997-x

A Kumar, V. Deval, P. Tandon, A. Gupta. Experimental and theoretical (FT-IR, FT-Raman, UV-Vis, NMR) spectroscopic analysis and first-order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory. Spectrochimica Acta Part A. 130, 41 (2014).

https://doi.org/10.1016/j.saa.2014.03.072

R.T. Morrison, R.N. Boyd. Organic Chemistry (New York University, 2007).

W.B. De Almeida, H.F.D Santos, P.J. O'Malley. A molecular mechanics and semiempirical conformational analysis of the herbicide diuron inhibitor of photosystem II. Struct Chem. 6, 383 (1995).

https://doi.org/10.1007/BF02310180

T. Pooventhiran, U. Bhattacharyya, D.J. Rao et al. Detailed spectra, electronic properties, qualitative non-covalent interaction analysis, solvatochromism, docking and molecular dynamics simulations in different solvent atmosphere of cenobamate. Struct Chem. 31, 2475 (2020).

https://doi.org/10.1007/s11224-020-01607-8

P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press Inc, 2005).

M.E. Casida, C. Jamorski, K.C. Casida et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439 (1998).

https://doi.org/10.1063/1.475855

R. Bauernschmitt, R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett. 256, 454 (1996).

https://doi.org/10.1016/0009-2614(96)00440-X

Downloads

Опубліковано

2024-06-26

Як цитувати

AL-Temimei, F. A., Kadhim, S. A., & Ali, N. H. (2024). Дослідження на базі теорії функціонала густини, властивостей ценобамату і його нових ізомерів як ефективних ліків при епілепсії. Український фізичний журнал, 69(5), 314. https://doi.org/10.15407/ujpe69.5.314

Номер

Розділ

Загальна фізика